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Abstract. Transformation optics is a mathematical method that is based on the geometric interpretation of

Maxwell’s equations. This technique enables a direct link between a desired electromagnetic (EM)

phenomenon and the material response required for its occurrence, providing a powerful and intuitive
design tool for the control of EM fields on all length scales. With the unprecedented design flexibility offered

by transformation optics (TO), researchers have demonstrated a host of interesting devices, such as

invisibility cloaks, field concentrators, and optical illusion devices. Recently, the applications of TO have

been extended to the subwavelength scale to study surface plasmon-assisted phenomena, where a general

strategy has been suggested to design and study analytically various plasmonic devices and investigate the

associated phenomena, such as nonlocal effects, Casimir interactions, and compact dimensions. We review

the basic concept of TO and its advances from macroscopic to the nanoscale regimes.
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1 Introduction

Transformation optics (TO) is an emerging technique for the
design of advanced electromagnetic (EM) media. It is based
on the concept that Maxwell’s equations can be written in a
form-invariant manner under coordinate transformations,
such that only the permittivity and permeability tensors are
modified.1–3 With the coordinate transformation applied to the
constitutive parameters, EM waves in one coordinate system
can be described as if propagating in a different one. The geo-
metric interpretation of Maxwell’s equations utilized in the TO
approach provides a powerful and intuitive design tool for the
manipulation of EM fields on all length scales.

In the past, the form invariance of Maxwell’s equations has
been exploited as a computational tool to simplify numerical
electrodynamic simulations. In 1996, a transformation from
Cartesian to cylindrical coordinates was applied to solve for
the modes of an optical fiber with circular cross section.1

This transformation allowed for efficiently solving a cylindrical
geometry using a finite-difference computer code implemented

in Cartesian coordinates. The TO technique, however, extends
well beyond the domain of computational approaches and
has gained a great deal of relevance over the past decade
in conjunction with the emerging field of metamaterials.
Metamaterials are artificially structured media whose effective
material parameters can be engineered to have, in principle, any
combination of anisotropic electric and magnetic responses,4–8

making them an enabling path for transformation optical
structures.

2 Basic Theory

The physical meaning of coordinate transformation can be given
as follows. We start from a Cartesian system with a given set of
electric and magnetic fields and their associated Poynting vec-
tors. Next, imagine that the coordinates are continuously dis-
torted into a new system. TO was born of the realization that
as the system is distorted it carries with it all the associated
fields. Hence, to guide the trajectory of light, only a distortion
in the underlying coordinate system is needed, automatically
taking with it the light ray. Knowledge of the transformation
in turn provides the values of ε and μ required to steer the light
in this way.
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To give an intuitive view of the TO scheme, we consider
a very simple distortion of space: a section of the x axis is com-
pressed as shown in Fig. 1. To find the values of ε and μ that
would lead to the ray trajectory given by the red line, we now
illuminate the compressed region with test EM waves of two
different polarizations (see the right panel).

For a ray propagating along the x axis, the condition k0αd ¼
k0dmust hold so that the phase is preserved at the far side of the
compressed region. (Here, k0 is the free-space wave vector, k

0 is
the wave vector in the compressed region, α is the compression
factor, and d is the thickness of the original uncompressed

layer.) This condition requires k0 ¼ k0
ffiffiffiffiffiffiffiffiffi

ε0yμ
0
z

p

¼ α−1k0, and thus

ε0yμ
0
z ¼ α−2. Since Maxwell’s equations are symmetrical for ε

and μ, any transformation must apply equally to these two
parameters.2 Therefore, we have

ε0y ¼ μ0y ¼ ε0z ¼ μ0z ¼ α−1: (1)

Note that ε and μ appear on the same footing because of the
symmetry between electric and magnetic fields in the trans-
formed space. For a ray propagating along the z axis, since there
is no compression in this direction, the refractive index must
remain unchanged

ffiffiffiffiffiffiffiffiffi

ε0yμ
0
x

p

¼ ffiffiffiffiffiffiffiffiffi

εyμx
p ¼ 1. Hence, we can deduce

μ0x ¼ ε0x ¼ α: (2)

To conclude, if we compress a coordinate system along a cer-
tain axis, both ε and μ are decreased by the compression factor
in the direction of distortion. On the other hand, perpendicular to
the direction of distortion, ε and μ are increased by the inverse of
the compression factor. For a general compression, the formula
is applied successively along each of the three axes.

