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Transformation-optics insight into nonlocal effects in separated nanowires
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We present a transformation-optics approach which sheds analytical insight into the impact that spatial

dispersion has on the optical response of separated dimers of metallic nanowires. We show that nonlocal effects

are apparent at interparticle distances one order of magnitude larger than the longitudinal plasmon decay length,

which coincides with the spatial regime where electron tunneling phenomena occur. Our method also clarifies the

interplay between nonlocal and radiation effects taking place in the nanostructure, yielding the dimer dimensions

that optimize its light harvesting capabilities.
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The impact of spatial nonlocality in the optical prop-

erties of metal nanoparticles is currently attracting great

research attention. The presence of subnanometric geometric

features in these nanostructures enables them to support

extremely localized surface plasmon (SP) resonances. Clas-

sical electrodynamics predicts that the focusing ability of

SPs is pushed to its maximum efficiency at these diminu-

tive decorations,1 where the extent of the electromagnetic

fields become comparable to the Coulomb screening length

( ∼ 0.1 nm for noble metals). However, the local constitutive

relations of macroscopic Maxwell’s equations do not reflect

the occurrence of significant electron-electron interactions in

this spatial regime. Thus, a nonlocal treatment of the dielectric

characteristics of metals,2 beyond the free-electron Drude

model, is required to clarify the limitations and guide the

optimization of plasmonic devices.

Although spatial dispersion in the permittivity of metals

has been intensively studied in the past,3–6 its experimental

exploration has not been possible until very recently. Current

fabrication and optical characterization techniques allow the

probing of SP resonances below the nanometer,7–10 which has

renewed the theoretical interest in the nonlocal response of

metallic nanostructures.11–13 Nanoparticle dimers are probably

the system most thoroughly investigated in this context.14–16

In this Rapid Communication, we revisit this geometry using a

quasianalytical transformation-optics (TO) approach,17 which

was first developed within the local approximation.18–21 Lately,

this method has been used to describe nonlocal effects in

touching nanowires.22 Here, we extend this TO framework

to separated dimers, clarifying how spatial dispersion affects

the light harvesting properties of these devices.

Figure 1(a) depicts a pair of metal nanowires of radius

R separated by a gap distance d, illuminated by an electric

field polarized along the dimer axis. Under the logarithmic

transformation indicated, the dimer maps into the metal-

insulator-metal structure shown in Fig. 1(b).18 The incident

electric field maps into an array of dipole sources located at

x ′ = 0 with period 2π . The transformed parameters can be

expressed in terms of the original ones as g = 4R
√

ρ(1 + ρ)

and a = 2 ln(
√

ρ +
√

ρ + 1), where ρ = d/4R is the relative

gap size. The permittivity tensor of the dimer is described using

the hydrodynamical model.2 Thus, the transverse component

ǫT(ω) = ǫ∞[1 − ω2
P

ω(ω+iγ )
] remains spatially nondispersive,

whereas the longitudinal one acquires a k dependence,

ǫL(k,ω) = ǫ∞[1 − ω2
P

ω(ω+iγ )−β2|k|2 ].

The Drude constants considered in our calculations are

ǫ∞ = 1, ωP = 2.2 × 1015 rad/s, and γ = 1.8 × 1013 rad/s,

which are realistic values for silver.23 Our choice of ǫ∞
makes the two possible additional boundary conditions needed

to describe the optical excitation of longitudinal plasmons

(continuity of the normal electric field or the normal current)

totally equivalent. The β parameter is proportional to the Fermi

velocity, which presents only slight variations among different

noble metals.24 Thus, we take β = 106 m/s, in agreement with
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FIG. 1. (Color online) (a) Interaction of light with a dimer of

separated nanowires. (b) Unit cell of the periodic structure resulting

from the transformation of the original geometry. The conformal

operation is shown between the two panels. The shaded areas and

solid lines depict the longitudinal plasmon decay (surface charge

thickness) and the surface plasmon wave function in both frames.
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a recent experimental estimation for Au nanoparticles.9 The

shaded areas in Fig. 1 represent the longitudinal plasmon decay

length (surface charge thickness). This is given by the constant

δLP = β/ωP = 0.45 nm in Fig. 1(a). The conformal operation

leads to a position-dependent nonlocal parameter of the form

β ′(z′) = 2β

g
|1 − cosh z′| in the transformed structure. This

yields the surface charge thickness δ′
LP(y ′) outlined in Fig. 1(b).

