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ABSTRACT

TRANSFORMATION OPTICS USING GRAPHENE:

ONE-ATOM-THICK OPTICAL DEVICES BASED ON GRAPHENE

Ashkan Vakil

Nader Engheta

Metamaterials and transformation optics have received considerable attention in the recent

years, as they have found an immense role in many areas of optical science and engineering

by offering schemes to control electromagnetic fields. Another area of science that has

been under the spotlight for the last few years relates to exploration of graphene, which is

formed of carbon atoms densely packed into a honey-comb lattice. This material exhibits

unconventional electronic and optical properties, intriguing many research groups across

the world including us. But our interest is mostly in studying interaction of electromagnetic

waves with graphene and applications that might follow.

Our group as well as few others pioneered investigating prospect of graphene for plas-

monic devices and in particular plasmonic metamaterial structures and transformation op-

tical devices. In this thesis, relying on theoretical models and numerical simulations, we

show that by designing and manipulating spatially inhomogeneous, nonuniform conductiv-

ity patterns across a flake of graphene, one can have this material as a one-atom-thick plat-

form for infrared metamaterials and transformation optical devices. Varying the graphene

chemical potential by using static electric field allows for tuning the graphene conductivity

in the terahertz and infrared frequencies. Such design flexibility can be exploited to create
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“patches” with differing conductivities within a single flake of graphene. Numerous pho-

tonic functions and metamaterial concepts are expected to follow from such platform. This

work presents several numerical examples demonstrating these functions.

Our findings show that it is possible to design one-atom-thick variant of several optical

elements analogous to those in classic optics. Here we theoretically study one-atom-thick

metamaterials, one-atom-thick waveguide elements, cavities, mirrors, lenses, Fourier op-

tics and finally a few case studies illustrating transformation optics on a single sheet of

graphene in mid-infrared wavelengths.
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Chapter 1

Introduction

1.1 Metamaterials and transformation optics

1.1.1 Metamaterials

To build an electromagnetic (EM) device with certain functionalities, we need to be able

to transmit, receive, confine, guide and manipulate EM waves. Over years, scientists and

engineers have come up with myriad of brilliant designs and schemes to build devices per-

forming these functions. For example antennas have been designed to transmit and receive

waves, waveguides to confine and guide them, and polarizers and filters to manipulate

them [7, 86]. All these are based on a central notion: exploiting “materials” to control,

manipulate and direct fields and waves [12, 26, 83].

Although we are blessed with a wide range of materials in nature, the variety of devices

that can be built from these materials is inevitably limited by spectrum of properties they

exhibit. And indeed many desired electromagnetic properties, such as monopole magnets

or negative refraction, seem to be missing in nature [12, 26]—or at least we have been
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out of luck to find the materials exhibiting those desired properties. But why might these

missing properties be important? An example may shed light on the significance of such

properties. Let us take a look at the case of negative refraction.

Victor Veselago, in a paper published in 1967∗, predicted if materials with simulta-

neously negative values of ǫ and µ – negative refractive index (NRI) or double-negative

(DNG) materials – were ever found, they would exhibit unconventional properties unlike

that of any known materials. For example for a plane wave in a DNG material the direction

of the Poynting vector would be antiparallel to the direction of the phase velocity. The

impact of such property can be tremendous; several interesting proposals can follow from

such property. For instance consider perfect lensing [81] and subwavelength resonant cav-

ities using DNG materials [22]. These examples indicate the wide scope of possibilities

that can emerge from the missing properties in nature.

However no theory can be of much interest if the technology to realizing it is not avail-

able, and maybe that was why Veselago had to wait for a few decades to be praised for

his work; his paper did not receive much attention at the time simply because no available

material had negative ǫ and µ at the same time. But is there any physical law that precludes

this possibility?

One region of frequency where permittivity and permeability attain negative values is

around their resonance† as driving electric or magnetic field becomes out of phase with

the huge polarization induced in the material—that is the electric and magnetic dipole

moment cannot respond fast enough as the polarization of incident field flips. However

materials with simultaneously negative ǫ and µ are not observed in nature simply because

interestingly the fundamental electric and magnetic processes behind resonant phenomena,

in materials we have identified so far, do not occur at the same frequencies [84]. The

∗The English translation of the original paper was published in 1968 [111].
†In addition Drude permittivity of an electron gas can take negative values below plasma frequency.
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Mother Nature leaves it for us to design structures that exhibit negative refractive index‡.

The idea of artificially structuring composites or materials to exhibit certain proper-

ties is not new; the first attempts to build such composites can be traced back to the late

nineteen century and first half of twentieth century [24, 26]. For example in late 1890’s, Ja-

gadish Chandra Bose explored twisted structure that could rotate the plane of polarization,

resembling what today called chiral structures [24]. Or in 1914, Karl Ferdinand Lindman

studied chiral media constructed from collection of wire helices [24]. Later in the 1940’s,

1950’s and 1960’s, there were attempts to design and fabricate “artificial dielectric” for ap-

plications in lightweight lenses for microwave frequencies [24]. In the 1980’s and 1990’s,

once again artificial complex materials and in particular chiral structures became subject

of interest for building microwave components [21, 24].

However, due to the technological constraints, miniaturizing these structures has always

been a challenge in this territory. Fortunately advances in nanotechnology and material sci-

ences over the last couple of decades have removed some of the barriers and largely boosted

our ability to fabricate different forms of materials and structures. Nowadays chemists and

material engineers are able to tailor materials at atomic level. This capability allows for

engineering materials with desired electromagnetic properties that might be missing or dif-

ficult to find in nature. And of course following such flexibility resides a continuum of

novel ideas for electromagnetic and optical design. As a result, last few years we have

witnessed resurrection of the field of “metamaterial” (in today’s terminology).

Field of “metamaterial” has brought scientists and engineers from electromagnetics and

material sciences to realize new classes of electromagnetic materials that are constructed

by embedding subwavelength inclusions or inhomogeneities in a host medium rather than

by controlling chemical composition. The geometrical characteristics (i.e., size and shape),

‡The first realization of an NRI material was in 2001 by a group from the University of California, San

Diego [96].
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Figure 1.1: An example of a 3D optical meta-

material: uniaxial photonic metamaterial com-

posed of three-dimensional gold helices ar-

ranged on a two-dimensional square lattice.

This structure can act as a broadband circu-

lar polarizer [32]. The structure was real-

ized by 3D direct laser-writing of helices in

positive-tone photoresist. The polymer was

removed by plasma etching, resulting in a

square array of freestanding gold helices. Form

Ref. 32 [J. K. Gansel et. al, “Gold helix pho-

tonic metamaterial as broadband circular polar-

izer”, Science 325, 5947 (2009)]. Reprinted

with permission from the AAAS. [http://www.

sciencemag.org/content/325/5947/1513].

periodicity, optical properties of these inclusions and inhomogeneities, and electromagnetic

characteristics of host media determine the electromagnetic response of the composite ma-

terials or structures. Having control over these features the electromagnetic response of

materials can be tuned at will to show a certain behavior desired by the electromagnetic

design engineers. In essence, electromagnetic response of materials can be described by

their effective permittivity and permeability, and depending on the value and sign of these

two quantities, we can identify several classes of metamaterials: double-positive metama-

terials, double-negative metamaterials, single-negative metamaterials (ǫ < 0 and µ > 0)

or (ǫ > 0 and µ < 0), extreme-parameter metamaterials (for example epsilon-near-zero

or epsilon-very-large metamaterials). These are materials with properties that may not be

easily found in nature. Chirality and anisotropy are other material properties that can be

tailored artificially to produce materials with desired optical response. A discussion of

different metamaterial classes can be found in Refs. 12, 26 and 97. Figure 1.1 is an illus-

tration of a 3D optical metamaterial fabricated by Wegener group in 2009 [32], indicating

how nowadays scientists can fabricate sophisticated miniaturized metamaterial structures.

This structure can act as a broadband circular polarizer.

http://www.sciencemag.org/content/325/5947/1513
http://www.sciencemag.org/content/325/5947/1513
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We would like to conclude our brief discussion with a formal definition for metamate-

rials. As it appears the term metamaterials in the literature has been widely used and there

is no universal definition for metamaterials. Cai & Shalaev [12] provide the following

definition:

“A metamaterial is an artificially structured material which attains its prop-

erties from the unit structure rather than the constituent materials. A

metamaterial has an inhomogeneity scale that is much smaller than the

wavelength of interest, and its electromagnetic response is expressed in

terms of homogenized material parameters.”

There are other equivalent definitions in the literature. In principle all these definitions

refer to engineered structures that are constructed by embedding subwavelength inclusions

in a host medium. Next we discuss transformation optics and its connection to metamate-

rials.

1.1.2 Metamaterials and transformation optics

As we mentioned in section 1.1.1, electromagnetic design is all about controlling and ma-

nipulating the EM fields and waves by exploiting materials in a proper way to reflect and

refract and direct them to form desired patterns. Transformation optics offers a recipe to

tailor material properties at subwavelength scale to exhibit a desired function [83]. Now

the correspondence between transformation optics (TO) and metamaterials becomes clear.

TO provides a design strategy and using metamaterials one can realize that design thanks

to today’s capacity in fabrication.

Transformation optics can be imagined as reverse-engineering of the optical device

we seek. First the field lines in an empty space are transformed into a desired configura-
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tion associated with the desired optical device [83]. Since Maxwell’s equations are form-

invariant, meaning that they maintain the same form in both coordinate systems [57, 83],

the optical parameters for Maxwell’s equations need to be scaled accordingly in the trans-

formed coordinate system (coordinate system associated with the optical device). Then

based on the transformation, the optical parameters (permittivity and permeability) for re-

alizing the optical device can be retrieved. A famous example of transformation optics is

the optical cloak [83], although this technique has other profound applications in optical

design. For example later in chapter 3, we show an example of transformation optics that

might find application in optical signal processing.

There have been a large interest and several developments in transformation optics since

its official introduction in 2006. A recent review is given in Ref. 82. In particular transfor-

mation optics has been successfully applied to plasmonic systems to control propagation

of special type of electromagnetic wave called surface plasmon-polariton (SPP) surface

waves [44].

In this work our goal is to show that “graphene”, which is a monolayer of carbon

atoms, can serve as a new platform for plasmonic metamaterials and transformation optical

devices owing to its exotic features and the design freedom it offers. Before talking about

graphene, however, we would like to get a perspective of the field of plasmonics. What

is an SPP surface wave? And why might graphene be a better platform for plasmonic

metamaterials rather than noble metals such as silver and gold that, conventionally, have

long been the favorite choices in this territory?
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1.2 Integration of electronics and photonics: plasmonics

as a bridge

The goal of electronic engineers has always been design of miniaturized devices that are

light, cheap, low power and of course equally important fast in processing and transmitting

information. Since revolutionary invention of integrated circuits (ICs) by Jack Kilby in

1959, electronics has certainly come a long way: from 7/16-by-1/16-inches IC that Kilby

built to today’s nanoscale electronics [51]. As Moore predicted [70], the number of tran-

sistors in integrated circuits has continuously and rapidly grown since the invention of ICs,

suggesting that we have been able to process data faster without considerably increasing

the size of the electronic circuits. This indicates how flourishing this field has been over

the past few decades. But it seems that over the last couple of years (since 2005 [102])

we have not seen stunning improvements in microprocessors. This raises the question that

whether we are approaching a plateau in rate of processing per volume. If so, what is the

reason?

The answer can be traced back to constant-field scaling rule, which tells us that the

voltage for operation of transistors must decrease in line with downscaled dimensions of

transistors. But downscaling dimensions might be possible to a certain level, after which

the minimum gate voltage-swing necessary to switch the device from “off” state to “on”

state could be just too small. From design perspective this means either excessive leakage

current (dissipation) in the “off” state or low current – slow circuits – in the “on” state [102].

Neither is favorable. So how can we overcome this obstacle?

Integration of electronics and photonics is one promising solution to go around this

hurdle [78]. Photonic devices are generally faster simply because they carry higher fre-

quency optical signals, enabling faster signal processing compared with electronic devices.

For years Silicon has been the favorite choice for optoelectronics devices, bringing elec-
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tronics and photonics under one umbrella. Probably one of the most important reasons for

this popularity is the promise of Silicon for integration of electronics and photonics. But

yet, further downsizing Silicon-photonics devices may not be a straightforward task, since

some of these devices such as optical waveguides are necessarily bulky to carry volumetric

waves. This hampers the progress toward integration of these two technologies and limits

the extent of downscaling. Emerging field of nanoplasmonics, which is a major part of the

field of photonics, can resolve this issue by providing a collection of techniques to confine

light waves at scales much smaller than the wavelength. Nanoplasmonics then allows for

design of elements (e.g., waveguide) that are much smaller than their photonic counterparts

and facilitate integration of two technologies. Field of plasmonics deals with engineering

of surface plasmons, exactly as electronics and photonics is science of manipulation of

electrons and photons, respectively. So what are surface plasmons?

Surface plasmons are collective oscillation of electrons at an interface between two

media whose values of the real part of permittivity have different signs [63]. If the light

incident on such an interface can couple with these surface-plasmons, the result is a highly

confined propagating electromagnetic wave known as surface plasmon polariton (SPP) sur-

face wave. Thanks to advances in nanofabrication, nowadays ultra-small plasmonics sys-

tems, even as small as few hundreds of nanometers, are feasible [10]. The concept of

metamaterials can also be applied to plasmonics structures; one can tailor electromagnetic

properties of a plasmonic material or structure to obtain a certain response from the system.

Owing to their ability to support the surface-plasmon polariton surface waves, in the

infrared and visible regimes, the noble metals, such as silver and gold, have been popular

materials in constructing plasmonic systems and many metamaterial structures [12]. As

our discussion to this point might hint, the key concept in design of metamaterials and

transformation optical devices is “tunability”. However, tuning permittivity functions of

noble metals is not an easy task. In addition the existence of material losses, especially
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Figure 1.2: Concept of graphene metamaterial:

Can we have metamaterials and transformation

optics on graphene merely by varying its local

conductivity?

at visible wavelengths, degrades the quality of the plasmon resonance and limits the rel-

ative propagation lengths of SPP waves along the interface between metals and dielectric

materials.

These deficiencies limit the functionality of some of available metamaterials and trans-

formation optical devices. In this work, we show that graphene can serve as a new platform

for metamaterials and transformation optical devices that can, under certain conditions, al-

leviate these issues. Overall there are three features that make graphene an excellent choice

for these purposes at least for mid-IR wavelengths

• Tunability: Most probably tunability of graphene is the most exciting feature of this

exotic material. We will see in chapter 2 that graphene conductivity can be controlled

using chemical doping or static electric bias. The basic idea is that whether we can

tailor behavior of a single layer of graphene by changing its conductivity locally and

inhomogeneously (see Fig. 1.2). The ability to control and vary graphene optical

properties offers flexibility in design of electromagnetic systems based on graphene.

• Integration: After its first isolation in 2004 [76], graphene has been in spotlight for

its exotic electronic transport properties [74, 75] and suitability for optoelectronic

applications [5, 13, 69, 80, 88, 114]. As this work and several others show [41, 47,
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54], graphene is also an excellent platform for plasmonics applications, suggesting

prospects for graphene as the bridge between electronics and plasmonics.

• Low material losses: As our studies show (see section 2.2.1) graphene has low mate-

rial losses, qualifying this one-atom-thick layer as a host for electromagnetic and op-

tical systems. It is worth mentioning that, in a recent article, Tassin et. al [101] claim

that graphene losses are considerable and thus the propagation length of the SPP

waves along graphene is at best just less than 3λSPP for IR frequencies. Their con-

clusion is based on experimental results presented in Ref. 58, in which the reported

real part of the conductivity, which accounts for losses, is relatively large. However

graphene losses are dependent on the fabrication processes; cleaner graphene sam-

ples might result in lower losses and higher propagation lengths. To address this

objection, Tassin et. al use conductivity values reported in two theoretical papers that

predict large values for the real part of conductivity [36, 85]. It may not be fair to

draw such a general conclusion based on only two theoretical papers, whose their

results have not been confirmed by any experiments. Interestingly for the frequency

region of interest in this thesis, for typical values of chemical potential, the real part

of the conductivity reported by Ref. 58 (experimental paper) is much less than the

one reported in Ref. 36 (theory paper). This brings into question the general conclu-

sion of Tassin et. al in Ref. 101 that graphene is not a good host for surface plasmon

polaritons. The absolute resolution of this debate is remained unanswered until fur-

ther experiments are conducted in the future.

In addition, in recent years we have observed a rapid growth in graphene nanofabrication

capabilities that can facilitate realization of ultra-compact photonic and plasmonic devices

based on this material.
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Before we start our formal discussion, it is laudable to give a brief review of literature

relevant to our proposal.