It is possible to follow this intuitive approach of compressing
and expanding space to the design of much more complex and
functional devices. However, leveraging the formal structure of
electromagnetism, we can follow a systematic, general approach
that allows the consideration of arbitrary transformations. Under

a general spatial operation, EM fields are distorted in a way
that is exactly equivalent to a transformation of the electric
permittivity and magnetic permeability tensors of the form

ε0 ¼ Λ · ε · Λ
T

detðΛÞ
; μ0 ¼ Λ · μ · Λ

T

detðΛÞ
; (3)

where ε(μ) and ε0(μ0) are the permittivity (permeability) tensors
in the original and transformed space, respectively, and

Λ ¼
"

∂x0∕∂x ∂x0∕∂y ∂x0∕∂z
∂y0∕∂x ∂y0∕∂y ∂y0∕∂z
∂z0∕∂x ∂z0∕∂y ∂z0∕∂z

#

is the Jacobian matrix of the transformation relating differential
elements between the primed and unprimed frames. Therefore,
we can rewrite Maxwell’s equations in the transformed frame

and derive the physical quantities in terms of Λ
j0

j in the trans-

formed space accordingly. In the new coordinate system, we
must use modified values of the permittivity and permeability
to ensure that Maxwell’s equations are satisfied. Table 1 sum-
marizes the transformation of different physical quantities in

terms of the transformation matrix Λ
j0

j . Maxwell’s equations

thus have the same general form as expected so long as the con-
stitutive parameters and source terms are multiplied by the ap-
propriate factors of the Jacobian matrix and its determinant.

TO has provided a powerful tool for the design of structures
capable of controlling the flow of light. The most well-known
example is the EM invisibility cloak proposed in 2006.2,10

Figure 2(a) shows a ray of light traveling in free space.
Suppose we wish to hide the object lying in a spherical region
with radius R1 by directing the rays around this region while
confining the distorted rays within a larger sphere radius R2

[Fig. 2(b)]. In this way an external observer would be aware

k

E
H

k

E

H

x

y

z

Fig. 1 A simple coordinate transformation that compresses a space along the x axis. As a result,

light follows a distorted trajectory, as shown by the red solid line, but emerges from the com-

pressed region traveling in exactly the same direction with the same phase as before. We can

predict the metamaterial properties in the brown region that would realize this trajectory for a light

ray. Figure reprinted with permission: Ref. 9, © 2010 by the Imperial College London.
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neither of the presence of the cloak nor its contents. In other
words, any object hidden in the cloak would be invisible to outer
observers [see Fig. 2(d)].

The corresponding space distortion can be realized through
the following coordinate transformation:

r0 ¼
�

R2 − R1

R2

�

rþ R1; θ0 ¼ θ; φ0 ¼ φ: (4)

This transformation compresses the space in the radial direc-
tion. Therefore, along the angular coordinates the values of ε
and μ are increased by the inverse of the compression factor,
whereas along the radial direction the values are reduced.
The corresponding cloak parameters are

ε0r ¼ μ0r ¼
R2

R2−R1

�

r−R1

r

�

2

; ε0θ ¼ μ0θ ¼ ε0φ ¼ μ0φ ¼
R2

R2−R1

:

(5)

If we take a closer look at the cloak parameters, we find that
a spherical cloak is singular on its inner surface, i.e., the values
of ε and μ either become infinity or zero. To implement such
a cloak, it requires that the metamaterials are in general
extremely anisotropic and the difficulty of manufacturing such
materials increases severely at higher frequencies. Therefore,
any practical implementation will always involve a degree of
approximation. A two-dimensional (2-D) cylindrical cloak
was later proposed as a simplified scheme, and reduced param-
eters are also suggested to further simplify the design and
realization process.11–14 The cylindrical cloak was first demon-
strated at microwave frequencies in 2006 using metamateri-
als,15 followed by a huge surge of attentions from different
research groups implementing their own versions of the
technology.16–25

Another example of TO device is the electromagnetic field
concentrator that can focus the incident electromagnetic waves
to the central area and enhance the electromagnetic energy

Table 1 Summary of transformations of different physical

quantities.

Physical quantities

Before

transformation After transformation

Scalar potential ϕ ϕ0 ¼ ϕ

Charge density ρ ρ0 ¼ ρ∕ detðΛÞ
Electric field E "

E0

H0

k0

#

¼ ðΛTÞ−1 ·
"

E

H

k

#

Magnetic field H

Wave vector k

Magnetic flux density B
2

6

4

B0

D0

j0

S0

3

7

5
¼ Λ ·

2

6

4

B

D

j

S

3

7

5
∕ detðΛÞ

Electric displacement D

Current density j

Poynting vector S

R1

R2

(a) (b) (c)

(d) (e)

Fig. 2 (a) The undistorted coordinate system, where a ray of light in free space travels in a straight

line. (b) The coordinates are transformed to exclude the cloaked region. Trajectories of rays are

pinned to the coordinate mesh and therefore avoid the cloaked region, returning to their original

path after passing through the cloak. (c) The coordinates are transformed to fold the space into the

annulus region. (d) The field distribution for a cloak under the Gaussian beam illumination. (e) The

field distribution for a concentration under the Gaussian beam illumination.
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density.26,27 It can be designed by applying the transformation
function

fðrÞ ¼
�

αr; when r < R1
R2−αR1

R2−R1
ðr − R1Þ þ αR1; when R1 < r < R2

; (6)

where the constant α stands for the magnification/shrink factor
related to the compression/expansion of space. This design