The solid lines sketch the wave function of propagating SP

modes in both frames.

Maxwell’s equations can be solved in the transformed

geometry beyond the quasistatic approximation.25 Taking

advantage of the periodic character of the structure, we reflect

the excitation of longitudinal plasmons in the system through

the spatial averaging of δLP(y ′). Specifically, an average decay

length is calculated at the vicinity of the dipole sources (|y ′| <

π/2) in order to describe accurately the near-field coupling

of the incident fields to propagating SPs. Implementing this

approximate treatment of nonlocal effects in the local solution

of the problem, we can express the absorption cross section of

the dimer as

σabs =
(8R)2πω

η2c
ρ ′(1 + ρ ′)Im

{ ∞
∑

n=1

ξn

}

, (1)

where

ξn =
neαn

(
√

ρ ′ +
√

ρ ′ + 1)4n − eαn

, (2)

αn = ln

(

ǫT(ω) − 1

ǫT(ω)
γn+1

γn−1
+ 1

)

. (3)

Equation (3) governs the dispersion relation of the

propagating SP modes at the transformed interfaces, and

γn =
√

1 + ( 2R
β

)2 ω2
P−ω2

n2

ρ ′(ρ ′+1)

(2ρ ′+1−2/π)2 is the ratio between

the normal and tangential wave-vector components of the

longitudinal plasmons excited in the structure. Note that in

the β → 0 limit, γn → ∞ and the equations above recover

their local form.18

The ratio ρ ′ = ρ + ρ0, where ρ0 = d0/4R, follows from

the introduction of the parameter d0 into the theory. This sets

an effective minimum gap size for the dimer, and it is found

by requiring Eq. (1) to recover the TO nonlocal predictions for

touching nanowires22 in the limit d = 0. Note that the latter are

obtained from the inversion of the original structure. Specif-

ically, d0 is calculated by matching the resonant condition in

the denominator of Eq. (2) (evaluated at n = 1 and ρ ′ = ρ0)

to the spectral position of the first absorption maximum in the

touching case. This procedure makes possible the correction

of the approximate treatment of δLP(y ′), which breaks down

for large SP wave vectors and small relative gap sizes. Finally,

the term η = |1 − 2πi(2Rω/c)2ρ ′(1 + ρ ′)
∑∞

n=1 ξn| in Eq. (1)

corresponds to the radiative reaction factor,25 which accounts

for the appearance of radiative losses as the dimer dimensions

become comparable to the incoming wavelength.

Figure 2 renders the absorption efficiency (defined as the

cross section over the dimer physical size) versus normalized

frequency (ωSP = ωP/
√

2) for touching nanowires of 10 nm

radius. The main panel shows the good agreement between

the spectrum obtained from Eq. (1) (blue solid line) and the

prediction from Ref. 22 (red dashed line). Note that these two
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FIG. 2. (Color online) Absorption efficiency of 10 nm radius

touching nanowires obtained under the inversion (red dashed line)

and the logarithmic transformation (blue solid line) of the original

dimer. For comparison, nonlocal numerical simulations are shown

as green dots. The upper inset renders σabs/4R in log scale vs the

incident frequency and β for R = 10 nm. The white dashed line plots

the fitting to the lowest resonant frequency used to calculate d0. The

lower inset renders d0 vs β for three different nanowire radii, together

with 2δLP.