1.3 Literature Review

Graphene is a mono-layer of carbon atoms arranged in a 2-dimensional hexagonal lattice.

Grapahene was first isolated by Andre Geim and Konstantin Novolselov in 2004 and later

in 2010 they were awarded the Nobel Prize in Physics for their groundbreaking work on

graphene. Since 2004, there has been an explosion of interest in this unconventional mate-

rial (and expectedly after 2010, when the Nobel Prize was awarded – see Fig. 1.3).
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Figure 1.3: Number of articles and books on

graphene since first isolation in 2004 – data is col-

lected from Google Scholar™ search engine.

It might be difficult to review all the de-

velopments in the areas of graphene pho-

tonics, optoelectronics and plasmonics, so

we only go over those that are more rele-

vant to our work.

Tunable plasmonics devices: In Ref. 54,

Koppens et. al show that owing to

graphene’s low loss (in certain regions of

spectrum), tunability and its capability to

support highly confined surface plasmons,

one can envision new possibilities for light-matter interactions at the nanoscale that may

not be constrained by obstacles that are associated with using noble metals. Consequently

graphene can be a new platform for novel low-power, ultrafast classical and quantum opti-

cal devices.

Terahertz tunable plasmonics metamaterials: Ju et. al [50] investigate plasmon excitations
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in an array of graphene micro-ribbon, which might represent a simple form of a graphene

terahertz metamaterial. They show that plasmon resonances peak can be tuned across a

wide range of terahertz frequency by varying width of the micro-ribbons or doping. Fol-

lowing this experimental work, Nikitin et. al [73] offer a theoretical study of the problem.

They specifically study the transmission, reflection, and absorption resonance spectrum of

the ribbons. They argue that the resonances are due to the leaky plasmonic modes existing

in individual ribbons. In another related study, Thongrattanasiri et. al [103] examine pos-

sibility of 100% light absorption using a patterned layer of doped graphene. Specifically,

they show that arrays of doped graphene nanodisks can result in complete absorption when

lying on a dielectric-coated metal with the proper choice of thickness for the dielectric

on top of the metal. Interestingly complete absorprion scenario using such geometry is

almost independent of the angle of incidence and polarization. The physical mechanism

for this phenomenon is similar to that for the total absorption using a Salisbury sheet [29].

An IBM group (Yan et. al [117]) report on fabrication of photonic devices composed of

graphene/insulator stacks supporting plasmon resonances differing from that of a single

layer graphene. They show that carrier concentration dependence of resonance peak and

magnitude is stronger for the stack compared with the case of a single layer. Addition-

ally they realize a broadband tunable far-infrared notch filter by using a stack of patterned

graphene/insulator (the graphene layers are patterned into arrays of microdisks). This work

can be a foundation for developing mid- and far-infrared photonic devices (e.g., detectors,

modulators and three-dimensional metamaterial systems).

Photonic and optoelectronics devices: Inspired by exotic optoelectronic characteristics of

graphene, many research groups have exploited this material for broadband photonic and

optoelectronic applications, such as polarizers and modulators.

• Graphene polarizer: Kim and Choi [52] have experimentally demonstrated waveg-
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uiding using graphene strips at wavelength 1.31 µm. They have managed to transmit

a 2.5 Gbps optical signal successfully via 6 mm-long graphene waveguides. As we

will see in chapter 2, depending on its carrier density graphene can support two kinds

of polarization for SPP: TE and TM. This dependence forms the basis for developing

waveguides that support either TE or TM waves. Such waveguiding component can

be used as a polarizer to transform unpolarized incident wave into polarized wave.

Based on this notion Bao et. al [9] have fabricated a graphene/silica hybrid waveg-

uide that only supports TE waves and as a result it filters out the TM polarized waves

(TE-pass polarizer). As we will see in the present work, doping the graphene layer

above a certain level enables this atomically thin layer to support TM waves, while

TE waves are not supported anymore. Such component might then be used as a

TM-pass polarizer since it can filter out TE waves.

• Graphene modulator: Liu et. al [60] have experimentally demonstrated a broadband

graphene-based optical modulator that can operate between 1.35 µm to 1.6 µm. The

proposed device is as small as 25 µm2 and operated by electrically tuning the carrier

concentration (chemical potential) of the graphene layer. Based on this mechanism,

authors achieved modulation bandwidth of 1.2 GHz at 3 dB. In a follow-up work

the same group improve efficiency of their device by using bi-layer graphene (two

layers of graphene and an oxide layer in between), achieving modulation depth of

0.16 dB/µm [61]. The fundamental idea behind this type of modulation is modulat-

ing the interband transitions (modulating between TM-supporting and TE-supporting

modes). However one can, as well, modulate the intraband transitions, which forms

the basis for the proposal by Anderson in Ref. 5 – the modulation can be realized us-

ing static electric gating. This theoretical study builds upon dependence of plasmon

losses (intraband losses) in mid-IR on the level of carrier concentrations (chemi-
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cal potential). Theoretically the modulation based on plasmon losses should enable

higher switching speeds as the relaxation time for intraband carriers are longer than

that for interband carriers. The experimental verification of this type of modulators

is reported in Ref. 95.

In addition other optoelectronic elements such as photodetector, saturable absorber and

limiters have been designed and fabricated based on graphene (see Ref. 8 for a review of

these components).

It is also worth mentioning of the proposal “graphene-based soft hybrid optoelectronic

systems” by Kim et. al [53]. Among various exotic characteristics of graphene is its tensile

strength, which might enable a futuristic category of graphene-based optoelectronic devices

that could be flexible, stretchable, and foldable. As a proof of concept for their proposal,

Kim et. al have fabricated a graphene-based plasmonic waveguide and a waveguide polar-

izer for wavelength 1.3 µm that can be used for realization of optical interconnection in

flexible human-friendly optoelectronic devices.

Lastly, once again we would like to point out that there are many exciting proposed

novel ideas and studies that are left out of this review, as we did not intend to cover all the

literature available on the topic of graphene, but only those studies that are more relevant

to the present work—there are definitely several excellent proposals that we did not refer

to (for example cloaking using graphene [15]), but reviewing all these studies appears to

be out of scope of the present work.
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Chapter 2

Theoretical Background

As discussed in chapter 1, our goal is to bring several concepts and functions already de-

veloped in the field of metamaterials and transformation optics on to the graphene. In this

chapter we will explore the theoretical background that forms the basis for this proposal.

We start our study by discussing a complex conductivity model for graphene, which we

will use to study interaction of electromagnetic waves with graphene. We then continue

the discussion by elaborating on propagation of surface plasmon-polariton surface waves

across the graphene and how the luxury to tune the graphene conductivity can provide a

degree of freedom to manipulate and route light signals on this exotic platform.

2.1 Complex conductivity model for graphene

2.1.1 Analytic expression for complex conductivity

In its most general form, the graphene sheet can be modeled as an infinitesimally-thin, non-

local two-sided surface characterized by a magneto-optical surface complex conductivity
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tensor [28, 37–39] (see Appendix A for a brief analogy between graphene conductivity and

circuit equivalent). The elements of this tensor can be derived from microscopic, semi-

classical and quantum mechanical considerations. A large body of recent literature focuses

on different techniques to model complex conductivity of graphene, however thorough

review of this literature is not in scope of this work. We will just briefly mention and

review the well-known model we have utilized in our studies.

To begin, let us assume that a graphene layer is suspended in free space in the x-y plane∗.

An extended non-local anisotropic model for conductivity follows the tensor form [39, 42]

↔
σ (ω, µc(E0), Γ, T,B0) = x̂x̂σxx + x̂ŷσxy + ŷx̂σyx + ŷŷσyy, (2.1)

where ω is radian frequency, Γ is charged particle scattering rate representing the loss

mechanism, T denotes temperature, and µc is chemical potential. E0 and B0 are respectively

the dc electric and magnetic bias field. In general the scattering rate Γ can be function of

frequency, temperature, field and the Landau level index. The chemical potential, which

is related to density of charged carriers, can be controlled by chemical doping [113] or by

applying dc bias field (E0 = ẑE0) [76].

Noting that σxx = σyy and σxy = −σyx, we can rewrite Eq. (2.1) as following

↔
σ (ω, µc(E0), Γ, T,B0) = σd

↔
It + σo

↔
Jt, (2.2)

where σd and σo are, respectively, the diagonal and off-diagonal (Hall) conductivities, and

↔
It = x̂x̂+ ŷŷ and

↔
Jt = x̂ŷ− ŷx̂ are the symmetric and antisymmetric dyads. Following Kubo

formalism†, in Eq. (2.2), in the presence of both electric potential and magnetic bias field,

∗In this work we always consider the case of free-standing graphene in free-space, unless otherwise

stated. The physical concepts introduced here remain unaffected when graphene lies at the interface of two

different media with different permittivites and permeabilities. Further discussion on this issue will follow in

the future sections.
†This formalism is within the linear response theory. Other techniques within this theory such as the

random phase approximation (RPA), or the self-consistent-field approach result in the same qualitative optical

response [47].
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one can obtain [39]

σd =
e2v2

F |eB0|~ (ω + i2Γ)

iπ

×
∞
∑

n=0

{(

1 − ∆2

MnMn+1

)

[nF(Mn) − nF(Mn+1)] + [nF(−Mn+1) − nF(−Mn)]

(Mn+1 − Mn)2 − (ω + 2iΓ)2

× 1

Mn+1 − Mn

+

(

1 +
∆2

MnMn+1

)

×[nF(−Mn) − nF(Mn+1)] + [nF(−Mn+1) − nF(Mn)]

(Mn+1 + Mn)2 − (ω + 2iΓ)2

1

Mn+1 + Mn

}

, (2.3)

and

σo = −
e2v2

FeB0

π

∞
∑

n=0

([nF(Mn) − nF(Mn+1)] + [nF(−Mn+1) − nF(−Mn)])

×
{(

1 − ∆2

MnMn+1

)

1

(Mn+1 − Mn)2 − (ω + 2iΓ)2

+

(

1 +
∆2

MnMn+1

)

1

(Mn+1 + Mn)2 − (ω + 2iΓ)2

}

, (2.4)

where nF(ǫ) = 1/
{

1 + exp
[

(ǫ − µc) /(kBT )
]}

is the Fermi-Dirac distribution, vF = 106 m/s

is the Fermi velocity, Mn =

√

∆2 + 2n~v2
F
|eB0| is the energy of the nth Landau level (this

formalism assumes e−iωt time harmonic dependence) and ∆ is the excitonic band gap. Also

note that we have assumed scattering rate Γ is not dependent on frequency and Landau

level index. In the low magnetic field limit, it is fair to assume ∆ = 0. As such Eqs. (2.3)

and (2.4) can be simplified to

σd = −
ie2 (ω + 2iΓ)

π~2

[

1

(ω + 2iΓ)2

∫ ∞

0

dǫ

(

∂nF(ǫ)

∂ǫ
− ∂nF(−ǫ)

∂ǫ

)

ǫ

−
∫ ∞

0

dǫ
nF(−ǫ) − nF(ǫ)

(ω + 2iΓ)2 − 4 (ǫ/~)2

]

, (2.5)

and

σo = −
e2v2

FeB0

π~2

[

1

(ω + 2iΓ)2

∫ ∞

0

dǫ

(

∂nF(ǫ)

∂ǫ
+
∂nF(−ǫ)
∂ǫ

)

+

∫ ∞

0

dǫ
1

(ω + 2iΓ)2 − 4(ǫ/~)2

]

.

(2.6)
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In our studies we assume no magnetic bias field, so the off-diagonal terms vanish for B0 = 0

and graphene can be assumed to be isotropic. The diagonal terms however, as can be seen

from Eq. (2.5), are independent of the dc magnetic field.

The first term in Eq. (2.5) is due to intraband contributions and the second term is

related to interband transitions. The intraband term can be analytically evaluated as [39, 41]

σd, intra = i
e2kBT

π~2 (ω + i2Γ)

[

µc

kBT
+ 2 ln

(

e
− µckBT + 1

)

]

. (2.7)

This has the familiar Drude form that describes the collective behavior of free electrons

(intraband transitions).

Although in general the interband term cannot be evaluated analytically, when kBT ≪

|µc| and kBT ≪ ~ω, an approximate analytic expression for this term is given in litera-

ture [40]

σd, intra ≈
ie2

4π~
ln

(

2|µc| − (ω + i2Γ) ~

2|µc| + (ω + i2Γ) ~

)

. (2.8)

As can be seen from Eq. (2.8) for low values of scattering rate (low loss), for 2|µc| > ~ω

the interband contribution is purely imaginary (this imaginary part is negative), while for

2|µc| < ~ω, that term is complex with the real part taking the value πe
2

2h
and the imaginary

part still taking negative values (further discussion on importance of sign of the imaginary

part will be presented in the following sections).

2.1.2 Numerical results for optical conductivity

In this part, we present some numerical results for optical conductivity based on the Kubo

formalism just reviewed above. Throughout this discussion we assume a constant scatter-

ing rate Γ = 0.43 meV‡. Fig. 2.1, A and B, shows real and imaginary parts of graphene

‡As Gusynin et al. point out, constant value for Γ is a good assumption in practice and results are in good

agreement with more general cases considered in previous other works [39]. Also the value we have chosen

here is adapted from other references [37, 39].
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conductivity for Γ = 0.43 meV and temperature T = 3◦ K§. Also in panels C and D, we

repeat the same plots for room temperature (T = 300◦ K).

As can be seen from Fig. 2.1, for low temperatures, there are regions of frequencies

and chemical potentials for which σg,i < 0, whereas for other regions σg,i > 0. As we will

discuss in detail in section 2.2, when σg,i > 0 a mono-layer of graphene can effectively be-

have as a very thin “metal” layer, supporting a transverse-magnetic (TM) electromagnetic

surface plasmon-polariton (SPP) surface wave [41, 47, 67, 107].

Since we are mostly interested in the frequency band 28 to 32 THz¶, we take a closer

look at the graphene conductivity and its inter- and intra-band contributions in this band.

Figure 2.2, A and B, demonstrates total complex conductivity of graphene as a function of

frequency for different values of chemical potential at T = 3◦ K. In panels C and D we have

demonstrated values of conductivity in the region that will be mostly dealt with throughout

this work. As can be seen, in the frequency band 28 to 32 THz, for µc = 150 meV and

300 meV, the imaginary part of the conductivity is positive, while for µc = 0 meV and

µc = 65 meV, this quantity is respectively zero and negative.

Figure 2.3, A and B, depicts the complex conductivity due to inter- and intra-band

transitions at low temperature (T = 3◦ K). The intraband contribution follows a Drude

form and, in mid-IR region, results in lower losses compared to interband contribution,

which shows higher losses for higher energies due to lossy interband transitions. We note

that at much lower frequencies, the loss of Drude contribution becomes larger. For ex-

ample for µc = 150 meV the transitions happen for frequencies large than approximately

72.4 THz, i.e., high-enough energy electrons are able to make the interband transition.

These transitions are lossy and as we can see in Fig. 2.3, A, for frequencies higher than

72.4 THz, we have considerable amount of loss. An interesting feature of interband is that

§This temperature is readily achievable in most experimental laboratories as these days one is more

concerned about much lower temperatures, e.g., micro-, nano- and even pico-Kelvins [55].
¶We are interested in this region of frequency because CO2-based lasers operate in this region.
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Figure 2.1: Real and imaginary part of the conductivity. Panel A and B respectively display real and

imaginary part of the conductivity as a function of the chemical potential and frequency (T = 3◦ K,

Γ = 0.43 meV), following the Kubo formula [39]. Panel A and B are reprinted from Ref. 106

(by permission of the AAAS). [http://www.sciencemag.org/content/332/6035/1291]. Panel C and

D show the same but for room temperature (T = 300◦ K).

http://www.sciencemag.org/content/332/6035/1291
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. Panels A and B show the real and imaginary part of

conductivity for the frequency range 5 to 400 THz, while panels C and D display the portion of mid

infra-red region in which we are interested.
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for energies (~ω) lower than 2µc, the real part of conductivity, which represents losses in

graphene, is vanishing whereas for ~ω > 2µc this quantity is approximately always equal

to σmin =
πe2

2h
≈ 6.085 × 10−2 mS. Note that in Figs. 2.2 and 2.3 the values of real and

imaginary parts of conductivity are normalized to σmin. These numerical results (obtained

from Kubo formula) are in good agreement with experimental results in Refs. 58 and 64—

For low frequencies the experimental results tend to show higher losses compared with

Kubo formula prediction [59]. However the amount of loss can be highly dependent on the

fabrication process.