gives εt ¼ μt ¼ f0ðrÞ, εr ¼ μr ¼ ε0
f2ðrÞ
r2f0ðrÞ. Note that the cloak

can be taken as the extreme case where α → 0. The incident
power is suppressed at the core when 0 < α < 1 and enhanced
when α ≥ 1. In particular, when α > R2∕R1, the negative slope
of the function gives a folded region where ε and μ are negative.
In this case, the power that flows through the inner region (core)
is larger than that which flows through the whole concentrator,
due to the energy circulation between the coating and the inner
media, as shown in Fig. 2(e). The device enhances the scattering
cross section of an object so that it looks like a scatterer larger
than the scale of the whole device.28–30 Space transformation
with folded region can also lead to perfect imaging with neg-
ative refractive index superlens,31–34 and optical illusion devices
that optically cancel the scattering from original objects and re-
store the optical paths of light to generate illusions.35 The reali-
zation of such devices requires layered complex metamaterial
structures to achieve the spatially gradient and anisotropic
material parameters. Thus, a simplification process is usually
taken to reduce the difficulty in designs and fabrications.36–38

Note that devices with extreme-value parameters, including
spherical/cylindrical cloaks, superscatterers, superlens, etc.,
only work within limited frequency band with inevitable absorp-
tions due to the resonant nature of metamaterials.

3 Quasi-Conformal Mapping

To mitigate the material parameter constraints, the flexibility of
the coordinate transformations has been explored. Attentions
have been turned to the so-called quasi-conformal mapping that

allows the design of devices with isotropic dielectric materials
or materials with very small anisotropy. As a natural extension
from the conformal mapping, the quasi-conformal mapping re-
laxes the severe restrictions on the conformal mapping while
remaining orthogonal such that the permittivity and permeabil-
ity tensors can be easily realized. These mappings allow for
transformations between domains with different conformal
modules in two steps. To compensate for the mismatched con-
formal modules, the virtual domain is first mapped to an inter-
mediate domain with the same conformal module as the
physical domain. This can be simply achieved using a uniform
compression/expansion y0 ¼ αγ, where α is the compression/
expansion factor. The intermediate domain is then conformally
mapped to the physical domain, giving

ε ¼ μ ¼ Diag½α−1; α; ðαjΛjÞ−1�: (7)

In contrast to conformal mapping, the material tensors pro-
duced by quasi-conformal mapping are not equal to each other
due to perturbations to the conformal module, as can be seen
from Eq. (7). However, these perturbations are generally small
and thus the resulting anisotropy can typically be ignored. In
general, this technique does not have a closed form analytical
solution. However, the quasi-conformal map can be approxi-
mated by solving Laplace equation on the coordinates.39

One example of quasi-conformal mapping is the design of
“carpet cloak,” which provides an alternative form of invisibility
cloak.40 Instead of completely hiding objects in a free space,
a carpet cloak itself appears as a flat reflecting surface so that
the objects and the bump made by the objects underneath the
carpet are undetectable by light. The carpet cloak can be de-
signed by transforming a rectangular region in the virtual space
to an arbitrary region with a defined curved bottom boundary
[see Fig. 3(a)]. To minimize the anisotropy factor, the relative
size of the cloaked region has to be very small compared to the
size of the whole cloak device. For the case in Fig. 3(a), the
anisotropy factor becomes a constant of 1.042, and n2 ranges

(a) (b)
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Fig. 3 A carpet cloak designed with quasi-conformal mapping. (a) n2 profile of the cloak. (b) E z

distribution with the cloak located within the rectangle in dashed line when a Gaussian beam is

launched at 45 deg toward the ground plane. (c) The reflected ray from the bump of the carpet

cloak has been shifted toward the incident point. Figure reprinted with permission: (a) and

(b) Ref. 40, © 2008 by the American Physical Society (APS); (c) Ref. 41, © 2010 by APS.
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from 0.68 to 1.96.40 Thus, the anisotropy of the carpet cloak can
be neglected. Figure 3(b) shows the Ez distribution when
a Gaussian beam is launched at 45 deg toward the ground plane
covered by a rectangular carpet cloak with a PEC bottom boun-
dary. The cloak cancels out the original scattering by the bump
itself so that it appears as a flat mirror. However, there is an
unavoidable lateral shift comparable to the height of the cloaked
object in the reflected wave due to the approximations made to
the anisotropic parameters, as shown in Fig. 3(c), making the
object eventually detectable.41

The material parameters of the carpet cloak are nonsingular
and can in principle be realized without the need of resonant
features. Furthermore, the isotropic material profile simplifies
the fabrication process, making its realization in optical spec-
trum possible. A number of experimental realizations have been
reported, including 2-D and 3-D carpet cloaks working at micro-
wave,42–44 near-infrared,45–48 and visible spectra.49,50 However, in
all these realizations, the ratio of the size of the hidden region to
that of the cloak is fairly small (normally <0.01), due to the
isotropy approximation taken in the quasi-conformal mapping.
Furthermore, the spatially gradient material parameters require
long design and implementation cycles. Despite these limita-
tions, quasi-conformal mappings still hold great utility in bring-
ing TO designs closer to realization.