sets of data were obtained under different treatments of spatial

dispersion, which explains the small discrepancies between

them. For comparison, nonlocal numerical simulations26 are

also plotted as green dots. The upper inset displays the

absorption efficiency of touching dimers (R = 10 nm) as a

function of ω/ωSP and β. The white dashed line plots the

resonant frequency used to calculate d0. The lower inset

renders the minimum gap size versus β for three different

nanowire radii, together with 2δLP. Note that d0 ≃ 2δLP for

realistic β. This fact reveals that the physical origin of the

parameter d0 resides in the nonlocal thickening of the charge

distribution at the nanowire surface, which effectively blurs the

dimer boundaries. At large β and small R, d0 > 2δLP, which

indicates that spatial dispersion cannot be simply linked to

the opening of an effective gap at the dimer contact. This

deviation reflects that nonlocal effects alter significantly the

optical properties of small (R � 5 nm) isolated nanowires.11

The upper panels in Fig. 3 display the absorption efficiency

σabs/(4R + d) of separated nanowires (R = 10 nm) as a func-

tion of the incident frequency and the relative gap size ρ. Figure

3(a) renders local calculations, whereas Figs. 3(b) and 3(c) are

evaluated at β = 105 and 106 m/s, respectively (the latter is a

realistic estimation for noble metals). For large gaps, our theory

reproduces the nonlocal blueshift experienced by the dipolar

resonance of single cylinders.6 Figures 3(b) and 3(c) show

that spatial dispersion truncates the continuous redshifting of

the absorption maxima with decreasing d obtained within the

local approximation.18 Recently, this spectral deviation from

the local predictions has been verified experimentally in a

gold nanosphere, gold substrate configuration.9 Remarkably,

Fig. 3 evidences that the impact of nonlocality in the spectral

position of the SP resonances is apparent at gap sizes one order

of magnitude larger than δLP ≃ d0/2. Note that the position of
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FIG. 3. (Color online) The upper panels show σabs/(4R + d) for

separated nanowires as a function of the incident frequency and the

relative gap size for three different β: (a) local, (b) 105 m/s, and

(c) 106 m/s. (d) plots the theoretical (solid line) and numerical (dots)

absorption spectra for three different gap sizes (R = 10 nm). The

inset displays σabs/(4R + d) vs ω/ωSP and R for ρ = 0.025 in the

same color scale as the upper panels.

ρ0 is marked by a white horizontal arrow in each panel. In

good agreement with previous theoretical reports,14 our TO

approach predicts that the intensity of the absorption maxima

is rather insensitive to spatial dispersion.

Importantly, our method does not take into account the

occurrence of charge transfer phenomena due to electron

tunneling in plasmonic dimers. Full quantum calculations yield

a further blueshift and a drastic lowering of the absorption

peaks due to these effects at angstrom-sized gap distances.27–29

A recent experimental work on gold nanoparticles has set

the length scale for this quantum tunneling regime at dQR =
0.31 nm (Ref. 10) (note the similarity with δLP above). This

distance is dictated by the metal work function which, to

a good approximation, is the same for all noble metals.24

Therefore, our theoretical findings indicate that significant

nonlocal effects take place in silver nanowires at interparticle

distances one order of magnitude larger than dQR.

Figure 3(d) plots σabs/(4R + d) for R = 10 nm nanowires

separated by the three relative gap sizes indicated by dashed

color lines in Fig. 3(c). The good agreement between theo-

retical (solid lines) and numerical (dots) calculations demon-

strates the validity of our TO method at ω � ωSP. At higher

frequencies, our approach overestimates the electromagnetic

contribution of SP modes with large propagating wave vector

(large n) and the comparison with numerical simulations

worsens. As discussed above, this is caused by the approximate

treatment of nonlocality inherent to Eq. (1). In the inset of

Fig. 3(d), we explore the impact of radiation losses in the dimer

performance. The panel renders the absorption efficiency

versus ω/ωSP and R for nanowires with ρ = 0.025 (which

corresponds to d = 1 nm at R = 10 nm). The normalized cross

section is reduced considerably for R > 60 nm due to radiative

reaction. On the other hand, spatial dispersion diminishes

σabs/(4R + d) below 10 nm. The interplay between these

two effects leads to a range of nanowire radii around 40 nm

where the absorption efficiency of the dimer is maximized.

So far, we have analyzed how nonlocal effects modify

the light collection properties of separated dimers. In the

following, we investigate how the local description of their

nanofocusing performance is corrected once spatial dispersion

is taken into account. With this purpose, we concentrate on a

single magnitude, the absolute value of the field enhancement

at the gap center. We consider only the electric field component

parallel to the dimer axis (x direction), which is the largest

across the gap region. Our TO method yields a very simple

expression for the field enhancement defined this way,

∣

∣

∣

∣

Egap

E0

∣

∣

∣

∣

=
1

η

∣

∣

∣

∣

∣

1 + 8

∞
∑

n=1

(−1)n+1ξn

∣

∣

∣

∣

∣

, (4)

where the first term reflects the contribution of the incident

electric field and ξn is defined in Eq. (2).