It is worth mentioning that for frequencies higher than ≈ 50 THz (~ω = 200 meV),

plasmons decay channel via emission of optical phonons together with electron-hole pairs

(second-order process) is open, resulting in a shorter relaxation time τ and a higher scat-

tering rate Γ (τ−1 = 2Γ) [47]. As pointed out in this work the frequency range of interest is

form 28 to 32 THz, so we are not in the regime in which this second order process is active

(of course neither is the interband losses).

Lastly, before we transition our discussion to the theory underpinning SPP surface

waves on the graphene, we would like to briefly mention about two issues regarding graphene

conductivity:

(i) Nonlinearity of optical conductivity of graphene: It has been shown that graphene can

exhibit strongly non-linear electromagnetic response especially in Terahertz regime [66,

68, 115]. For frequencies up to 30 THz, in Ref. 68, assuming an external electric field

Eext(t) = E0 cosωt, Mikhailov & Ziegler show that nonlinearity effects emerge when

E0 ≫
~ω
√
πns

e
, (2.9)

where E0 = |E0| and ns denotes the charge carrier density (∼ 1011 cm−2). According

to this condition, graphene exhibits nonlinearity in the far-infrared to terahertz regime

for electric fields higher than ∼ 300–103 V/cm and for room temperature [68]. For
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Figure 2.3: Contribution of inter- and intra-band transitions to graphene conductivity for µc =

150 meV and T = 3◦ K. Values are normalized to σmin =
πe2

2h
. Clearly the intraband contribution has

the familiar form of Drude, while the interband transition results in higher real part of conductivity

for sufficiently high energies (i.e., higher losses for higher frequencies).

mid-IR the required electric field is even higher (as the required electric field grows

linearly with ω). In our study we assume the amplitude of excitation is less than

values mentioned here so we do not account for the nonlinearity effect.

(ii) Kramers-Krönig relation of graphene conductivity: As we know any physical system

must have an analytic response function due to causality of input-output of the system,

resulting in the familiar Kramers-Krönig relation between real and imaginary parts of

response function. In our case the optical conductivity of graphene must also follow

such relation

ℑ{σ(ω)} = −2ω

π
P

∫ ∞

0

ℜ{σ(Ω)}
Ω2 − ω2

dΩ (2.10a)
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ℜ{σ(ω)} = 2

π
P

∫ ∞

0

Ωℑ{σ(Ω)}
Ω2 − ω2

dΩ (2.10b)

Using Eqs. (2.3) and (2.4), one can show that Kramers-Krönig relation hold for Kubo

formula. The proof is lengthy as such we do not provide the mathematical derivation

here.

2.2 Surface Plasmon-Polariton Surface Waves

on Graphene

As pointed out briefly in section 2.1.2, for low temperatures (e.g., T = 3◦ K), depending on

the frequency of operation and value of chemical potential one can see negative or positive

values for imaginary part of conductivity. But why is this important? The answer to this

question lies within the solution to Maxwell’s equation in the presence of graphene. So let

us investigate how electromagnetic waves interact with graphene.

We present two approaches to this problem: one is the approach followed by several

authors such as Hanson [41], Mikhailov & Ziegler [67], and Jablan et. al [47]. The second

approach is our proposal [106], which is intuitive and is the basis for the method we use in

our numerical simulations.

First approach: One can find the solutions to Maxwell’s equations by matching the bound-

ary conditions that include the surface conductivity of the graphene layer. We derive and

present the dispersion relation for TM mode, while skip the steps for TE mode and just

show the final result for ω − β relation (β being the wave-number).

Suppose we have a free-standing graphene lying in x-y plane (see Fig. 2.4). Consider a

TMy mode and assume that the electric field has the following form in two regions above
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Figure 2.4: A free-standing graphene layer lying in x-y plane. The mode is propagating in y-

direction and structure is uniform in x-direction.

and below the graphene layer (also assume ∂/∂x = 0)

Ex = 0, Ey = Aeiβy−pz, Ez = Beiβy−pz, for z > 0, (2.11a)

Ex = 0, Ey = Beiβy+pz, Ez = Deiβy+pz, for z < 0, (2.11b)

where β is the wave-number in y-direction and p =

√

β2 − k2
0

is the attenuation constant in

z-direction (the geometry is uniform in x-direction). Substituting Eqs. (2.11a) and (2.11b)

into Maxwell’s equations and satisfying the boundary condition ẑ × (H+ −H−) = Js =

σgE, one arrives at following equation

2
√

β2 − k2
0

= −
iσg

ωǫ0
, (2.12)

which can be recast to following dispersion relation for TMy mode, reported by Refs. 41

and 47

β = k0

√

1 −
(

2

η0σg

)2

, (2.13)
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in which k0 is the wave number of the free space and η0 is the intrinsic impedance of

free space [41]. To have a slow surface wave on the proper Riemann sheet, we must

have ℜ{p} > 0. As such according to Eq. (2.12) this constraint requires ℑ{σg} > 0 (i.e.,

when the intraband contribution dominates and the conductivity has the classical Drude

form). If ℑ{σg} < 0, which happens when interband contribution takes over, this mode

is exponentially growing in the z-direction and is a leaky wave on the improper Riemann

sheet [41]. In case conductivity is real-valued, the TMy modes are on the improper sheet

and no surface wave propagation is possible.

For TEy mode, as shown in Refs. 67 and 41, following the same steps results in the

dispersion relation

β = k0

√

1 −
(η0σg

2

)2

(2.14)

In this case if ℑ{σg} < 0, then the mode is slow surface wave on the proper sheet (when

interband contribution dominates). For ℑ{σg} > 0 the mode is exponentially growing in

the vertical direction and is a leaky wave on the improper sheet. If conductivity is purely

real (low temperature and small chemical potentials), since the condition ℜ{p} > 0 is

violated, all TE modes are on the improper sheet and fast leaky modes may contribute to

radiation from graphene—for real values of conductivity, when (σg,rη0/2)2 < 1 we have

fast propagating modes while for (σg,rη0/2)2 > 1, the mode is either growing or attenuating

in direction of propagation [41, 47, 67].

Second approach: Now let us derive the same dispersion relations using our own ap-

proach [106]. In this approach, we momentarily assume that graphene has a very small

thickness ∆, which later we will let ∆ → 0. We then define a volume conductivity for this

∆-thick mono-layer

σg,v ≡
σg

∆
. (2.15)
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Thus we can obtain volume current density in the graphene layer

Jv = σg,vE. (2.16)

If we recast the Maxwell equation ∇ ×H = Jv − iωǫ0E as ∇ ×H =
(

σg,v − iωǫ0
)

E, we can

obtain an equivalent complex permittivity for the ∆-thick graphene layer as

ǫg,eq ≡
(

−
σg,i

ω∆
+ ǫ0

)

+ i

(σg,r

ω∆

)

. (2.17)

For a one-atom-thick layer, bulk permittivity cannot be defined since permittivity only

finds meaning when dealing with bulk materials. However, by temporarily assuming a

small thickness ∆, we can associate an equivalent permittivity with the graphene layer.

This assumption allows us to treat the graphene sheet as a thin layer of material with ǫg,eq.

Once we derive the dispersion relation for this thin layer, we let ∆ go to zero and recover

the one-atom-thick layer geometry.

Using Eq. (2.17), we can identify real and imaginary parts of this equivalent permittivity

as follows

ℜ{ǫg,eq} = −
σg,i

ω∆
+ ǫ0 ≈ −

σg,i

ω∆
, (2.18a)

ℑ{ǫg,eq} =
σg,r

ω∆
. (2.18b)

Equation (2.18a) suggests that the real part of equivalent permittivity of graphene layer can

attain positive or negative values depending on the sign of the imaginary part of conductiv-

ity.

When σg,i > 0, and in turn ℜ{ǫg,eq} < 0, the free-standing graphene layer effectively

behaves like a thin “metal” layer that can support a TM SPP surface wave, consistent with

previous works [41, 45, 47, 67].
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Figure 2.5: Free-standing slab of material with thickness ∆ and complex permittivity ǫm surrounded

by air.

Knowing TM and TE dispersion relation for a slab of material with complex permittiv-

ity that is surrounded by free space, we can retrieve dispersion relations (2.13) and (2.14).

This problem has been solved previously [2] and we use the result here.

Consider the geometry depicted in Fig. 2.5. Denoting complex permittivity of a ∆-thick

slab of material by ǫm, forℜ{ǫm} < 0 (e.g. for Ag or Au), the slab can support an odd TM

electromagnetic guided mode with dispersion relation governing wave number β as

coth

(

√

β2 − ω2µ0ǫm
∆

2

)

= −ǫm
ǫ0

√

β2 − ω2µ0ǫ0
√

β2 − ω2µ0ǫm
. (2.19)

Using identity coth(ix) = −i cot(x), we can rewrite Eq. (2.19) as

cot

(

√

ω2µ0ǫm − β2
∆

2

)

= −ǫm
ǫ0

√

β2 − ω2µ0ǫ0
√

ω2µ0ǫmβ2
. (2.20)

By substituting ǫm with the equivalent permittivity −σg/iω∆ + ǫ0, we can recast Eq. (2.20)

as
1
2

√

iωµ0σg∆ +
(

k2
0
− β2

)

∆2

tan

(

1
2

√

iωµ0σg∆ +
(

k2
0
− β2

)

∆2

)
=

(

∆

2
−

iσg

2ωǫ0

)

√

β2 − k2
0
. (2.21)
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Taking limits of both sides when ∆ → 0 (since lim∆→0{RHS} = 1 and lim∆→0
∆

2
= 0), we

arrive at

1 = −
iσg

2ωǫ0

√

β2 − k2
0
, (2.22)

which is equivalent to Eq. (2.12). So our approach yields the dispersion relation as offered

by others. This approach is in particular very useful in conducting numerical simulations.

The recipe for our numerical simulations can be found in Appendix B.

Now suppose we have a slab of material for which ℜ{ǫm} > 0 (again same geometry

as in Fig. 2.5). It has been shown [7] that such slab can support odd TE electromagnetic

guided mode with wave number β expressed as

√

ω2µ0ǫm − β2 tan

(

√

ω2µ0ǫm − β2
∆

2

)

=

√

β2 − k2
0
. (2.23)

Again by substituting ǫm with the equivalent permittivity −σg/iω∆ + ǫ0, we can rewrite

Eq. (2.23) as

√

iωµ0σg

∆
+ k2

0
− β2 tan

(

1

2

√

iωµ0σg∆ +
(

k2
0
− β2

)

∆2

)

=

√

β2 − k2
0
. (2.24)

When ∆→ 0, the Eq. (2.24) simplifies to

1

2

√

iωµ0σg

∆

√

iωµ0σg∆ =

√

β2 − k2
0
, (2.25)

leading to

iωµ0σg

2
=

√

β2 − k2
0
, (2.26)

which can be recast to dispersion relation expressed in in Eq. (2.14).

So to summarize our discussion, we showed that when σg,i > 0, a graphene layer

supports a TM electromagnetic SPP surface wave and when σg,i < 0, TM SPP guided

surface waves are no longer supported by the graphene and instead, a weakly guided TE

electromagnetic SSP surface wave is present. Since the wavenumbers for the TE guided

mode are very close to that of free space, those modes are not confined and may not be of
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Figure 2.6: Snapshot in time of the transverse component of the electric field of TM surface

plasmon-polariton surface wave along a graphene layer free standing in air ( f = 30 THz, T = 3◦ K,

Γ = 0.43 meV and µc = 150 meV across whole layer). The graphene layer dimensions are

L = 350 nm, w = 235 nm. This chemical potential can be achieved, for example, by a bias

voltage of 22.84 V across a 300-nm SiO2 spacer between the graphene and the Si substrate (but Si

substrate and SiO2 spacer are not present here in our simulation). The SPP wavelength along the

graphene, λSPP is much smaller than free-space wavelength λ0, i.e., λSPP = 0.0144λ0 [107].

interest. However due to their high confinement, TM SPP surface waves are favorable for

design of compact electromagnetic systems. Figure 2.6 displays the numerical simulation

of a TM SPP mode at 30 THz guided by a uniformly biased graphene layer.

It is worth mentioning that recently the existence of surface plasmon polaritons on

graphene has been verified experimentally by several research groups [14, 30, 31]. Of

particular interest are experiments reported in Refs. 14 and 31, which show tunability of

surface plasmon by means of gate voltage. Both experiments are carried out by use of

near-field scattering microscopy with infrared excitation light and verify that the surface

plasmons on graphene are highly confined as theory predicts.

In section 2.2.1, we make a comparison between graphene and silver (as a represen-

tative of noble metals), to see which one might be a “better” platform for carrying SPP

surface waves.
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2.2.1 A comparison between graphene and silver as host for surface

plasmon polaritons

As in graphene, surface plasmon-polaritons electromagnetic waves also exist along metal-

dielectric interfaces due to collective oscillations of surface charges (see Fig. 2.7). These

waves decay exponentially in the transverse direction. It is well known that SPP modes at

a metal-dielectric interface follow the dispersion relation [63]

βSPP = k0

√

ǫrǫm(ω)

ǫr + ǫm(ω)
, (2.27)

where ǫr is the relative permittivity of the dielectric material and ǫm(ω) is the complex

permittivity of the noble metal, e.g. silver. For a wide range of frequency permittivity of

noble metals can be described using Drude model, in which a gas of free electrons moves

against fixed positive ion cores [63]

ǫm(ω) = 1 −
ω2

p

ω (ω + iγ)
, (2.28)

in which ωp is the plasma frequency and γ is the collision frequency representing loss.

A necessary condition for SPP modes to form at the interface is ǫm(ω) < −ǫr. To have

negative ǫm(ω), the operating frequency should be below plasma frequency ωp. The no-

ble metals, e.g., silver and gold, have long been popular materials for constructing optical

metamaterials [12]. However material losses have always been the bottleneck of these met-

als since these losses degrade the quality of surface plasmon resonances and put constraints

on design of metamaterial structures constructed from these materials—i.e., due to loss the

propagation length of SPP waves is limited.

Our goal here is to provide a comparison between graphene and silver to investigate

characteristics of SPP surface waves for these two mediums. To this end, we consider real

and imaginary parts of wave number and the Figure-of-Merit (FoM) of SPP surface waves,

defined as
ℜ{β}
ℑ{β} (this quantity is a measure of how many wavelengths SPP survives before
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Figure 2.7: Surface plasmon-polartions along metal-dielectric interface due to collective oscilla-

tions of surface charges.

it loses most of its energy). As an example for a graphene layer free-standing in air, at

T = 3◦ K and for Γ = 0.43 meV and µc = 150 meV at frequency 30 THz, based on Kubo

formula and the dispersion relation expressed in Eq. (2.13), we obtainℜ{β} = 69.34k0 and

ℑ{β} = 0.71k0, resulting in FoM of approximately 97.7. The corresponding numbers for

the SPP at the air-silver interface, using Eq. (2.27), and based on material parameters ωp =

2π× 2.175× 1015 rad
s

and γ = 2π× 4.35× 1012 rad
s

for silver in the mid-IR wavelengths [79],

are approximatelyℜ{β} = k0 and ℑ{β} = 10−4k0, resulting in a loosely confined SPP. Here

the FoM for silver in the mid-IR is artificially high, however we need to take extra care in

interpreting this high value. This high value occurs since ℑ{β} is very small andℜ{β} takes

moderate values (almost equal to k0), suggesting that the mode is very weakly guided.

Graphene has two major advantages over the noble metals as platform for metamaterial

structures and transformation optical devices:

(i) As discussed above, with regards to the SPP characteristics, at least for mid in-

frared (IR) wavelengths, graphene can be a better host for surface plasmon resonances
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compared with silver or gold. The two quality measures for SPP—the propagation

length, defined as 1/ℑ{β} and the mode lateral extent, proportional to approximately

1/ℜ{β}—are more favorable for graphene than for silver; as can be seen in Fig. 2.8,

A, the real part of wave number β for TM SPP waves along graphene is much larger

than that of free space. As a result, such an SPP surface wave is tightly confined to the

graphene layer with guided wavelength λSPP much smaller than free space wavelength

λ0 (λSPP ≪ λ0), whereas its imaginary part of wavenumber is relatively small.

(ii) Probably the most important advantage of graphene over noble metals is the degree of

freedom that we have in dynamically tuning the conductivity of graphene [107]. We

can tune the conductivity locally and inhomogeneously by means of chemical doping

or gate voltage (i.e., bias electric field (Ebias) in real time). By applying different

values of Ebias at different locations across the graphene layer, one can create desired

conductivity patterns across the layer. By proper design of such spatial patterns,

we can tame IR SPP wave signals across the graphene, and manipulate and route

them at our will. In chapter 3 we present numerous scenarios based on metamaterial

functions and concepts following form this degree of freedom—possibility of tuning

the graphene conductivity.

One possibility to achieve desired conductivity patterns across graphene is to use gate

voltage and split gates locally to alter the conductivity at different locations across graphene.