4 Linear Transformation

Linear transformation is another type of coordinate transforma-
tion used to simplify the device design. In 2-D cases, an arbi-
trary linear transformation can be described as x0 ¼ α1xþ
β1yþ γ, y0 ¼ α2xþ β2yþ γ2, z

0 ¼ z, which transfer a line in
the initial coordinate to another one in the physical space.
Thus, we can find a unique linear transformation to map an ar-
bitrary triangular region to another one (see Fig. 4). The corre-
sponding permittivity/permeability tensor in the transformed
geometry is calculated as

ε ¼ μ ¼

2

4

α2
1
þβ2

1

ðα1β2−α2β1Þ2
α1α2þβ1β2
ðα1β2−α2βÞ2

α1α2þβ1β2
ðα1β2−α2βÞ2

α2
1
þβ2

1

ðα1β2−α2β1Þ2

3

5; (8)

which is homogeneous and anisotropic.51,52

Therefore, linear transformation opens the way for the design
of a homogeneous carpet cloak by linearly compressing the tri-
angular region along the y axis into a polygonal region [see
Fig. 5(a)],

x0 ¼ x; y0 ¼ H2 −H1

H2

yþ D − x sgnðxÞ
D

H1; z0 ¼ z: (9)

In the transformed geometry, the permittivity tensor of the
nonmagnetic carpet cloak takes the form of

ε0x−y ¼ ε

2

4

�

H2

H2−H1

�

2
−

H1H
2
2

ðH2−H1Þ2d
sgnðxÞ

−
H1H

2
2

ðH2−H1Þ2d sgnðxÞ 1þ
�

H2

H2−H1

�

2
�

H1

d

�

2

3

5: (10)

Consider a transverse-magnetic (TM, magnetic field
perpendicular to the cloak device) polarized Gaussian beam in-
cident obliquely upon such a carpet cloak on top of a flat sur-
face. The anisotropic cloak layer guides the beam around the
bump, making the output beam propagate in exactly the same
way as that reflected from a flat surface, as shown in Fig. 5(b).

The permittivity tensor in Eq. (10) can be diagonalized by
rotating the optical axis, and may be realized with natural bire-
fringent crystals53–55 or metamaterials with effective uniaxial
material profiles, such as dielectric grating structures.56–59 The
experimental demonstration of this kind of carpet cloak has been
done in visible spectrum, with the calcite crystal53,54 and in near
infrared spectrum, with the silicon grating structure.56 Note that
the use of natural crystals enables the realization of optical cloak
in macroscopic scale, whereas the metamaterial solution offers
more freedom as we can engineer the geometrical parameters,
such as the filling factor of the gratings, to achieve anisotropy
not found in natural materials. The linear transformation has
been further applied to design a unidirectional cloak,60 omnidi-
rectional cloaks,61 and other photonic devices, such as wave-
guide adapters62–65 and magnifying lens.34

5 Conformal Transformation

Although quasi-conformal mapping and linear transformation
make the realization of devices more feasible, the inhomo-
geneous or anisotropic distributions of permeability and permit-
tivity are still challenging to achieve, especially at optical
spectrum. Conformal transformation is a scheme that can

x

y

x’

y’

Fig. 4 A linear transformation that transforms an arbitrary tri-

angular region to another one in the physical space.

x

y y’

x’

(a)

d-d

H2

d-d

H2

H1

(b)

Fig. 5 (a) The linear transformation for the design of a carpet cloak. (b) Full-wave simulation of Hz

profiles with an incident beam at 45 deg to the homogeneous carpet cloak. Figure reprinted with

permission: (b) Ref. 51, © 2009 by IEEE.
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completely eliminate the requisite anisotropy of the material
parameters, thus it is especially useful in the device design at
optical frequencies.

A conformal mapping is an analytic transformation that pre-
serves local angles. If we consider an analytic function ϕðzÞ in
the complex plane with z ¼ xþ iy, it must satisfy the Laplace’s
equation:

∂2ϕ

∂x2
þ ∂2ϕ

∂y2
¼ 0: (11)

If we make a coordinate transformation z0 ¼ x0 þ iy0 ¼ fðzÞ,
ϕ0ðz0Þ also satisfies the Laplace’s equation in the new coordinate
system:

∂2ϕ0

∂x02
þ ∂2ϕ0

∂y02
¼ 0; (12)

provided that the transformation fðzÞ is analytic everywhere in
the region under consideration. Hence, in electrostatics, a con-
formal transformation preserves the potential in each coordinate
system:

ϕ0ðx0; y0Þ ¼ ϕðx; yÞ: (13)

Moreover, the preservation of local angles ensures that the
boundary conditions in the transformed space remain un-
changed. Thus, the dielectric constant of each material is also
conserved:

ε0ðx0; y0Þ ¼ εðx; yÞ: (14)

Since both the electrostatic potential and the material permit-
tivity are preserved under the 2-D conformal mapping, the del-
icate design of a metamaterial with a spatial variation in its
constitutive parameters is no longer necessary. Thus, conformal
transformation not only simplifies the fabrication process but
also provides an easy route to engineering the plasmonic proper-
ties of the transformed nanostructures. In recent years, optical
conformal transformation has been exploited extensively to treat
subwavelength fields occurring in plasmonic nanosystems,
which are difficult to study analytically with traditional theoreti-
cal methods, giving a precise design tool.66–69 By applying trans-
formations to simple plasmonic structures that are well
understood but do not have the properties we desire, a variety
of complex plasmonic structures, such as sharp edges,70 nearly
touching spheres,71 and nonconcentric core-shell structures,72

can be generated and studied analytically through the optical
properties of the original simple structures.