Figure 4(a) plots the field enhancement versus frequency

for 10 nm radius nanowires separated by a 0.5 nm gap.

Local and realistic nonlocal (β = 106 m/s) calculations are

rendered in gray and black lines, respectively. As observed

in the absorption cross section, the introduction of spatial
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FIG. 4. (Color online) (a) Absolute value of the field enhancement

at the gap center |Egap/E0| vs frequency for R = 10 nm and d =
0.5 nm (β = 106 m/s). The inset shows the comparison between

theory (solid lines) and simulations (dots) for d = 0.1 nm and d = 10

nm. (b) |Egap/E0| as a function of ω/ωSP and ρ for R = 10 nm.

(c) Field enhancement vs frequency and R for nanowire dimers with

ρ = 0.025. (b) and (c) are evaluated at β = 106 nm. The white dashed

lines in (b) and (c) correspond to the realistic nonlocal spectrum in (a).
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dispersion blueshifts and reduces the number of plasmonic

resonances supported by the nanostructure below ωSP.

Figure 4(a) indicates that nonlocality lowers |Egap/E0| not

only at the spectral peaks, but also at frequencies out of

resonance. However, note that the maximum enhancement

(located at 0.6 ωSP and 0.8 ωSP in the local and nonlocal

spectra, respectively) is diminished by only a factor of 2

for the geometry and metal permittivity considered here. In

order to gain physical insight into this result, |Egap/E0| for

nonlocal parameters equal to 2β and β/2 are shown as red and

green lines, respectively. These spectra demonstrate indeed

that increasing β leads to a continuous blueshift and lowering

of the field enhancement resonances. The inset of Fig. 4(a)

displays the comparison of our theoretical calculations with

numerical simulations for two extreme configurations (R =
10 nm): d = 0.1 nm (pink) and d = 10 nm (blue). Whereas

the agreement is very good at large d, the theory seems to

overestimate |Egap/E0| at low frequencies for small gap sizes.

In both cases, the approximate description of spatial dispersion

in Eq. (4) prevents it from reproducing the abrupt drop in the

numerical field enhancement at ω ≈ 1.1 ωSP.

Figure 4(b) displays the field enhancement at the gap center

as a function of the incident frequency and ρ for R = 10 nm.

As expected, the field enhancement maxima follow the same

spectral trend as the absorption peaks [see Fig. 3(c)]. Whereas

the local approximation yields enormous |Egap/E0| values

for very small gaps, our TO treatment indicates that this

superfocusing ability is truncated by spatial dispersion. Our

nonlocal results evidence that the maximum field enhancement

is below 103, and occurs for ρ ≃ 10ρ0. For smaller gaps,

|Egap/E0| saturates to the touching prediction. Note that, as

mentioned above, our approach does not reflect the impact of

quantum tunneling for d � dQR. Finally, Fig. 4(c) analyzes

the balance between radiative and nonlocal effects in the light

enhancement at the gap center for dimers with ρ = 0.025

(which corresponds to d = 1 nm for R = 10 nm). As observed

for σabs, these two mechanisms lower significantly |Egap/E0|
for nanowire radii larger than 50 nm and smaller than 10 nm.

Thus, we can conclude that both the absorption and focusing

efficiency of the device are optimized for dimers with R ∼
40 nm.

In summary, we have presented a transformation-optics

approach that makes possible the quasianalytical description

of nonlocal effects in dimers of separated metal nanowires.

We have shown that spatial dispersion blueshifts the local

resonances supported by this nanostructure, in agreement with

recent experimental reports. Our theoretical results indicate

that this nonlocal deviation is evident for interparticle distances

one order of magnitude larger than the longitudinal plasmon

decay length (which coincides with the spatial regime where

quantum tunneling phenomena become relevant). On the other

hand, our theory predicts a relatively small lowering of the

maximum absorption and field enhancement efficiencies due to

nonlocality at nanometric gap sizes. Finally, the introduction of

radiative losses allows us to determine that the light harvesting

performance of the device is optimized for 40 nm radius

nanowires.
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