In addition to this technique, we have proposed two other methods in Ref. 106.

First proposed approach is to design and fabricate a nonuniform height profile for the

ground plane underneath the dielectric spacer holding the graphene sheet (The ground

plane is commonly made up of highly-doped Silicon). Applying a fixed voltage between

the sheet of graphene and ground plane results in a nonuniform dc electric field distribution

across the graphene layer (see Fig. 2.9).
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Figure 2.8: Characteristics of TM SPP surface waves along graphene. Panel A and B display

the real and Imaginary parts of the normalized wave number (β/k0) for TM SPP surface waves

supported by the single sheet of graphene free-standing in air, as a function of chemical potential

µc and frequency f , according to Kubo formula (T = 3◦ K, Γ = 0.43 meV). Panel C illustrates

Figure-of-Merit (FOM) for the SPP mode as a function of µc and frequency f . Panel D shows the

propagation length of the SPP mode. Reprinted from Ref. 107 (by permission of the AAAS). [http://

www.sciencemag.org/content/suppl/2011/06/08/332.6035.1291.DC1/Vakil-SOM.pdf].

http://www.sciencemag.org/content/suppl/2011/06/08/332.6035.1291.DC1/Vakil-SOM.pdf
http://www.sciencemag.org/content/suppl/2011/06/08/332.6035.1291.DC1/Vakil-SOM.pdf
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Figure 2.9: Different ideas for creating nonuniform conductivity using uneven ground plane are il-

lustrated on left and right panel (schematic). Uneven ground plane underneath the graphene layer to

construct inhomogeneous conductivity pattern across the layer. By biasing the graphene with a sin-

gle static voltage, the static electric field is distributed according to the height of the spacer between

the graphene and the uneven ground plane, leading to the unequal static electric field. This results in

unequal carrier densities and chemical potentials µc,1 and µc,2 on the surface of the single graphene

and thus different conductivity distributions across the graphene. Here in this schematic and in our

numerical simulations, for the sake of simplicity in the simulation and to keep the concepts easily

and intuitively understandable, we have assumed the “sharp” inhomogeneity in conductivity dis-

tributions of the two neighboring sections of a single flake of graphene. However, since the static

biasing electric field in the space underneath of graphene is expected to be gradually varied in go-

ing from one region to another, the chemical potential and the conductivity distribution will have

a smooth transition. But we emphasize that our ideas of transformation optics on graphene will

still remain valid and applicable even when the transition region around the conductivity mismatch

is smooth. Reproduced from Ref. 107 (by permission of the AAAS). [http://www.sciencemag.org/

content/suppl/2011/06/08/332.6035.1291.DC1/Vakil-SOM.pdf].

Since the separation between the graphene and the ground plane varies depending on

the location, the dc electric field, due to the bias voltage between the graphene and ground

plane, is nonuniform. Therefore the distribution of local carrier densities—and hence the

spatial distribution of chemical potential—will be nonuniform, resulting in different con-

ductivity values in different segments; the nonuniform profile of the ground plane Silicon

might be realized through wet etching of the surface of the Silicon [89] or by the stan-

dard techniques of nano-lithography, e.g., e-beam lithography [118]. The proposed idea is

experimentally feasible and within the realm of current fabrication technology.

Second proposed approach is based on creating inhomogeneous SiO2 spacer (see Fig. 2.10).

http://www.sciencemag.org/content/suppl/2011/06/08/332.6035.1291.DC1/Vakil-SOM.pdf
http://www.sciencemag.org/content/suppl/2011/06/08/332.6035.1291.DC1/Vakil-SOM.pdf
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Figure 2.10: (Schematic) Second idea to create inhomogeneous conductivity patterns across

graphene. Here several dielectric spacers with unequal permittivity functions can be used under-

neath of the graphene to create unequal bias electric field distributions, resulting in inhomogeneous

carrier densities and conductivity patterns across layer of graphene. Reprinted from Ref. 107 (by

permission of the AAAS). [http://www.sciencemag.org/content/suppl/2011/06/08/332.6035.1291.

DC1/Vakil-SOM.pdf].

Again applying a fixed dc voltage between the graphene and the ground plane results

in a static electric field in this narrow region that is different from the static field elsewhere

in the spacer. This will alter the carrier density distribution and the segment of graphene

on top of this dielectric strip will have a different conductivity from other segments. If the

width of this strip on top of the spacer is small (but not too small to become comparable

with the nanostructured dimensions within a graphene, in which case the quantum nature of

the structure should be considered [104, 105]), the width of the graphene with the different

conductivity can be as small. It is worth mentioning that the dimensions we have chosen for

our examples are larger than the nanostructured dimensions within graphene, so the Kubo

conductivity model is still valid. Also, in our numerical simulations, for simplicity and to

keep the concepts easy to absorb, we have assumed a “sharp” inhomogeneity in conduc-

tivity distributions of the two neighboring sections of a single flake of graphene. Our ideas

of transformation optics will still be valid and applicable even when the inhomogeneity

http://www.sciencemag.org/content/suppl/2011/06/08/332.6035.1291.DC1/Vakil-SOM.pdf
http://www.sciencemag.org/content/suppl/2011/06/08/332.6035.1291.DC1/Vakil-SOM.pdf
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Figure 2.11: Fresnel reflection for an SPP surface wave hitting a boundary line due to conductivity

mismatch in the plane of graphene. The darker region has different conductivity from the region

highlighted with light gray. We investigate the reflection of the SPP surface wave that is launched

toward the boundary created as result of conductivity mismatch.

between the two sections is not very sharp [107].

Now that we qualified graphene as a better platform for mid-IR metamaterial struc-

tures and transformation optics devices, let us address the essential problems that form the

foundations for engineering such structures and devices.

2.2.2 Foundations for design of metamaterial structures and transfor-

mation optics devices

As pointed out earlier our goal is to put forth graphene as a platform for metamaterials

and transformation optics. However to be able to design metamaterials and transformation

optical devices, it is most important to tackle four essential problems

(i) Propagation of SPP surface waves along graphene: This problem is basically what

we addressed above. We quantified the propagation parameters of a TM SPP surface

wave propagating along graphene, based on the surface conductivity model intro-
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duced in section 2.1. We characterized the modes based on the sign of imaginary

part of conductivity and expressed dispersion relations for each mode in Eqs. (2.13)

and (2.14).

(ii) Green’s functions for an electric current source in the presence of graphene layer:

It is important to study the interaction of an electromagnetic dipolar source (e.g.,

atoms and molecules) with graphene. The fields can be derived in terms of dyadic

Green’s functions represented using Sommerfeld integrals. This problem is a variant

of famous classic Sommerfeld half-plane and has been addressed in the literature by

several authors [41, 42, 72]. In the following sections we briefly discuss this problem,

review some of the relevant works and present the dyadic Green’s functions for TM

SPP surface waves.

(iii) Fresnel reflection: Another essential problem to address is the reflection of surface

plasmon-polariton (SPP) surface waves from boundaries in the plane of graphene. In

other words, we would like to ask the following question: if somehow a conductivity

mismatch is created within the graphene layer, how would an SPP surface wave reflect

from that boundary (see Fig. 2.11, in which two regions with differing conductivities

are shown in light and dark colors. The SPP surface wave is propagating in y-direction

toward the boundary of these two regions).

Due to 2-dimensional (2D) structure of graphene, derivation of an exact solution to

this problem proves to be complicated. The problem has been addressed in the context

of diffraction by surface impedance discontinuities and impedance half-planes [90].

However, in the following, we present a much simpler approximate semi-analytical

approach to quantify the reflection of SPP surface waves from discontinuities in plane

of graphene.
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(iv) Polarizability of a small patch that has different conductivity from the surrounding:

We are interested in the problem of scattering of SPP surface waves by a small patch

(for example a small disk) with a different conductivity from its surrounding host.

Once this problem is solved, in first-order approximation, we may regard any small

patch of graphene as a dipole moment with a known polarizability (which is related to

its geometrical and optical properties). Knowing the polarizability of the patch, since

we have also developed the Green’s functions for a current source in the proximity of

graphene, we are then able to obtain the fields scattered from the patch in the plane

of graphene layer. These patches will be building blocks of metamaterial structures

constructed based on graphene.

The problem of SPP propagation has already been addressed so we devote next sections to

other three problems that form foundations for design and engineering metamaterials and

transformation optical devices.

2.2.3 Dydic Green’s functions for graphene

Efficient excitation of surface plasmon-polaritons on graphene is the precondition to any

optical metamaterial functionality we may envision based on this layer of carbon atoms.

One efficient way proposed to excite the SPP modes is to use quantum dots or molecules

or any other variant of quantum emitters [43, 54]. Describing such quantum emitters as

dipole moments, we can describe their bound modes due to presence of a graphene layer

using Green’s tensor. This problem is variant of classic Sommerfeld half-plane problem

with modified boundary conditions. Several researchers have addressed this problem [41,

42, 72]. Here we follow similar steps as Sommerfeld devised [46, 98] for the case of

horizontal dipole. The derivation for the vertical dipole is similar and we do not show the
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Figure 2.12: Horizontal electric dipole along y axis at distance h above a graphene layer. The

graphene layer is placed at the interface of two dielectric media, characterized by permittivities ǫ1
and ǫ2, which in general can be lossy and dispersive.

steps, however we provide the results for an arbitrarily oriented dipole in terms of dyadic

Green’s functions [72].

Consider a horizontal electric dipole p = pyŷ (depicted in Fig. 2.12) in medium 1 (with

permittivity ǫ1 and permeability µ0). The graphene layer lies at the interface of the medium

1 and medium 2 (for z < 0 we have permittivity ǫ2 and permeability µ0).

The fields can be described by Hertz vector potential Π, which satisfies Helmholtz

equation. At the first glance, it may appear reasonable to assume Hertz vector, Π, has

only y-component for a dipole aligned in y-direction. However to satisfy the boundary

conditions at z = 0, we need to have two components for Hertz vector. This can be resolved

by assuming Hertz vector also has a component along z-direction

Π =
(

0,Πy,Πz

)

. (2.29)

The electric and magnetic fields are related to Hertz vector as following (for n = 1, 2)

E(n)(r) =
(

k2
n + ∇∇

)

Π(n)(r), (2.30a)
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H(n)(r) = −iωǫn∇ ×Π(n)(r), (2.30b)

in which kn = ω
√
µ0ǫn. Here we conduct the derivation for electric fields. Magnetic

fields can be obtained accordingly using Maxwell’s equations. In our case since Πx = 0,

Eq. (2.30a) can be simplified as (for n = 1, 2)

E(n)
x =

∂

∂x
∇ ·Π(n), (2.31a)

E(n)
y = k2

nΠ
(n)
y +

∂

∂y
∇ ·Π(n), (2.31b)

E(n)
z = k2

nΠ
(n)
z +

∂

∂z
∇ ·Π(n). (2.31c)

The Hertz potential vector can be written as

Π(1) = Πp +Π
(1)
s , (2.32)

for the first medium and

Π(2) = Π(2)
s , (2.33)

for the second medium, where Πp is the primary potential due to the dipole and Π
(1)
s and

Π
(2)
s are the secondary potentials due to the presence of the graphene layer.

For z > 0, Πy has to satisfy

(

∇2 + k2
1

)

Π(1)
y = −

py

ǫ1
δ
(

r − r′
)

, (2.34)

and for z < 0
(

∇2 + k2
2

)

Π(2)
y = 0, (2.35)
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Suppressing the multiplicative term
py

ǫ1
and assuming p{1,2} =

√

k2
ρ − k2

{1,2}, the primary field

Πp,y is then given by

Πp,y =
1

8π

∫ ∞

−∞
H

(1)

0
(kρρ)e

−p1 |z−h| kρdkρ

p1

=
eik1r

4πr
, (2.36)

where H
(1)

0
(.) denotes the first kind Hankel function of zeroth order, and r =

√

ρ2 + z2. The

secondary fields can be written as following

Π(1)
s,y =

1

8π

∫ ∞

−∞
R(kρ)H

(1)

0
(kρρ)e

−p1 |z+h| kρdkρ

p1

, (2.37)

Π(2)
s,y =

1

8π

∫ ∞

−∞
T (kρ)H

(1)

0
(kρρ)e

p2z−p1h
kρdkρ

p1

, (2.38)

where R(kρ) and T (kρ) are yet to be determined by satisfying the boundary conditions at

z = 0. Following an approach similar to Sommerfeld [98], using continuity of electric field

and boundary condition for tangential components of magnetic field (which include the

surface conductivity of graphene) at z = 0, we arrive at following relations

ǫ1Π
(1)
y = ǫ2Π

(2)
y , (2.39a)

∂Π
(1)
y

∂y
+
∂Π

(1)
z

∂z
=
∂Π

(2)
y

∂y
+
∂Π

(2)
z

∂z
, (2.39b)

ǫ1Π
(1)
z − ǫ2Π(2)

z = −
σg

iω
∇ ·Π(1) = −

σg

iω
∇ ·Π(2), (2.39c)

ǫ2
∂Π

(2)
y

∂z
− ǫ1
∂Π

(1)
y

∂z
= −
σg

iω
k2

1Π
(1)
y , (2.39d)

which are respectively obtained from continuity of Ey and Ex, and boundary conditions for

Hy and Hx. Denoting ǫ2/ǫ1 by n, Eqs. (2.39a) and (2.39d) yield

1 + R(kρ) = nT (kρ), (2.40a)
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np2T (kρ) − p1

(

1 − R(kρ)
)

= iσgωµ0

(

1 + R(kρ)
)

. (2.40b)

Form Eqs. (2.40a) and (2.40b), one can obtain

R(kρ) =
p1 − p2 + iωσgµ0

p1 + p2 − iωσgµ0

, (2.41)

T (kρ) =
2p1

n
(

p1 + p2 − iωσgµ0

) . (2.42)

Equation (2.39b) can be recast as following

∂

∂y

(

Π(2)
y − Π(1)

y

)

=
∂

∂z

(

Π(1)
z − Π(2)

z

)

(2.43)

But
∂Πy

∂y
can be written as sinφ

∂Πy

∂ρ
, where ρ =

√

x2 + y2 and φ = cos−1(ρ̂ · x̂). As such and

from Eq. (2.43) it follows that Πz must also have a sinφ factor, implying that Πz must be

constructed from higher order Hankel functions (n = 1):

Π(1)
z = sinφ

1

8π

∫ ∞

−∞
H

(1)

1
(kρρ)e

−p1(z+h)Φ1(kρ)dkρ, (2.44)

Π(2)
z = sinφ

1

8π

∫ ∞

−∞
H

(1)

1
(kρρ)e

p2z−p1hΦ2(kρ)dkρ, (2.45)

Substituting Eqs. (2.36), (2.37), (2.38), (2.44) and (2.45) in Eq. (2.43), and considering

Eqs. (2.41) and (2.42), we obtain a system of linear equations which can be written in

following matrix form























p1 p2

− iωǫ1
σg

p2 − iωǫ2
σg













































Φ1(kρ)

Φ2(kρ)























=
2k2
ρ

p1 + p2 − iωσgµ0























1
n
− 1

1
n























. (2.46)

Solving for Φ1(kρ) and Φ2(kρ) yields

Φ1(kρ) = −
2k2
ρ

[

σg p2 − iωǫ2
(

1 − 1
n

)]

[

σg p1 p2 − iω (p2ǫ1 + p1ǫ2)
] (

p1 + p2 − iωσgµ0

) , (2.47a)
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Φ2(kρ) = −
2k2
ρ

[

−1
n
σg p1 − iωǫ1

(

1 − 1
n

)]

[

σg p1 p2 − iω (p2ǫ1 + p1ǫ2)
] (

p1 + p2 − iωσgµ0

) (2.47b)

Let us simplify the problem by assuming that graphene is free standing in air (the case we

studied in previous sections) and we are looking at the case where the horizontal dipole is

rested on the graphene. This implies that p1 = p2 = p =

√

k2
ρ − k2

0
, ǫ1 = ǫ2 = ǫ0 and in turn

n = ǫ2
ǫ1
= 1, and h = 0. So we can simplify R(kρ) and Φ1(kρ) as following

R(kρ) =
iωσgµ0

2p − iωσgµ0

, (2.48)

Φ1(kρ) = −
2σgk2

ρ
(

σg p − 2iωǫ0
) (

2p − iωσgµ0

)

= −
σg p

σg p − 2iωǫ0
−

iωσgµ0

2p − iωσgµ0

= −
σg p

σg p − 2iωǫ0
− R(kρ), (2.49)

The total fields can be calculated using numerical evaluation of integrals on the original