5.1 Singular Plasmonic Structures

From traditional concepts, it is usually believed that a metallic
structure should have a large physical size (as compared to the
wavelength) to allow for a broadband light-harvesting process
and a nanoparticle of finite size usually sustains localized sur-
face plasmon resonances at discrete, rather than continuous,
frequencies. However, there are exceptions to these rules.
Some finite nanostructures containing sharp edges (or corners)
can behave like infinite plasmonic systems and show a continu-
ous interaction with light over a broad frequency range.73,74

The theory of TO enables the understanding of the physical

mechanism behind this phenomenon. The general strategy starts
with a well understood canonical plasmonic system whose ana-
lytical description is possible, and then a conformal transforma-
tion is applied to deduce the solution for a much more complex
geometry. This strategy can explain through the two examples
shown in Fig. 6.

A thin slab of metal can support surface plasmon excitations
with a lower bound cutoff at the zero frequency and an upper
bound cutoff at the surface plasmon frequency. However, the
energy is dispersed to infinity and cannot be collected for an
efficient light harvesting process. By applying a 2-D inverse
transformation, which converts the infinite metal slab in the
original space into a crescent-shaped cylinder depicted in
Fig. 6(a), a dipole source in addition to the slab is transformed
to an incident plane wave, and the induced surface plasmons are
now incoming waves focused onto the cusp of the crescent.
Another example is shown in Fig. 6(b), where the inverse trans-
formation bridges a plasmonic system consisting of two semi-
infinite metal slabs and a pair of touching metallic nanowires.
The sharp geometrical features in these nanostructures act as
singularities for surface plasmons, causing them to propagate
toward the sharp points, slowing down as they progress, but
never reaching these sharp points. Consequently, light energy
builds up around the singularities. In other words, the trans-
formed geometries can harvest light from infinity and ideally
concentrate energy to a nanoscale region around the cusp or
touching point.

Detailed calculations show that absorption cross sections for
the two geometries depicted in Fig. 6 take the following forms,
respectively:

x

y

x’

y’

Invert at

dipole center

Dipole

Dipole

Plane wave

Plane wave

DoDi

D1

D2

(a)

(b)

Fig. 6 Schematic of the conformal transformation that maps

canonical plasmonic systems to singular structures. (a) A thin

metal slab that couples to a 2-D line dipole is transformed to

a crescent-shaped nanocylinder illuminated by a uniform electric

field. (b) Two semi-infinite metal slabs separated by a thin dielec-

tric film that are excited by a 2-D dipole source are transformed to

two touching metallic nanowires illuminated by a uniform electric

field.

Zhang, Pendry, and Luo: Transformation optics from macroscopic to nanoscale regimes

Advanced Photonics 014001-6 Jan∕Feb 2019 • Vol. 1(1)
Downloaded From: https://www.spiedigitallibrary.org/journals/Advanced-Photonics on 1/28/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



σ ¼ 4π2k0

�

ρ

1 − ρ

�

2

D2
o Re

�

ε

1 − ε2

�

ε − 1

εþ 1

�

−
2Di

Do−Di

ln

�

ε − 1

εþ 1

�	

;

(15)

for the crescent;75

σ ¼ π2k0
D2

1D
2
2

ðD1 þD2Þ2
Re

���

ε − 1

εþ 1

�D1−D2
D1þD2 þ

�

ε − 1

εþ 1

�D2−D1
D1þD2

þ 2

	

ln

�

ε − 1

εþ 1

�


; (16)

for two touching nanowires.76 Here, ε is the permittivity of the
metal, Di and Do denote the inner and outer diameters of the
crescent; D1 and D2 correspond to the diameter of the two
nanowires.

As shown in Figs. 7(a) and 7(b), which display the absorption
cross sections as a function of the physical cross section of the
crescent and two touching cylinders, both structures exhibit
broadband spectra where the absorption cross section is of
the order of the overall physical cross section even for such
small particle sizes. This broadband light harvesting behavior
results from the fact that the induced surface plasmons propa-
gating along the nanostructure surface are compressed toward
the singularity, where the group velocity vanishes and energy
accumulates. As a consequence, the wavelength is reduced
while the energy is increased by the compression factor, lead-
ing to a huge increase in the electric field close to the singu-
larity. As illustrated in Figs. 7(c) and 7(d), the maximum field

enhancements induced in the crescent and touching-cylinder
configurations reach about 1500 and 15,000, respectively.

Based on this presented approach, an analytical relationship
between a canonical metallodielectric system and a variety of
singular plasmonic structures, including wedges, crescents, rough
surfaces, touching cylinders, etc., has been established.70,75,77–82

Compared with traditional computational methods, this con-
formal transformation approach does not require the imple-
mentation of adaptive meshes around the sharp geometrical
boundaries (such as edges or surface protrusions), thereby
allowing for a more comprehensive understanding of the
strongly localized surface plasmon modes at the singularities.
This transformation approach can be generalized to investigate
some other complicated plasmonic systems containing singular-
ities and, therefore, may lead to a large number of practical con-
sequences, such as single molecular detection, new generations
of sensors, efficient light harvesting, and surface enhanced
Raman scattering.

5.2 Plasmonic Nanostructures with Blunt Edges/Corners

In real-world applications, singularities or perfectly sharp boun-
daries in those structures are unlikely to be realized due to lim-
itations in fabrication techniques and the surface tension of the
metal. Therefore, the possibility of quantitatively examining
how the edge rounding at the sharp boundary will alter the op-
tical responses has great significance on both theoretical and
practical levels. TO enables a systematic investigation of a gen-
eral class of blunt nanostructures by applying conformal map-
pings to the truncated metallodielectric system associated with
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the singular structures.83,84 A number of such examples are dis-
played in Fig. 8. The analytical studies reveal how the edge
rounding of the nanostructures can be engineered to achieve pe-
culiar optical responses including broadband or selective spec-
tral dependence of absorbed and scattered light as well as large
local electric field enhancements. Take the blunt crescent geom-
etry shown in Fig. 8(h) as the example. The resonance condition
of the localized surface plasmon modes can be deduced from the
corresponding slab geometry in Fig. 8(g),83

�

ε − 1

εþ 1

�

2
�

exp

�

nπð2π − θÞ
l1 þ l2

	

− exp

�

nπθ

l1 þ l2

�


2

−

�

exp

�

2π2n

l1 þ l2

�

− 1

	

2

¼ 0; (17)

which indicates that the positions of the plasmonic resonances
and hence the optical responses of the structure can be con-
trolled by the three geometrical parameters l1, l2, and θ.
Properly altering these parameters can tune the frequency
and the linewidth of the plasmonic resonances to any prede-
signed values. Figure 9 shows how the quantized plasmonic
modes merge into a continuum when the crescent cusp becomes
sharper and sharper. The ability to engineer the physical parame-
ters of metallic nanostructures and thus to maneuver their optical
responses provides great promise for the development of new de-
vices and applications. Furthermore, theoretical models can predict
unique plasmonic responses of structures that are yet to be fab-
ricated, providing important guidelines for the experiments85–87

and motivating further synthetic work in these areas.

5.3 Nonlocal Effects in Plasmonic Nanostructures

In singular structures containing sharp asperities/corners or
nearly touching particles, the nonlocal effect, i.e., spatial

dispersion in the metal permittivity, plays a key role in the per-
formance of nanodevices, where the classical macroscopic
electromagnetism breaks down. An accurate description of op-
tical properties in the subnanometer regime requires the imple-
mentation of spatially dispersive permittivities beyond the
Drude free electron gas, taking into account the effect of elec-
tron–electron interactions. Incorporating nonlocal effects into
the TO approach requires the transformation of the permittivity
tensor with transverse and longitudinal components under
the conformal inversion. The mapping z → z0 only modifies
the longitudinal permittivity according to ε0Lðk0;ωÞ ¼
ε
∞

h

1 −
ω2
p

ωðωþiγÞ−β0ðz0Þ2jk0j2
i

, yielding a spatially dependent nonlo-

cal parameter β0ðz0Þ ¼ dz0

dz
β (here, β is taken as the hydrody-

namic parameter, which is proportional to the surface charge
thickness according to δ ¼ β∕ωp). Figures 10(a) and 10(b)

show the inversion of a pair of nearly touching nanowires in
local and nonlocal cases, respectively. The original uniform
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charge thickness along the nanowires boundaries maps into
a periodic nonuniform width, where the corresponding non-
local problem can be solved by implementing eikonal
approximation.88,89

A more general strategy for the inclusion of nonlocal effects
in the TO frame can be done through a recently developed
simplified model for nonlocality.90 This method treats the non-
locality by replacing the spatially dispersive metal with a
composite material consisting of a thin virtual dielectric layer
located on top of a local metal. The thickness, Δd, and permit-
tivity, εNL, of this layer are designed so that the transmission
and reflection coefficients for all incident wave vectors and
at all frequencies are the same as in the spatially dispersive
metal. This model has been implemented in the TO description
of separated nanowires and fully-analytic closed-form
expressions for the absorption cross section and field enhance-
ment have been obtained.90 Figures 10(c) and 10(d) plot the
absorption spectrum of the nanowire dimer in the local and
nonlocal cases. As the separation between the two nanowires
decreases, the surface plasmon modes in the local case
redshift toward zero frequency without bound [see Fig. 10(c)].