Sommerfeld integral path (SIP) on the real axis, however the surface waves field can be

evaluated analytically from the residue contribution of Sommerfeld integral; the pole sin-

gularities of R(kρ) and Φ1(kρ) (Sommerfeld poles) represent discrete surface modes. The

pole of R(kρ) (2p− iωσgµ0 = 0) yields the TE dispersion relation consistent with Eq. (2.14)

and the second pole singularity ofΦ1(kρ) (σg p−2iωǫ0 = 0) gives TM dispersion relation in

agreement with Eq. (2.13). These calculation are done by deforming the contour integral

and closing it in the upper half-plane of complex kρ. The poles then will be enclosed in the

contour and according to Cauchy’s principal value theorem we can compute the contribu-

tion due to the poles. As we are interested in TM modes due to the horizontal dipole, we

calculate the contribution due to the associated pole. Also Πy corresponds to TE surface

mode and does not contribute to the TM surface waves, but interestingly gives rise to Πz,
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Figure 2.13: Distribution of Ey on the plane of a free-standing graphene due to a horizontal electric

dipole on the graphene layer and aligned with y-axis.

which propagates mostly in the direction parallel to the dipole (φ = 90◦). As such in our

calculations we find the residue of the integral due to Πz. Conducting the calculations and

assuming
py

ǫ0
= 1 (the term we dropped earlier) we obtain

ETM,SPP
x (ρ, z) =

i sinφ cosφ

8
p3

[

H
(1)

0
(kρρ) − H

(1)

2
(kρρ)

]

e−p|z|, (2.50a)

ETM,SPP
y (ρ, z) =

i sin2 φ

8
p3

[

H
(1)

0
(kρρ) − H

(1)

2
(kρρ)

]

e−p|z|, (2.50b)

ETM,SPP
z (ρ, z) =

i sinφ

8
p2kρH

(1)

1
(kρρ)e

−p|z|, (2.50c)

The snapshot in time of distribution of real part of different components of electric field is

presented in Fig. 2.13 (Ey) and Fig. 2.14, A and B (Ex and Ez). We can observe that the

mode is maximum in the direction of the dipole. The presence of graphene has substantially

changed the radiation pattern of the dipole. Similar derivation can be carried through to

obtain the TM SPP fields due to a vertical electric dipole (VED). Nikitn et. al [72] have
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Figure 2.14: The snapshot in time of distribution of Ex and Ez on the plane of graphene due to a

horizontal electric dipole on the graphene layer and aligned with y-axis.

derived the closed form Green’s tensor for the TM SPP waves following methodology

developed in Ref. 77. They show that the Green tensor has the following form

↔
G(ρ, z) ∝ e−p|z|









































H
(1)
− (kρρ) 0 − iσgkρ

ωǫ0
H

(1)

1
(kρρ)

0 H
(1)
+ (kρρ) 0

− iσgkρ

ωǫ0
H

(1)

1
(kρρ) 0 1

2

(

σgkρ

ωǫ0

)2
H

(1)

0
(kρρ)









































, (2.51)

where H
(1)
± (.) = H

(1)

0
(.) ± H

(1)

2
(.). Additionally authors offer an extensive analysis of the

dependence of the electric field strength (compared to free space radiation of the dipole) on

frequency and distance of the observation point from the surface [72]. Their study suggests

that for the frequency range and for the typical distances from the surface and away from

the dipole that are used in our studies in this thesis, it is safe to assume that the total electric

field, close to and on the surface, is dominated by the SPP surface wave electric field.
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Figure 2.15: Fresnel reflection of SPP surface waves due to conductivity mismatch in plane of

graphene. Our numerical simulation illustrates snap shot in time of y-component of the electric

field, Ey for the near total reflection of a TM electromagnetic SPP wave on a free-standing graphene

(w = 800 nm, T = 3◦ K, Γ = 0.43 meV, µc = 150 meV). Vb,1 and Vb,2 are chosen so that the

two halves of graphene acquire complex conductivity values σg,1 = 0.0009 + i0.0765 mS and

σg,2 = 0.0039 − i0.0324 mS. Reprinted from Ref. 106 (by permission of the AAAS). [http://www.

sciencemag.org/content/332/6035/1291].

2.2.4 In-plane Fresnel reflection for SPP surface waves

Having the advantage of controlling and routing waves by reflecting them from boundaries

is key to several functionalities such as bounding and guiding waves, and in turn in design

of cavity resonators (see chapter 3). With that in mind, it is useful to investigate whether

we can have concept of Fresnel reflection for surface plasmon-polaritons—similar to plane

waves in classic optics—on a sheet of graphene, which is only one atom thick. If SPP waves

can be reflected within the layer of graphene (without considerable amount of leakage),

we can exploit such feature to design the spatial distribution of graphene conductivity to

reflect and refract the SPP surface waves in desired patterns. To begin our discussion, we

first analyze the geometry in Fig. 2.15. The conductivity values of two segments calculated

http://www.sciencemag.org/content/332/6035/1291
http://www.sciencemag.org/content/332/6035/1291
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from the Kubo formula for T = 3◦ K and Γ = 0.43 meV are, respectively, σg,1 = 0.0009 +

i0.0765 mS and σg,2 = 0.0039 − i0.0324 mS. The “farther” half section with σg,1 > 0

supports a TM SPP, whereas the “closer” half with σg,2 < 0 does not. Once a TM SPP

is launched in the farther-half section toward the discontinuity resulted from mismatch in

conductivities, it reflects back at that boundary line. Then, the incident and reflected waves

add up and form an oblique standing wave.

The reflection of SPP from this boundary line is analogous to the Fresnel reflection of a

plane wave from a planar interface between two mediums. Here, however, such reflection

occurs across a one-atom-thick platform, with a considerably little radiation loss owing to

high confinement of SPP to the graphene. This case might also be analogous to the Fresnel

reflection from a planar interface between a medium that supports propagating waves (for

example, a medium with a real refractive index, such as a dielectric) and another medium

that does not support propagating waves (for example, a medium with no real index, such

as a noble metal). Accordingly, on the graphene the Fresnel reflection of SPP results in a

near complete reflection [106]. The simulation results demonstrate an effective reflection

at the boundary line between the two segments.

In addition in Fig. 2.15 the simulation reveals a guided IR edge wave along the bound-

ary line between the two segments. This phenomenon might be related to the separation of

electrons and holes at the boundary region [13, 19, 20, 69]. Using an electron-holes liquid

model, Mishchenko et. al [69] show that for plasmon wavelengths smaller than the size

of charged domains, plasmon dispersion follows relation ω ∝ β1/4|ρ0|1/4, where ρ0 is the

gradient of equilibrium charge density at the junction. In a geometrical optics framework,

Cserti et. al [19] interpret this p-n junction as a negative refractive index. We may conclude

that the second analogy described above is more laudable in explaining the physics behind

the observed edge mode. Figure 2.16 demonstrate numerical simulation of this edge wave,

which was excited using a horizontal dipole on the graphene and near the boundary of two
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Figure 2.16: Distribution of Ey (snap shot in time) for a guided IR edge wave at f = 30 THz,

supported along the boundary line between the two sections of the same sheet of graphene, which

has two different conductivity regions (σg,1 = 0.0009 + i0.0765 mS, σg,2 = 0.0039 − i0.0324 mS,

L = 250 nm, w = 80 nm). Reprinted from Ref. 107 (by permission of the AAAS). [http://www.

sciencemag.org/content/suppl/2011/06/08/332.6035.1291.DC1/Vakil-SOM.pdf].

regions. This special guided wave propagates along a “one-atom-radius” boundary line.

By post processing the simulation results, we estimate the wavelength of the guided edge

wave to be around λSPP = 61.5 nm.

Sounas & Caloz [99] show that such edge surface mode that propagates along the edge

of a graphene strip can be shorted using a PEC plate that is in the plane of the graphene

strip. They also find the dispersion curve for the edge mode with and without magnetic

bias.

A critical issue to address is how to quantify the reflection from the boundaries. Due

to special geometry of graphene (very small thickness), finding an exact solution to this

problem proves to be difficult. To study this problem, it might be possible to apply Wiener-

Hopf analysis, which solves problem of diffraction by surface impedance discontinuities

and impedance half-planes [90] but this analysis is cumbersome and may not provide much

http://www.sciencemag.org/content/suppl/2011/06/08/332.6035.1291.DC1/Vakil-SOM.pdf
http://www.sciencemag.org/content/suppl/2011/06/08/332.6035.1291.DC1/Vakil-SOM.pdf
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insight into the problem. For practical purposes it might suffice to find an approximate

solution, as by employing powerful computational resources available these days, one can

always optimize any design based on first-order approximations. We have developed a

simple semi-analytical approach based on a transmission-line (TL) analogy to quantify the

reflection of SPP surface waves from discontinuities in plane of graphene.

We address normal incidence here. The case of oblique incidence can follow from the

same analogy by proper modifications. Consider a graphene layer that has two segments

with two different conductivity values (one may utilize any of the methods we proposed

earlier to realize such nonuniformity in conductivity pattern). The reflection from edge

of the second segment within the graphene layer might be analog of reflection from a

“lumped” impedance terminating a transmission line. Figure 2.17 illustrates the analogy.

Based on this analogy we can decompose the transverse component of the electric field

(Ez) into two components: a forward traveling wave and a backward traveling wave which

is reflected from the edge of graphene (or in our transmission line analogy from the ter-

minating impedance). Suppose that the forward wave (traveling along y-direction) has the

form Ez,0eiβy, where β is the propagation constant (or complex wavenumber along y). The

backward electric field will be of form REz,0e−iβy, where R is the reflection coefficient due

to the second region (or equivalently from the load at the end of the impedance). Writing

the complex reflection coefficient as R = ρeiθ, we can obtain the total transverse electric

field just above the plane of graphene (say small distance δ) as follows

Ez = Ez,0e−pδ
(

eiβy + ρeiθeiβy
)

, (2.52)

where as before p =

√

β2 − k2
0
. Noting that β = βr + iβi, Eq. (2.52) can be recast as
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Figure 2.17: Reflection of surface plasmon polariton surface waves from edges: Transmission line

analogy is used to find an approximate value for the reflection coefficient from the edge of second

medium.
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following

Ez = Ez,0e−pδ
[(

e−βiy cos βry + ρe
βiy cos (θ − βry)

)

+i
(

e−βiy sin βry + ρe
βiy sin (θ − βry)

)]

. (2.53)

We can obtain total field by solving Maxwell’s equations using full-wave numerical simu-

lations. Separating the transverse (y-component) of the electric field, we then find a set of

parameters (Ez,0, βr, βi, ρ, θ) in Eq. (2.53) such that the curve described by this equation is

fitted to the real and imaginary parts of numerical data points obtained from simulation. We

find the optimal set of parameters by simultaneously minimizing the sum of square errors

(SSE) between real and imaginary parts of data points from the equation and numerical

simulations. Finally having values of ρ and θ, we can determine the complex reflection

coefficient.

As a simple scenario, to illustrate how we can find the reflection coefficient from the

edges, consider a graphene layer that is infinite in x-direction—meaning that there is no

variation of the field in x-direction—and has finite length L in y-direction (Fig. 2.18). In

the transmission line analog the graphene is described as a transmission line, whose end is

left open to air. Simulation parameters are as usual (µc = 150 meV and Γ = 0.43 meV) and

frequency of operation is 30 THz. The layer is long enough to support multiple wavelengths

of SPP surface waves. We consider a long structure to ensure that at the locations along

the graphene layer where we fit our data points, the possible higher order electromagnetic

modes due to edges have died out and do not affect our calculations. The distribution of

the transverse electric field from numerical simulations is shown in Fig. 2.18.

Since the geometry and the fields are uniform in x-direction, we only need to fit the data

points (real and imaginary parts) along an arbitrary line parallel to y axis (we have chosen

y axis). Also in this process since δ (distance from plane of graphene) is very small, e−pδ

term is suppressed and its effect is absorbed in Ez,0. As explained earlier we solve for a
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Figure 2.18: Study of reflection of SPP surface waves from edges. Based on our TL analogy we can

regard the reflection from the edge of graphene as reflection from an open-ended transmission line.

In the similar manner we can define impedance for such radiation we can do so for the radiation

from the edge. The graphene layer has conductivity σg,1 = 0.0009 + i0.0765 mS. The magnitude of

the transverse component of the electric field (Ez) is shown on x-y and y-z planes.

set of parameters (Ez,0, βr, βi, ρ, θ) in Eq. (2.53) such that the SSE [difference between data

points obtained using simulations and using corresponding data points based on Eq. (2.53)]

is minimized. Implementing this procedure, we arrive at the results displayed in the second

row of table 2.1 (in implementing the procedure, without loss of generality, we assume

Ez,0 = 1 and as such here we did not report this value).

Table 2.1: The set of parameters obtained from fitting numerical data to Eq. (2.53) for first two

scenarios (see text).

Scenario ρ θ βr/k0 βi

µc,1 = 150 meV – air 0.8243 2.1027 69.77 1.05 × 10−4

µc,1 = 150 meV – µc,2 = 65 meV 0.6825 1.4074 70.06 9.05 × 10−5

Second scenario is similar to panel A from Fig. 2.17. Here the distribution of chemical

potential of graphene layer is assumed to be non-uniform and two regions with two different
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Figure 2.19: Study of reflection of SPP surface waves for the case where the first region (left)

supports TM SPP surface waves (σg,1 = 0.0009+ i0.0765 mS), while the second region (right) does

not (σg,2 = 0.0039 − i0.0324 mS). Magnitude of Ez is shown on x-y and y-z planes.

conductivities are formed. In this case we assume that at f = 30 THz region 1 (where the

wave is launched; farther half in Fig. 2.17) has conductivity σg,1 = 0.0009 + i0.0765 mS

(T = 3◦ K) and region 2 (closer region) has σg,2 = 0.0039 − i0.0324 mS. Thus this region

does not support TM SPP surface waves and it is interesting to investigate how surface

waves reflect upon hitting this region. This study could be useful for a “one-atom-thick”

variant of a metal-insulator-metal (MIM) waveguide in classic optics. Also note that the

structure is infinite in width and kx = 0 (∂/∂x = 0). Since there is a mismatch between

conductivity of these two regions, an SPP surface wave launched in region 1, reflects back

from the boundary line of region 2 (similar to the case we studied earlier). These two

forward and backward waves add up to form a total field, which its transverse component

is displayed in Fig. 2.19. Again using similar steps pointed out for previous case, we

can obtain the set of parameters (βr, βi, ρ, θ). The results are displayed in the third row of

table 2.1.

As a third scenario, consider the same geometry as in Fig. 2.17, A, however now sup-

pose that the second region (closer segment) has a conductivity value that does support
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TM SPP waves. Addressing this type of reflection (where two media do support prop-

agating modes) could form foundations for design of waveguides based on total internal

reflection—similar to a optical fiber waveguide where core and cladding both support light

modes, but due to total internal reflection of light-waves, the mode remains bounded in the

core region. One subtle issue here is that the reflection coefficient obtained based on the

forward and backward wave in the first region is not simply due to reflection from second

region conductivity mismatch, but also due to the effect of the mismatch and reflection from

the edge of the second region; there is a propagating forward mode in the second region,

reflecting from the edge of this region. The reason we cannot suppress this reflection from

edge is that design of perfect absorbing wall is a challenging task in our geometry (as we

will discuss in appendix B we have attempted to resolve this issue by redesigning concept

of Salisbury sheet for a TM SPP mode on graphene, but this absorbing boundary condition

does not work perfectly, so we do have some reflection, albeit small, from the edges if we

use this absorbing boundary conditions).

Consequently we decided to add a third region at the end of the second region, whose

imaginary part of conductivity is negative, so it does not support SPP surface waves. As

such there will not be any propagating modes in the third region and we do not need to

be concerned about reflection in this region, as modes die out before reaching the edge of

the graphene layer (this as well is the case for the second scenario discussed above). By

finding reflection from region 2 in region 1 and from region 3 in region 2, we can back

out the reflection in region 1 due to only region 2 (as if the second region was extended to

infinity in y-direction, so there was no backward wave). In order to retrieve this reflection

coefficient, we again exploit a transmission line analogy as depicted in bottom panel of

Fig. 2.20. If we respectively denote the individual reflection from region 2 in region 1 –

due to only mismatch – and reflection from region 3 in region 2 as Γ12 and Γ23, then the

total reflection (due to both mismatch and reflection from edge of third medium), Γin can
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be obtained from following equation [7, 17]

Γin =
Γ12 + Γ23ei2β2d

1 + Γ12Γ23ei2β2d
, (2.54)

where d is length of the second region (in this example d = 1.8 µm and β2 ≈ 30k0). Γ12,

which is only due to mismatch of conductivities (as if we had two semi-infinite sheet of

graphene with conductivities σg,1 and σg,2), can be computed from Eq. (2.54) in terms of

Γin and Γ23, which could be obtained from our numerical simulations

Γ12 =
Γ23ei2β2d − Γin

ΓinΓ23ei2β2d − 1
. (2.55)

To compute Γin and Γ23 using numerical simulations, we repeat the same steps as before

in fitting data points to find the optimal set of parameters for Eq. (2.53). The results are

reported in second and third rows of table 2.2. Using these values from table 2.2 and

Eq. (2.55), we find individual reflection coefficient due to region 2 to be ≈ 0.47eiπ/2.