In sharp comparison, the nonlocal surface charge screening
blueshifts the plasmonic resonances, especially at small sepa-
ration, setting an upper bound for the resonance shifting.
This nonlocal saturation phenomenon has been experimen-
tally confirmed in a number of different plasmonic
configurations.91–93

The nonlocal effects also set an ultimate bound for the
maximum field enhancements. As shown in Fig. 11(a), the
electric field along the surface of touching nanowires dramati-
cally decreases with increased nonlocal screening,89 and
the enhancement in the vicinity of the touching point for
β ¼ 2πc × 10−3 (corresponding to the realistic nonlocality
in silver) is reduced by about 50 times. To maximize the
field enhancement, the interplay between the nonlocal and
radiative effects must be carefully considered. As shown in
Fig. 11(b), small particles exhibit poor enhancement owing
to strong nonlocal electron screening, whereas, large particles
are affected by pronounced radiative losses and hence show
reduced enhancement. The balance of these two effects
leads to an optimum choice of the radius between 30 and
80 nm.
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5.4 Three-Dimensional Structures and Quantum
Fluctuation

TO has been extensively employed in 2-D scenarios to inves-
tigate the interaction of light with a number of metal
structures70,75,77–84,88,89,94–96 processing translation symmetry (see
Refs. 66, 97, and 98 for a review). However, those studies de-
scribe only a subset of the spectrum with electric fields
perpendicular to the symmetric axis. The extension of the
TO framework to 3-D is nontrivial because many plasmonic
and quantum-fluctuation-related phenomena require a complete
description of the plasmonic modes over the whole spectrum.
The difficulty of the 3-D generalization lies in the fact that
the permittivity of the transformed material is no longer pre-
served but acquires a spatial dependence according to εðrÞ ¼
�

�

dr0

dr

�

�ε0 under an arbitrary 3-D conformal mapping r → r
0.71,99

Take the 3-D inversion r
0 ¼ R2

T
ðr−R0Þ

jr−R0j2
in Fig. 12 as the example.

The transformed annulus geometry has an inhomogeneous per-
mittivity given by

εðrÞ ¼ R2
T

jr − R0j2
ε0; (18)

where ε0 is the permittivity of the metal sphere or background
in the physical space. Despite this minor complication, the

simplification of geometry still enables us to find a closed-
form solution of the electrical potential in the inhomogeneous
system,100

ϕðr; θ;φÞ ¼
X

∞

l¼0

X

l

m¼−l

jr

− R0j½aþlmðr∕R0Þl þ a−lmðR0∕rÞlþ1�Ylmðθ;φÞ;
(19)

where Ylmðθ;φÞ represents spherical harmonics; aþlm and a−lm are

expansion coefficients, which can be determined through boun-
dary conditions.

The factor jr − R0j in Eq. (19) results from the inhomo-
geneous permittivity of the annulus geometry. Its presence
spoils the spherical symmetry, and as a result, the total angular
momentum l is no longer conversed. Nevertheless, detailed cal-
culations show that such a minor complication couples the
boundary equations only to the neighboring l� 1, giving rise
to a tridiagonal reflection matrix, which can be solved
easily.100 The reflection matrix contains all the necessary infor-
mation of the modes supported by the system. For instance, the
resonance frequencies of the modes can be obtained by setting
the determinant of the reflection matrix to zero. Results obtained
in this way are plotted in Fig. 13(a), which shows that as the
separation δ between the two metal spheres decreases, the sur-
face plasmon modes factor into bonding and antibonding.
The bonding modes (red-dashed lines) redshift to zero fre-
quency with decreasing δ. On the other hand, the antibonding
modes (blue-dashed lines) blueshift as δ decreases and finally
fall into two branches, one below and the other above the sur-
face plasmons frequency. The branch below the surface plasmon
frequency is widely discussed in the literature in the contents of
plasmonic hybridization,102–105 where the electric fields of these
modes are driven out of the gap because of the repulsion of sur-
face charges. In sharp contrast, the branch of modes above the
surface plasmon frequency shows a much more interesting
behavior. Their mode energy is drawn into the gap despite
the repulsion between the charges accumulated on the two par-
ticles. Because of their anomalous behavior, these modes are
named the anomalous antibonding modes.100 They are rarely
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investigated in previous studies perhaps because they only exist
at extremely small gaps, where traditional approaches, such as
multipole scattering, demand too much time to get a convergent
result.

As mentioned above, the description of the full set of modes
enables us to go beyond the optical responses of the structure to
study related phenomena in other fields, such as Casimir forces,106–
108 heat transfer,109,110 and quantum friction.111 Figure 13(b) dis-
plays one such result, where the Casimir energy between two
gold spheres is plotted against the gaps between them. Both
local112 and nonlocal101 results are presented, which show that
the nonlocal screening effects significantly saturate the
Casimir energy and hence decrease the force at extremely small
separations. The black-dot line corresponds to the calculation
using Drude description of metal permittivity. The large devia-
tions between the Drude mode and realistic metal parameters
highlight the significant role of bonded electrons in Casimir
interactions.101 Apart from the separated metal spheres, the 3-D
TO framework described above can be easily extended to other
complex plasmonic systems, including 3-D blunt crescents,99

oblate and prolate spheroids,95 etc.

5.5 Compact Dimension in Singular Plasmonic
Metasurfaces

As the last example of this review article, we show how to use
the TO approach to compress a whole spatial dimension of a 3-D
system into a set of singular points of a 2-D metasurface.113

In traditional optical systems, the number of characteristic k
vectors is normally equal to the dimensionality of the system.
To design a plasmonic metasurface with compact dimensions,
we start with a 3-D periodically layered metallodielectric
stack in Fig. 14(a) and apply a conformal transformation
z0 ¼ ðd∕2πÞ ln½1∕ðez þ aÞ − 2a�, converting it into a 2-D singu-
lar plasmonic surface in Fig. 14(b). The theory of TO shows that
the surface plasmon modes supported by the transformed geom-
etry are characterized by three wave vectors despite the 2-D
nature of the metasurface.113,114 For instance, the modes propa-
gating along the vertical direction have two characteristic wave

vectors [see Fig. 14(c)], i.e., the Bloch wave vector kBloch, which
characterizes the energy flow between neighboring unit cells,
and the hidden wave vector kHidden, which characterizes how
the surface plasmons propagate toward the singular points.
The latter is generally missing in traditional gratings or gradient
metasurfaces but plays an important role in the singular plas-
monic surface considered here.

To further illustrate the role of the hidden modes, we set
kBloch ¼ 0. Then, for traditional gradient metasurfaces, surface
plasmons have to form standing waves resulting in zero power
flow everywhere within a unit cell. On the contrary, the singular
metasurface is quite different because the hidden modes still
have a nonzero kHidden [see Fig. 14(d)]. These modes can propa-
gate toward the singular points without reflection, as shown by
the field plot of Fig. 14(b). In other words, the singular points
resulting from the compression of an infinite hidden dimension
behave like energy sinks, which completely decouple the power
flows within and between unit cells.

Singular points associated with compact dimensions can be
achieved by a number of ways. Apart from the geometric sin-
gularities depicted in Fig. 14(b), a flat graphene sheet with peri-
odically doped conductivity, the values of which are singular at
certain points, can also have a hidden dimension.115 Since the
continuum of modes associated with a 3-D structure is com-
pressed into a 2-D geometry, the singular metasurface exhibits
a number of striking properties that are difficult to achieve with
a conventional 2-D plasmonic system. For example, to couple
free-space radiation to surface plasmons with traditional meth-
ods, the phase matching condition must be carefully considered.
In general, at fixed frequencies, the surface modes can be ex-
cited only at specific incident angles, whereas at fixed incident
angles, the modes can be excited only at discrete frequencies.
Nevertheless, the singular metasurfaces no longer have to satisfy
such rules. The interplay of Bloch and hidden modes in singular
metasurfaces enables broadband wide-angle excitation of sur-
face plasmons. To illustrate this point, Figs. 15(b) and 15(c) plot
the absorbance of singular graphene metasurfaces at the normal
incidence. The results show that an absorption level around 50%
can be achieved over a continuous frequency band of >10 THz.
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6 Conclusions

Transformational optics offers unprecedented control over the
propagation and confinement of electromagnetic fields at both

supra- and subwavelength scales. It not only enables the design

of a variety of electromagnetic devices such as the invisibility

cloaks and illusion devices but also allows the study of plas-

monic nanostructures, revealing the key features that optimize

light harvesting and plasmonic field enhancement. Taking into

account practical factors including geometric bluntness, nonlo-
cal effects, material limitations, etc., brings the TO approach a
step forward toward realistic applications. In fact, the range of
applicability of this powerful method is beyond the manipula-
tion of electromagnetic waves and description of the optical
properties of metals but can be extended to other physical fields,
such as acoustic waves,116–118 elastic waves,119–121 matter waves,122

and thermal fields.123,124 The recent breakthrough that shows
continuum of modes of the 3-D structure can be directly mapped

(a) (b)

(c)

u

x’

y’

x’

y’

E
k

H

σ(y’)

μ(y’)

0 20 40
0

0.1

0.2

0.3

0.1

0.2

0.3

0

A
b

s
o

rb
a

n
c
e

f [THz]

Low loss

High loss

Low loss

High loss

≈ 11THz

Fig. 15 (a) Schematic of singular graphene metasurface with periodical conductivity.

(b) and (c) Absorption spectra of two singular graphene metasurfaces showing how the plasmonic

resonances merge into a continuum with increasing dissipation losses. Figure reprinted with per-

mission: Ref. 115, © 2018 by the American Chemical Society.

(a) (b)

(c) (d)

Fig. 14 A conformal transformation compacts (a) the x dimension of a metallodielectric structure

into (b) periodic singularities of a plasmonic metasurface. Dispersion of the singular plasmonic

metasurface with respect to (c) both the hidden and Bloch wave vectors, (d) the hidden vector

alone. Figure reprinted with permission: Ref. 113, © 2017 by the American Association for the

Advancement of Science.

Zhang, Pendry, and Luo: Transformation optics from macroscopic to nanoscale regimes

Advanced Photonics 014001-12 Jan∕Feb 2019 • Vol. 1(1)
Downloaded From: https://www.spiedigitallibrary.org/journals/Advanced-Photonics on 1/28/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



into the 2-D metasurface, which opens up a brand new direction
for the applications of TO. We expect more exciting applications
of this methodology and more experimental realizations re-
ported in the future.
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