Table 2.2: The set of parameters obtained from fitting numerical data to Eq. (2.53) for third scenario

scenarios (see text).

Scenario ρ θ βr/k0 βi

µc,1 = 150 meV – µc,2 = 300 meV 0.6070 0.4417 72.30 4.31 × 10−4

µc,1 = 300 meV – µc,2 = 65 meV 1.00 0.4561 30.47 1.59 × 10−4

As one last point in this part we would like to distinguish between reflection from

the plane of graphene and in-plane reflection of SPP surface waves propagating along a

graphene layer with nonuniform conductivity (for example Fig. 2.17). These are two com-

pletely different problems. In this section we addressed the latter as it is what we need in

our paradigm of “one-atom-thick” optical metamaterials and transformation optics. The

former problem has been addressed by others [27, 41]‖. We would like to also note that

‖It can be shown that for normal incidence the reflection from a graphene layer with complex surface

conductivity σg is R =
σgη0/2

1+σgη0/2
and transmission coefficient is T = 1 + R.
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Figure 2.20: Study of reflection of SPP surface waves for the case where both regions support TM

SPP surface waves (σg1,i, σg2,i > 0). Magnitude of Ez is shown on the y-z plane. Bottom panel

depicts the transmission line analog of the geometry (d1 ≈ 2.2 µm, d2 ≈ 1.8 µm).

the problem of reflection from plane of graphene is a rich and interesting area by itself and

several ideas may follow from that study. For example Sounas & Caloz [100], theoretically,

and Crassee et. al [18], experimentally, have studied reflection from a graphene layer under

magnetic bias and observed that the geometry under study can exhibit a broadband elec-

tromagnetic nonreciprocity and gyrotropic behavior (Faraday rotation), which can serve as

basis for design of magneto-optical devices such as nonreciprocal phase shifters.

2.2.5 Scattering from subwavelength graphene patches

As mentioned in chapter 1, metamaterials are artificial structures that mimic physically re-

alizable response functions and they are usually constructed by embedding subwavelength

inclusions or inhomogeneities in a host medium. Thus it is of particular significance to

describe behavior of such inclusions or inhomogeneities, as their collective behavior forms

the total optical response function of the medium. Addressing this problem is essentially
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reduced to study of the problem of scattering from subwavelength inhomogeneities. As it

is known for a bulk metamaterial structure, we have classic Clausius-Mossotti formalism

that relates the effective permittivity of a bulk material to the polarizability of inclusions

or inhomogeneities. In effect such treatment assumes that any inclusion or inhomogeneity,

small engough compared to the wavelength, can be regarded as a dipole moment with a

strength that is captured by its polarizability.

Accordingly, it is important to study the same problem in the one-atom-thick world of

graphene as quantifying response of subwavelength inhomogeneities (e.g., subwavelength

disks or patches that have different conductivity than that of their surrounding region) is key

to design of graphene-based metamaterials. Let us consider the case of a subwavelength

circular patch (nanodisk) as an inhomogeneity in a host graphene layer. Figure 2.21, A,

illustrates the geometry. The side of the graphene layer is about 10λSPP and the diameter

of the disk is 20 nm. The chemical potential for the background graphene is 150 meV (at

30 THz, for Γ = 0.43 meV, we have σg,bg = 0.0009 + i0.0765 mS), while the the chemical

potential for the small nanodisk is 65 meV (σg,disk = 0.0039− i0.0324 mS). The question is

whether such a nanodisk can be described as a dipole. To answer this question we studied

the structure using numerical simulations.

The structure is illuminated with a plane wave with polarization shown in panel A.

We then consider the scattered (or secondary) field, which is total field from full-wave nu-

merical simulations minus the incident field. Figure 2.21, B through C, display the three

components of this scattered field. As clearly can be seen the nanodisk indeed acts as

small dipole oriented in y-direction (similar to the field profile of a horizontal dipole from

section 2.2.3 and Figs 2.13 and 2.14). The question remained to be answered is how to

quantify the strength of this dipole moment. To address this question, we need to quan-

tify the nanodisk’s polarizability, which in general is a function of dimensions and optical

properties of the disk and its surrounding medium. As was the case with the reflection



CHAPTER 2. THEORETICAL BACKGROUND 59

e
h

k

x
y

z

EzEy

Ex

A B

DC

y

x

y

x

y

x

-1

1

[a.u]

Figure 2.21: Scattering of SPPs by a nanondisk. A Geometry of problem: a subwavelength disk

with a different conductivity from conductivity of the host graphene. The structure is illuminated

with a plane-wave from top. The nanodisk (r = 10 nm), acts as dipole. B through D show the snap-

shot in time of different components of the secondary (i.e., scattered) electric field due to the patch;

the incident field has been removed from the total field calculated from numerical simulations. The

fields due to the nanodisk mimics the fields of a dipole. The issue is how to find the polarizability

of such nanodisk as function of its dimensions and optical properties.
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problem (see section 2.2.4), full-analytical treatment of the problem might not be straight-

forward if not impossible. There have been some studies on how light scatters from a small

hole in a thick metal film [91] such as gold, however again very thin structure of graphene

makes such studies almost obsolete in this case. Thongrattanasiri et. al [103] have sug-

gested that polarizability of a small subwavelength graphene disk follows a resonance that

has a Lorentzian line shape

α(ω) =
3c3κr

2ω2
p

1

ω2
p − ω2 − iκω3/ω2

p

, (2.56)

where ωp is the plasmon frequency, κ is the decay rate, and κr is the radiative component

of κ. Then using full-wave numerical simulations the fitting parameters κ, κr and ωp can

be determined. These parameters implicitly bear the dependence on the dimensions and

optical properties of the nanodisk.

In addition, using full-wave simulations, we obtain the polarizability of a circular patch

as a function of its radius. The simulations are performed for f = 30 THz, at which the

circular patch has conductivity σg,disk = 0.0039 − i0.0324 mS (µc = 65 meV) and the

background conductivity is σg,bg = 0.0014 − i0.1787 (µc = 300 meV). To find the dipole

polarizability of the disks, the radius of the circular patch is varied from 2 nm to 20 nm

and the magnitude and phase of the scattered electric field (|Einc| = 1) due to the disk is

compared with a deeply subwavelength dipole source with dipole moment p = 1 (in our

simulation we assumed the length of the dipole source is 2 nm). We do realize that these

length scales are not realistic, however we wanted to make sure that the diameter of the

disks are indeed subwavelength (with respect to λSPP, which in this scenario is ≈ 336 nm).

The results are shown in Fig. 2.22. As expected, the magnitude of the polarizability in-

creases with the size of the disk (roughly ∝ a3). In addition, the higher the conductivity

contrast between the disk and the background, the larger the polarizability of the disk.
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Figure 2.22: Polarizability of graphene nanondisk as a function of its radius (right panel: magni-

tude, left panel: phase angle).

Graphene antennas

The problem of scattering from subwavelength patches is the critical to study of several

other problems. For example we just showed a single patch of graphene can effectively act

as an emitter within graphene, suggesting such entity could be employed as an antenna to

receive and transmit signals in and out of the graphene layer. To show coupling efficiency

of the SPP using the graphene patch, we use a quantity called coupling cross section σc

defined as Prec

S inc
, where Prec is the power received by the patch and S inc is the incident power

per unit area. Our calculation indicate that this subwavelength patch has a coupling cross

section more than 4 times its geometrical area (we obtained almost the same value for a

hole of the same size instead of the patch). This quantity depends on the shape, dimensions

and conductivity of the patch and conductivity of the surrounding medium, so creating high

contrast between the conductivity of the patch and that of the background graphene should

result in larger coupling cross sections. This could be subject of further study.

The possibility of inclusions as antennas has been examined experimentally by Zhou et.

al [120]; they show that surface plasmons can be enhanced even locally and at the atomic
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scale using point defects. Their study indicates that a single point defect (which is created

by using dopant atoms such as boron, nitrogen, iron, silver of gold) can act as an “atomic

antenna” in the petahertz region. There has been some numerical studies similar to what

presented here (see Ref. 62)∗∗.

2.2.6 Coupling between an emitter and graphene SPPs: Enhanced

light-matter interaction

In section 2.2.3 we studied the solutions to Maxwell’s equations in the presence of graphene

and also how graphene can change radiation pattern of an emitter in free-space. We ob-

served that presence of graphene can give rise to surface plasmon polariton waves at the

surface, which are much stronger than the fields due to an emitter in free-space.

Before Purcell’s study in 1946, spontaneous emission of an atom or molecule was

deemed as an intrinsic property of such entity. But his work suggested that the environ-

ment surrounding an atom or molecule can alter radiative characteristic of the atom or

molecule. There have been some studies on the strength of coupling of quantum emit-

ters and graphene surface plasmon-polaritons. These studies predict high decay rates for

such quantum emitters in the proximity of the homogeneous and inhomogeneous graphene

layer [43, 54]. Koppens et. al [54] propose that due to this high decay rate (spontaneous

emission rate), graphene can be a new platform for enhanced light-matter interaction. They

study the problem in a quantum optical context. We briefly discuss some of the theoreti-

cal concepts underlying their study as they closely relate to our work on graphene-based

cavities in chapter 3. In chapter 3, we treat the problem of cavity classically and try to

analyze the cavity response using circuit models for resonance. In our framework, there is

∗∗Another interesting scenario in which scattering problem find importance is the inverse scattering from

objects within graphene layer. As we point out very briefly in chapter 5, inverse scattering problem is of

immense significance in tomography applications using graphene—e.g., in imaging of a rough surface.
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an analogy between the quantum and the classical view of the problem. We will see how,

in such framework, decay rate of a quantum emitter can be regarded as a resistive part of

impedance of an antenna [35].

The spontaneous emission rate γ of a the dipole can generally be obtained using Fermi’s

golden rule [77] by considering the combined “field + system” states in terms of partial

local density of states†† of the dipole ρp(r0, ω0),

γ =
2ω0

3~ǫ0
|p|2ρp(r0, ω0), (2.57)

in which r0 is the location of dipole, ω0 is the transition frequency and p is the dipole

moment of the atom or molecule (this discussion is based on the assumption that our dipole

can be described as a two-level quantum system). The density of states is related to Green’s

tensor of the dipole at the location of dipole:

ρp(r0, ω0) =
6ǫ0

πω0

[

p̂ · ℑ{
↔
G(r0, r0;ω0)} · p̂

]

, (2.58)

where p̂ is
p

|p| and
↔
G(r0, r;ω0) is the Green’s tensor at the location of dipole r0 due to the

dipole itself—the electric field at location r due to the dipole is E(r) =
↔
G(r0, r) · p. For

free-space the decay rate γ0 of the dipole will take the simple following form

γ0 =
ω3

0
|p|2

3πǫ0~c3
. (2.59)

An important quantity that captures the effect of environment on the rate of spontaneous

emission of an emitter is Purcell factor, defined as the total decay rate of the emitter nor-

malized to the free-space decay rate. It can be shown that this quantity only depends on the

scattered field due to the inhomogeneous environment [77]

Fp =
γ

γ0

= 1 +
6πǫ0

|p|2
1

k3
0

ℑ{p · Es(r0)} , (2.60)

††Partial local density of states is defined as number of modes per unit volume and frequency at the origin

of the quantum system
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where Es(r0) is the scattered field at the location of the dipole. In Eq. (2.60) interaction

between Es and p is assumed to be weak. Also it has been assumed that the decay rate is

purely radiative.

Now let us briefly discuss the connection between classic and quantum picture of the

problem. As we know from classical point of view, according to Poynting’s theorem, for

any source or sink current distribution j in a linear medium, the rate of energy dissipation

dW/dt should be equal to power radiated by that source [77]

dW

dt
= −1

2

∫

V

ℜ{j∗ · E}dV. (2.61)

Thus for a dipole j(r) = −iω0pδ(r − r0), we can write

dW

dt
=
ω0

2
ℑ{p∗ · E(r0)}, (2.62)

where E(r0) is electric field due to the dipole at its own location. This equation can be

written in terms of Green’s tensor as

dW

dt
=
ω2

0
|p|2
2

[

p̂ · ℑ{
↔
G(r0, r0;ω0)} · p̂

]

. (2.63)

The connection between two point of views becomes clear by comparing combination

of Eqs. (2.57) and (2.58) with Eq. (2.63). We will come back to this analogy later in

chapter 3, where we talk about one-atom-thick cavity resonators using graphene. There we

use classic electrodynamics to analyze the problem of cavity resonator (i.e., by considering

quantities such as Q-factor, mode-volume) and try to present a circuit equivalent for the

cavity resonator. The decay rate of the system will be closely related to the resistive part of

impedance introduced for the two-level system [35].

2.2.7 Excitation of graphene surface plasmon-polaritons

As discussed in sections 2.2.3 and 2.2.6, one efficient way of exciting surface plasmon-

polaritons in graphene is to use a quantum emitters such as an atom or molecule resonat-
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Figure 2.23: Excitation of SPPs using diffraction grating. All fields shown here are the scattered

component; the incident component is removed. Panel A shows the geometry of the graphene layer,

the diffraction grating and polarization of incident field. Panel B illustrates the magnitude of the

scattered field on y-z plane.

ing at the desired wavelength. In this section, we investigate other possibilities to excite

graphene SPP modes. The central notion here is to excite these modes using a plane wave.

Due to high confinement of the SPP surface waves, coupling in and out of graphene is very

challenging. In addition, as we will see here, with conventional techniques of coupling

light with SPP surface waves, the efficiency is undesirably low.

Excitation of surface plasmon-polaritons using diffraction grating

One method for excitation of SPPs is similar to diffraction grating structure in conventional

optics (see Fig. 2.23, A). Suppose that a graphene layer with µc = 150 meV (T = 3◦ K,

Γ = 0.43 meV) is standing in free space, while ten silver nanorods (r ≈ 8 nm), distanced

λSPP ≈ 144 nm from each other, are placed underneath and very close to the graphene (in
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a real setup the nanorods can be embedded in the spacer, upon which graphene is rested;

the physical mechanism underlying the problem will remain unaffected). A plane wave

launched from the top toward the graphene layer (which, in our simulations, is 50λSPP long

in y-direction and infinite in x-direction, i.e. ∂/∂x = 0), will induce dipole moment in the

nanorods and the since the these nanorods are separated by λSPP, the fields due the dipole

moments add up in phase, giving rise to SPP surface waves in the graphene layer. We

studied this structure numerically by full-wave simulation of total field (which is sum of

incident plane wave field and secondary field formed by scattering from graphene + grat-

ing system) and removing the incident component to obtain the scattered (secondary) field.

Figure 2.23, B, illustrates the magnitude of scattered field on the y-z plane. From this sim-

ulation we can clearly observe the SPP mode and how it is confined to the graphene layer.

Unfortunately, with this geometry the coupling efficiency is as low as ∼ 0.1%. Since radius

of the wires is very small, the dipole moment induced in the nanorods is extremely small,

resulting in this weak coupling. As expexted efficient coupling to graphene’s extremely

confined SPP surface waves is a challenging task; for example merely increasing the diam-

eter of the nanorods does not result in considerably more effective coupling; for example

increasing the radius from 8 nm to 35 nm, leads to a coupling efficiency of ∼ 0.55%, which

is still very small. As we will point out in the follwoing section (see Remark in subsec-

tion 2.2.7), to achieve larger coupling, one needs to exploit techniques that are based on

mechanisms different from those employed conventionally.

Excitations of surface plasmon-polaritons using array of patches

Based on the discussion in section 2.2.5, here we propose another way of coupling to

graphene SPPs. Using arrays of circular patches, we might be able to achieve higher cou-

pling efficiency. For example consider the geometry in Fig. 2.24, A, where the background
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Figure 2.24: Excitation of SPPs using array of subwavelength disks. Panel A shows the geometry

and distribution of the vectorial scattered electric field on the y-z plane (snap shot in time). Panel B

illustrates the Poynting’s vector of the SPP surface wave on y-z plane.

graphene has conductivity with positive imaginary and patches conductivity has negative-

valued imaginary parts (conductivity values are the same as what used throughout this

thesis). In our simulation the radius of each patch is 10 nm and we assumed that the two

arrays are separated by λSPP in the longitudinal direction while they are λSPP/5 apart from

each other in lateral direction. The patches act as antennas and when the structure is illu-

minated with a plane wave, one can couple photons to the SPP modes of graphene through

these patches. With this geometry and only two rows of these arrays, we achieved coupling

efficiency of ∼ 0.6%, which is still small but larger than the grating structure proposed ear-

lier. By changing shape and dimension, and by increasing number of arrays, we might be

able to achieve larger coupling. Figure 2.24, A, illustrates the electric field of SPP surface

wave coupled using this technique on the y-z plane (the structure is uniform in x-direction).

Figure 2.24, B, shows the Poynting vector of the SPP wave. It is clear that the power is

confined around the graphene layer.
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Figure 2.25: A horizontal dipole on top of a uniform graphene layer with µc = 300 meV. The

distance of dipole from graphene is 200 nm. The inset shows the geometry under study. The

Poynting vector (strength shown in gray scale) is superimposed on top of the density plot of the

electric field intensity.

Remark: As we just observed both techniques described above result in very low cou-

pling efficiencies, but studies have shown that an emitter in close proximity of a graphene

layer can couple efficiently to plasmon modes of graphene (see Ref. 43 for example). Fig-

ure 2.25 shows numerical simulation of electric field and Poynting vector due to a horizon-

tal dipole near surface of graphene layer with uniform chemical potential µc = 300 meV.

As can be seen from Fig. 2.25, the total field is combination of two main components:

dipole radiation field and SPP field. Based on the numerical simulation of our geometry,

roughly 80% of the dipole power couples to dipole radiation fields, while the rest radiates

into SPP waves (i.e., assuming all the energy loss of the source is associated with radiation,

PSPP

Prad
=
γSPP

γrad
= 1

4
). However Huidobro et. al have shown that, under certain conditions, in

principle the total decay rate γ can become almost equal to the surface plasmons decay rate

γSPP [43], implying that most of the emitter’s power can radiate into SPP. So why do we

observe such a small coupling in the techniques proposed above? The reason can be at-

tributed to inefficient coupling between the plane wave and the scatterers, i.e., the nanorods

in the first proposal and patches in the second proposal. In other words, as we mentioned
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earlier the dipole moments induced by the plane wave in the scatterers are extremely small,

resulting in small amount of power radiating from the scatterers into the dipole radiation

and SPP fields, so no matter how large is the coupling efficiency between the scatterers and

graphene plasmons, the amount of power radiated into plasmons is small compared with

incident power (i.e., power of the incident plane wave). To tackle this issue somehow the

Poynting vector has to, as much as possible, be directed toward the scatterers, enabling

larger interaction between particle and the plane wave.

Suppose for example that the emitter is a spherical subwavelength nanoparticle. It is

well known that if the particle becomes resonant the scattering cross section of the particle

can exceed several multiples of the particle’s actual cross section (for a spherical nanopar-

ticle for example typical values for scattering cross section is multiples of
λ2

0

2π
). It has been

shown that by proper design of a plasmonic-dielectric-plasmonic layered structure, in prin-

ciple, an arbitrarily large total cross section can be achieved [92]‡‡. Such possibility can

find significance in efficient coupling of power of a plane wave to graphene SPPs. This

problem is subject of future studies.

‡‡By engineering a layered nanostructure, resonances can occur in several angular momentum channels

that have almost the same resonance frequencies (degeneracy), leading to relatively larger than usual scatter-

ing cross sections for subwavelength particles, which are coined as ‘superscatterers’ [92].
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Chapter 3

Metamaterials and Transformation

Optics using Graphene

In chapter 2, we saw that conductivity of graphene can be controlled by tuning its chemical

potential. Changing chemical potential can be achieved by chemical doping or using static

electric bias. We also proposed some methods to vary chemical potential based on static

electric biasing. By devising one of those methods, one can tailor the conductivity locally

to create inhomogeneous nonuniform patterns across the layer of graphene. As we men-

tioned, a graphene layer with positive imaginary part of conductivity supports TM surface

plasmon-polariton surface waves, while for negative imaginary parts, these modes are not

sustained and a weakly guided TE mode is present. Of course in case of positive imaginary

part, depending on the value of this quantity, the modes can possess different propagation

characteristics. The ability to manipulate conductivity of graphene can lead to rebirth of

fields of “metamaterials” and “transformation optics” on a flatland platform for terahertz

and infrared frequencies. Metamaterials are designed upon notion of embedding inclusions

and inhomogeneities and transformation optics is based on the idea of creating gradient in

refractive index of materials to redirect the electromagnetic waves at will. Both of these
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Figure 3.1: Schematic of a free-standing graphene layer, with an array of circular “patches” as

inhomogeneities. The layer might act as a 2D variant of a metamaterial structure.

can be realized using graphene.

To begin our discussion, we present a general example of a metamaterial structure. In

subsequent sections we study more specific examples∗.

Figure 3.1 is sketch of a free-standing layer of graphene, within which an array of

2D circular “patches” is assumed. The conductivity of these patches is σg,2 = 0.0039 −

i0.0324 mS (σg2,i < 0), whereas the rest of graphene has conductivity σg,1 = 0.0009 +

i0.0765 mS (σg1,i > 0). Each circular patch acts as a scatterer for the SPP surface wave,

behaving as a “flatland inclusion”. The collective behavior of these “inclusions” can result

in a 2D bulk flat metamaterial.

Our numerical simulations (shown in Fig. 3.2) suggest that such geometry, if designed

properly, can act as a 2D version of metamaterials formed by collection of subwavelength

metallic nanoparticles that may, under certain conditions, exhibit backward wave prop-

∗In our examples we have tried to avoid length scales less than 20 nm, which has been shown to be the

limit for quantum finite-size effects to emerge; below 20 nm it is predicted that the plasmon resonances will

split and we may observe broadening of the resonances [104]
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Figure 3.2: The snapshot in time of the electric field vector for the TM SPP along a single sheet of

graphene at f = 30 THz, shown on the graphene plane. Only one row of the 2D periodic array is

shown (D = 30 nm, d = w = 55 nm, L = 370 nm). Reprinted from Ref. 106 (by permission of the

AAAS). [http://www.sciencemag.org/content/332/6035/1291].

agation effect [4]. Considering this example, now the importance of our discussion in

section 2.2.5 becomes apparent. There we mentioned that these small graphene nanodisks

can be described as dipole moments with certain polarizability values. By changing the

polarizability for these subwavelength (and by subwavelength we mean≪ λSPP) elements,

one can control the collective optical response of the structure—One caveat is that the con-

dition a ≪ λSPP, a =
D
2

must be maintained for validity of dipole moment approximation,

otherwise higher multi-poles become significant and must be included in our calculations.

By varying size, periodicity and conductivity value of these small patches, we can obtain

the desired optical response.

In the following we introduce several scenarios illustrating functions and concepts that

might be realized by deliberately engineering graphene conductivity and by following the

theoretical framework we developed in chapter 2. We will discuss prospects of having

optical elements such as one-atom-thick waveguides, cavities and lenses (chapter 4).

http://www.sciencemag.org/content/332/6035/1291
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3.1 One-atom-thick waveguide elements

In chapter 2 as an important concept forming one of the foundations for design of flatland

metamaterials, we discussed the Fresnel reflection on graphene. We observed that creating

a mismatch in the conductivity profile across graphene can result in reflection (near total)

of surface plasmon-polaritons in the plane of graphene. We now investigate whether it is

possible to devise this feature to design waveguide elements that are only one-atom thick

(e.g. different types of waveguides, beam splitters and combiners). Since the guided SPP

waves are tightly confined to the graphene surface, such elements can carry wave signals in

an ultra-compact volume, showing prospect for design of miniaturized optical devices. Our

goal here is to show that it is not out of reach to recreate one-atom-thick variant of almost

any element or device available in classic optics on graphene. Our theoretical findings

may herald the possibility of contriving a new class of miniaturized photonic circuitry for

information processing at the nanoscale [23].

3.1.1 One-atom-thick waveguide

To exploit the reflection mechanism to guiding SPP surface waves, we propose a setting that

is one-atom-thick analog of a conventional three-dimensional (3D) metal-insulator-metal

(MIM) waveguide (Fig. 3.3).

This 2D waveguide variant consists of three distinct regions within the graphene: two

side regions with chemical potential µc2
= 65 meV (σg,2 = 0.0039 − i0.0324 mS, where

σg2,i < 0), and a middle “ribbon-like” section, with chemical potential µc,1 = 150 meV

(σg,1 = 0.0009 + i0.0765 mS, where σg1,i > 0). To achieve these two different chemical

potentials, one may follow any of the approaches discussed earlier in the present work,

e.g., designing an uneven profile for the ground plane. We note that since the SPP is highly

confined to the graphene, in all our numerical simulations the graphene is assumed to be
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Figure 3.3: Simulation results for Ez (snap shot in time) for an IR-guided wave at f = 30 THz

along the ribbon-like section of graphene with the chemical potential µc,1 = 150 meV (L = 560 nm,

w = w1 + w2 + w3 = 200 + 200 + 200 nm). Reprinted from Ref. 106 (by permission of the AAAS).

[http://www.sciencemag.org/content/332/6035/1291].

free standing in vacuum. We emphasize that the existence of ground plane does not have

any role in formation of such highly confined SPP modes as formation of those modes is

not due to direct interaction of light with the ground plane; the confined SPP would still

exist for a free-standing graphene. The fields of the SPP waves do not even “touch” the

ground plane underneath. Therefore, without loss of generality, all the numerical studies

are performed for the free-standing graphene with no ground plane present in the simula-

tions. As Fig. 3.3 demonstrates, a guided SPP wave is bounded by the two boundary lines

between the graphene segments on the side that have conductivity values different from the

middle segment conductivity value.

The mode observed in Fig. 3.3 is the fundamental mode of the waveguide (this mode

is symmetric with respect to x), which can be related to the mode of an infinite sheet of

graphene(see Fig. 3.4, A). Higher-order modes, such as a mode that is anti-symmetric with

respect to x, can also be excited in the waveguide (for the antisymmetric mode see Fig. 3.4,

http://www.sciencemag.org/content/332/6035/1291
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Figure 3.4: A Symmetric and B antisymmetric modes of graphene nanoribbon waveguide. The

snap shot in time of Ez on x-z plane for a graphene nanoribbon waveguide of width w = 200 nm.

panel B).

For the modes in the middle region the width of the waveguide affects the propaga-

tion characteristics (i.e., dispersion relation) and these modes become evanescent below

a certain frequency. The lowest-order mode in the middle region might be interpreted as

superposition of two infinite sheet mode that propagate at an angle θ = cos−1
(

βwg

β∞

)

with

respect to y axis, where βwg and β∞ respectively denote the propagation constants of trans-

verse magnetic SPP for the ribbon and infinite sheet of graphene. An exact closed form

solution for the dispersion relation of the modes in the middle may not be possible†, how-

ever using full-wave numerical simulations, we have obtained the dispersion curve for the

fundamental mode, displayed in Fig. 3.5 (in black). As can be seen, and expectedly, the

slow-wave factor, defined as
ℜ{β}

k0
, for this modes is smaller than that of an infinite sheet

mode (which is shown in solid blue). This waveguide can also support edge modes around

the boundary lines of the ribbon (see discussion in the following).

As a variation to this waveguide, we can consider the same geometry as in Fig. 3.3,

†see appendix C for an “electrostatic” formulation of dispersion relation of the plasmon modes
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Figure 3.5: Dispersion relation for a graphene nanoribbon waveguide of width w = 200 nm.

however now graphene side regions are replaced with PEC strips. The general form of the

modes in the middle remains the same, however the propagation parameters change due to

different magnitude and phase of the reflection from the boundaries with PEC strips. Again

using numerical simulations we can obtain the dispersion curve of the mode in the middle

region (Fig. 3.5, red line). Additionally the PEC strips short the edge modes (discussed in

section 2.2.4) around the boundary lines [99].

Finally we note that the waveguide modes in the middle region experience higher losses

compared with the infinite sheet mode [71, 99]. The losses can be attributed to the longer

propagation path compared with the infinite sheet mode propagation path; for high frequen-

cies for which the propagation angle is smaller, these modes are almost parallel to direction

of propagation (y axis) and thus experience lesser amount of loss, whereas for frequencies

near cutoff amount of loss is higher, simply because the propagation angle takes its largest

values and the propagation path is longer than that of infinite sheet mode [99].
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3.1.2 One-atom-thick waveguide using edge modes

As briefly pointed out, in addition to the modes in the middle of the graphene nanorib-

bon, edge modes could be excited near the boundaries of the ribbon. These modes are

related to the edge modes we discussed in section 2.2.4 (see Fig. 2.16 on page 49, where

we observed that the boundary line between two semi-infinite sheets of graphene, one with

imaginary part of conductivity positive and the other negative‡, may support edge modes).

The edge mode shown in Fig. 2.16 has larger slow-wave factor
ℜ{β}

k0
compared with the in-

finite graphene layer (the guided wavelength associated with this mode is around 61.5 nm)

and as pointed earlier, it might be interpreted based on separation of electrons and holes at

the boundary region forming a p-n junction [69]. Based on this interpretation, the charac-

teristics of the edge mode depends only on the gradient of the charge density and frequency

of operation, thus this mode does not have a cut-off frequency; as we decrease the width

of the nanoribbon, the middle region mode becomes evanescent, however the edge modes

survive around both boundaries of the ribbon regardless of the the nanoribbon width. De-

creasing the width even further results in the two identical edge modes coupling together,

hybridizing into two modes. These two new modes have slow-wave factors that are larger

and smaller than the original edge modes, i.e., as a result of coupling, the two original

edge modes with identical slow-wave factors split into two new edge modes with lower

and higher slow-wave factors [16, 71]. However only one of these two modes is cutoff-

free, while the other becomes evanescent as the width decreases—in practice there is a

narrow range of frequencies (for a fixed width) and a narrow range of widths (for a fixed

frequency), for which the mode with lower slow-wave factor is present or distinguishable

from the other mode. For high enough frequencies the two modes fall back on to the

‡We note that when we refer to two sheets of graphene, we mean two different conductivities, which can

be realized within one graphene layer using one of the techniques proposed in chapter 2. So the boundary

line is not necessarily formed due two individual strips that are juxtaposed; the boundary line might be a

“virtual” line
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original edge waves and for low frequencies one becomes evanescent.

We may think of another waveguiding scenario based on coupling of two edge modes

by decreasing the width of the nanoribbon. Figure 3.6 depicts such geometry, in which

the width of the waveguide is 30 nm (much smaller than cutoff width for middle region

modes at 30 THz; based on our simulations the cutoff width for the fundamental mode

happens to be around 150 nm). Interestingly for this case the mode is so tightly confined,

in both transverse directions (x and z), that even with having the waveguide bent, it re-

mains bounded inside the ribbon and does not leak out. As with the fundamental mode

of nanoribbon waveguide, the edge mode experiences higher losses than the original edge

mode. However in contrast with the fundamental mode, the attenuation might be due to

higher local concentration and hence higher power density in some regions of the ribbon

compared with the edge mode of two semi-infinite sheets—the attenuation of the modes in

the middle region was attributed to propagation path [99].

3.1.3 One-atom-thick splitter/combiner

Based on the waveguide presented in Fig. 3.3 we can envision an IR splitter (power divider).

Figure 3.7 demonstrates such element. The design of this element can be realized by proper

choice of conductivity patterns across the single sheet of graphene, generated, for example,

by use of uneven ground plane or other techniques. Once an SPP wave is coupled to

the closer end (port), the wave propagates along the input waveguide until it reaches the

waveguide branches, where it splits into two different paths, and bring considerable portion

of the input power to other two ports. Obviously due to reciprocity of the structure, this

geometry can also be used as combiner. So if two modes are launched from the farther two

ends, the combination can be received in the closer end (port).



CHAPTER 3. GRAPHENE METAMATERIALS & TRANSFORMATION OPTICS 79

w
2
=30 nm

 
2

 
1

x

y

w
2
=30 nm

 
2

 
1

x

y

z

-E
y0

E
y0

Figure 3.6: Simulation results of Ez (snap shot in time) for an IR guided wave at f = 30 THz

along a bent ribbon-like section of graphene with the chemical potential µc1. This ribbon-like

path is surrounded by the two other sections of the same sheet of graphene but with a different

chemical potential µc2. The IR signal is clearly guided along this “one-atom-thick ribbon”. The

computational region has the length L = 370 nm and total width w1 + w2 + w3 = 120 + 30 +

60 nm while for the bent region w4 + w2 + w5 = 30 + 30 + 120 nm. Reprinted from Ref. 107 (by

permission of the AAAS). [http://www.sciencemag.org/content/suppl/2011/06/08/332.6035.1291.

DC1/Vakil-SOM.pdf].

3.1.4 One-atom-thick optical fiber

As mentioend earlier the waveguide introduced above is analogous to a 3D MIM waveg-

uide. But as is the case with the classic optics, 3D MIM waveguide is not the only geometry

that can guide the waves. For example optical fibers are another category of waveguides.

So it is natural to ask whether we can have a 2D variant of an optical fiber.

A typical optical fiber is composed of two main dielectric parts: core and cladding§.

In essence they both can support propagating waves but due to total internal reflection,

the light remains bounded inside the “core” (inner region) and does not leak out to the

§And of course in practice a jacket to protect the core and cladding.

http://www.sciencemag.org/content/suppl/2011/06/08/332.6035.1291.DC1/Vakil-SOM.pdf
http://www.sciencemag.org/content/suppl/2011/06/08/332.6035.1291.DC1/Vakil-SOM.pdf
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Figure 3.7: Simulation results of Ez (snap shot in time) for an IR splitter. This scenario is Similar

to the waveguide case in Fig. 3.3 but the ribbon-like section splits into two paths (L1 = 1077 nm,

L2 = 560 nm, w = w1 +w2 +w3 = 600+ 200+ 600 nm). The graphene conductivity parameters are

similar to those in Fig. 3.3. Reprinted from Ref. 106 (by permission of the AAAS). [http://www.

sciencemag.org/content/332/6035/1291].

“cladding” (outer region). We propose a 2D analog of optical fiber in Fig. 3.8.

Figure 3.8 shows full-wave simulation of 2D variant of optical fiber based on graphene.

Similar to an optical fiber, which has a high-index medium as THE core and a lower-index

medium as the cladding, one can create regions of conductivities such that the middle

segment has index larger than the side regions (by index we mean
βSPP

k0
; we will come back

to this definition in chapter 4. The simulation results indeed indicate that this geometry

guides the SPP mode through the middle region with minimal leakage of the energy to the

side regions. One caveat is that similar to an optical fiber the waveguide is not robust to

bends and too much bending can result in leakage of the signal to the side regions. But

on the positive side, since here the edge mode waves do not exist the amount of loss is

limited to that of the mode in the middle, resulting in possibly lower losses for the signal

http://www.sciencemag.org/content/332/6035/1291
http://www.sciencemag.org/content/332/6035/1291
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Figure 3.8: Simulation results of Ez (snap shot in time) for an IR guided wave at f = 30 THz along

a ribbon-like section of graphene with the chemical potential µc2 = 150 meV. This ribbon-like path

is surrounded by the two other sections of the same sheet of graphene, but with a different chemical

potential µc,1 = 300 meV. Both of these chemical potentials result in positive imaginary part of

conductivity, but different values for effective SPP index µc2 = 150 meV results in higher effective

index for the “core” region (similar to a 3D fiber for which core has higher SPP index for light). In

this simulation, the IR signal is clearly seen to be guided along this “one-atom-thick ribbon”. The

computational region has the length L = 1 µm and total width w2 +w1 +w2 = 150 + 200 + 150 nm.

Reprinted from Ref. 107 (by permission of the AAAS). [http://www.sciencemag.org/content/suppl/

2011/06/08/332.6035.1291.DC1/Vakil-SOM.pdf].

transmission.

It is worth mentioning that these examples and scenarios are only a few of myriad

possibilities that may follow from tailorability and tunability of graphene conductivity.

For instance Sounas & Caloz [99] have studied the surface plasmon polartions along a

magnetically biased graphene strip. They find that placing a PEC strip along one edge of

the graphene strip results in a non-reciprocity in the system, suggesting that wavenumbers

are not the same in opposite directions. A non-reciprocal phase shifter is suggested based

on this phenomenon. Another interesting prospect for this non-reciprocity in the system is

to have a category of waveguides known as one-way-waveguides. In nanophotonics it is

always a challenge to suppress back-reflection¶, which is result of superposition of forward

¶Interestingly this problem dates back to the days when engineers were searching for solutions to sup-

press reflection from an antenna back into a transmission lines.

http://www.sciencemag.org/content/suppl/2011/06/08/332.6035.1291.DC1/Vakil-SOM.pdf
http://www.sciencemag.org/content/suppl/2011/06/08/332.6035.1291.DC1/Vakil-SOM.pdf
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waves and reflected backward waves. In particular back-reflection could be parasitic for

optical signal processing applications that are based on slow-light systems [119]. Having

non-reciprocity in the system can be a solution to this problem. As we just mentioned

the characteristics of waves are different in opposite direction for the setup proposed by

Sounas & Caloz. But what if we operate in a range of frequency, where the forward mode

is propagating and the backward is below cutoff? This will result in suppression of the

backward wave, preveting formation of back-reflection. This will be a subject of future

study on graphene.

As another scenario of waveguiding Christensen et. al [16] propose a linear chain of

graphene nanodisks (withℑ{σg} > 0) as a waveguide for SPP surface waves. This is indeed

2D analog of a waveguide made up of a linear chain of metallic nanoparticles [3, 11, 87].

The authors also investigate hybridization of plasmon modes in a pair of neighboring

aligned nanoribbon waveguides and the propagation characteristics as function of distance

of two ribbons. Tuning the distance of two waveguides could be a mechanism for control-

ling the dispersion of the mode (in some instances this distance can change the dispersion

relation of the modes dramatically). Authors’ suggest that their proposal can be a platform

for low-power optical signal detection.

Having the capability to guide SPPs across graphene, we may think of designing res-

onant cavities based on graphene waveguides. In the next section we will look at these

category of optical elements.

3.2 One-atom-thick cavities

Electrical engineers tend to describe any resonance phenomena using parallel or series

circuits of lumped elements (resistor, inductor and capacitor). But why?
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This tendency exist because the concept of circuit and associating different behaviors

to circuit elements (i.e., dissipative behavior to resistors and reactive behavior to capaci-

tors and inductors) offers a more insightful way of analyzing physical phenomena. As just

mentioned to exploit the analogy, the resonance may not necessarily be originating from

interaction of actual lumped circuit elements. For instance in microwave engineering, or-

dinary lumped elements connected through wires do not function as efficient resonators,

and to build resonators, engineers resort to structural elements such as waveguides; by en-

closing waveguide ends and creating a closed structure that does not radiate, with proper

design of geometry, a resonator can be constructed. However circuit theory concepts are

still employed in analysis of resonant structures.

Here, as well, we take a similar approach. We design resonant cavities following theo-

retical concepts developed in chapter 2, section 2.2.4 and then analyze them using circuit

theory (especially using the concept of impedance).

Let us start with a simple scenario as depicted in Fig. 3.9. We know that a graphene

layer whose imaginary part of conductivity is positive supports TM SPP surface waves.

However if the imaginary part is negative these TM waves do not exist. So terminating a

graphene layer with σg,i > 0, on both ends, with two layers with σg,i < 0, would bound

the mode to be inside the region sandwiched between two other regions (with negative

imaginary parts). But to make the structure resonant at a certain frequency, the cavity

dimensions must be designed properly—for example in the 1D geometry of Fig. 3.9 the

length of the cavity ℓ should be chosen such that the cavity becomes resonant. In the

following section some rules-of-thumbs are proposed for design of resonant cavities.
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Figure 3.9: (Schematic) 1D one-atom-thick resonant cavity using graphene. The two outer regions

have a conductivity whose imaginary part is negative while the region sandwiched between the two

has positive imaginary part of conductivity, thus supporting the TM SPP waves. The structure is

uniform in x direction (∂/∂x = 0). The question is “Given that the mode does not leak out to two

outer regions, can we choose length ℓ such that the cavity becomes resonant?”

3.2.1 Design of one-atom-thick cavities

1D One-atom-thick resonant cavity

The geometry in Fig. 3.9 may remind us of familiar Fabry-Pérot interferometer in classic

optics, which is typically made of two parallel mirrors with high reflectivity. This geometry,

as well, is formed of two parallel one-atom-thick regions that can reflect the TM SPP waves

considerably as their imaginary parts of conductivity is negative. Since the wave does not

enter into these side regions, it has to reflect back. Of course some part of its energy radiates

away at the edges, resulting in less than 100% reflection from the boundaries. However as

we will see, we can still achieve resonance with imperfect walls (as is the case with an

imperfect Fabry-Pérot interferometer).

As we know for a cavity with PEC walls (Γ = −1, where Γ is reflection from the walls),

the resonance condition is simply ℓ = nλ
2

for n = 1, 2, ..., where ℓ is length of cavity and

λ is the wavelength of the guided mode in the medium between two mirrors. But what if
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reflection from the walls of cavity is not -1? For example what if magnitude of reflection

coefficient is 1 while the phase angle is not equal to π? It can easily be shown that as long

as magnitude of reflection is 1, a resonance condition exists. That condition is

ℓ =

(

n +
φ

π

)

λ

2
, (3.1)

where φ is phase angle of the reflection coefficient.

Additionally for reflection coefficients with magnitude less than 1, the resonance con-

dition expressed in Eq. (3.1) holds approximately true, if the magnitude of the reflection is

close to 1.

We might be able to use the same argument for the 2D version of this cavity. Although

the one-atom-thick version is an open structure, as we extensively discussed in previous

sections, the SPP waves are very tightly confined to the surface of graphene as if, neglecting

radiation losses, all the electromagnetic interaction occurs within and around the sheet of

graphene (of course this not exactly true, as we have tails of surface waves decaying in

the transverse direction). Assuming validity of this argument, all we need is the reflection

coefficient at the boundary lines, where the two outer regions touch the region in between.

In section 2.2.4, we developed an approximate technique based on transmission line (TL)

analogy to obtain reflection from the edges. Let us choose conductivity of the middle

and two side regions, respectively, as σg,2 = 0.0039 − i0.0324 mS and σg,1 = 0.0009 +

i0.0765 mS. For these values we can use the results reported in third row of table 2.1

on page 53. This is also a good test for accuracy of our TL-based technique. To have

resonance at f = 30 THz, assuming that the magnitude of the reflection coefficient is

close to one, the condition expressed in Eq. (3.1) has to be satisfied for the guided SPP

surface wave in the middle segment: ℓ =
(

n +
φ

π

)

λSPP

2
(n = 1, 2, ...). For n = 1, we obtain

ℓ ≈ 0.72λSPP, which is the minimum length of cavity that leads to resonance. Numerical

simulations are used to find maximum value of the electric field in the cavity versus length
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Figure 3.10: A Maximum of magnitude of the electric field at f = 30 THz versus length of cavity

(normalized to λSPP of 30 THz SPP). B Maximum of magnitude of the electric field versus frequency

of operation for ℓ = 0.72λSPP, where λSPP is the wavelength of guided SPP at f = 30 THz. Also a

Lorentzian lineshape is fitted to data–based on the fit the resonance frequency is 30.18 THz while

the Lorentzian half-width is ∼ 0.37 THz.

of cavity (see Fig. 3.10, A). The maximum peak is plotted against length, while keeping

frequency and the magnitude of the source fixed to examine our proposed rule-of-thumb

ℓ =
(

n +
φ

π

)

λSPP

2
. Ideally we would like to see the largest maximum peak of the electric field

for ℓ = 0.72λSPP, where λSPP is the wavelength of guided SPP at f = 30 THz. There is a

relatively small discrepancy (less than 2% relative error) between the length predicted by

the Eq. (3.1) and the length for which resonance occurs at 30 THz. Although it is subtle,

this discrepency might be due to the fact that the magnitude of the reflection coefficient

is not exactly 1. Obviously the final goal is to design the cavity so that it resonates at

a desired frequency. Figure 3.10, B shows the absolute value of the maximum electric

field in the cavity versus frequency (the frequency dependence of conductivity of graphene

is accounted for by using Kubo formula). As can be seen for length ℓ = 0.72λSPP, the

resonance occurs at around f = 30.2 THz, resulting in less than 1% relative error. A

Lorentzian curve δ/π

( f− f0)2+δ2
has been fitted to the numerical data. The fitting parameter are
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Figure 3.11: Density plot of the magnitude of electric field vector on x-z plane for ℓ = 0.72λSPP at

f = 30.2 THz (where λSPP is the wavelength of guided SPP at f = 30 THz).

Lorentzian half-width δ ≈ 0.37 THz and the resonance frequency f0 ≈ 30.18 THz.

Additionally density plot of the magnitude of electric field vector on x-z plane is pre-

sented in Fig. 3.11 (we note that the structure is uniform in y-direction). As can be seen

the field is enhanced considerably and is tightly confined to the surface of graphene, while

bounded in the middle segment.

In summary, it appears that the simple rule-of-thumb proposed for 1D cavities works

reasonably well in predicting location of resonance and can be used to find the approximate

resonance length for a desired frequency.

2D One-atom-thick resonant cavity

Now let us consider another scenario, where the region of graphene supporting SPP waves

(σg,i > 0) is completely surrounded by a region that does not support SPP waves (σg,i <

0)—a 2D scenario. For example consider the circular cavity depicted in Fig. 3.12 (desired

resonance frequency is 30 THz and values of conductivity are as in the case of 1D cavity).
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Figure 3.12: (Schematic) 2D one-atom-thick resonant cavity using graphene. The outer region has

a conductivity whose imaginary part is negative while the central region has positive imaginary part

of conductivity, thus supporting TM SPP waves. Again the question is whether we can find the

optimal radius for which this 2D cavity becomes resonant at a desired frequency?

Again the goal is to choose the radius of the cavity so it becomes resonant at a certain fre-

quency. Due to high confinement of the modes, as was the case for the 1D cavity case, we

may assume all the electromagnetic interaction occurs within and in the immediate vicinity

of the graphene layer, so we might be able to follow the same steps as in the problem of an

infinitely long cylindrical cavity. Let us start by writing the transverse component of the

electric field in the cavity as

Ez = A(kρ)
[

E+z,0H
(1)

0
(kρρ) + E−z,0H

(2)

0
(kρρ)

]

, (3.2)

where term e−pz is dropped since we are very close to the plane of graphene‖. In Eq. (3.2)

E+
z,0 and E−

z,0 are electric field amplitudes of the outgoing and incoming radial waves, and

A(kρ) is a function of kρ (determined by boundary condition – see details in section 2.2.3;

here for our purpose knowledge of this term is not of concern. The boundary condition at

ρ = ρ0 can be written as

E−
z,0H

(2)

0
(kρρ)

E+
z,0

H
(1)

0
(kρρ)

= Γ(ρ = ρ0), (3.3)

‖p =
√

k2
ρ − k2

0
, as defined in section 2.2, where kρ is the radial wavenumber; due to the geometry of the

problem, cylindrical coordinate system is chosen.



CHAPTER 3. GRAPHENE METAMATERIALS & TRANSFORMATION OPTICS 89

where Γ(ρ = ρ0) is the reflection coefficient at ρ = ρ0 boundary. Substituting Eq. (3.3) in

Eq. (3.2) and removing singularity at origin (which is due to singularity of Hankel functions

at origin), the radius ρ0 has to satisfy following condition

H
(2)

0
(kρρ0)

H
(1)

0
(kρρ0)

= Γ(ρ = ρ0), (3.4)

which can be rewritten as

J0(kρρ0) − iY0(kρρ0)

J0(kρρ0) + iY0(kρρ0)
= Γ(ρ = ρ0). (3.5)

For Γ(ρ = ρ0) = −1, Eq. (3.5) simplifies to the faimilar form J0(kρρ0) = 0 (this is a well

known resonance condition for an infinitely long dielectric cylinder with PEC wall). Let

us for a moment assume that kρ is real-valued. If so, the right-hand-side (RHS) of Eq. (3.5)

has magnitude 1, implying that that as long as the magnitude of reflection from the outer

region is 1, the condition expressed in Eqs. (3.4) and (3.5) can be simplified as

φ = −2 tan−1
Y0(kρρ0)

J0(kρρ0)
, (3.6)

where φ is the phase angle of reflection coefficient Γ(ρ = ρ0). This condition still holds

approximately true for reflection coefficients, whose magnitude is close to 1 (imperfect

PEC walls). We again use the value obtained from transmission line technique for Γ(ρ = ρ0)

[table 2.1, page 53]. Using the phase angle calculated in table 2.1 in Eq. (3.6) yields

ρ0 = 0.52λSPP as one condition for resonance (this is of course only one solution of many

possible ones). Numerical simulations are used to find maximum value of the electric field

(magnitude) in the cavity versus length of the cavity (see Fig. 3.13, A).

We examine whether at 30 THz the largest maximum peak of electric field occurs for

ρ0 = 0.52λSPP (λSPP is the wavelength of guided SPP at f = 30 THz). Again there is a

relatively small discrepancy (less than 2% relative error) between the length predicted by

the Eq. (3.6) and the length for which actual resonance occurs at 30 THz. Figure 3.10,
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Figure 3.13: A Maximum of magnitude of the electric field at f = 30 THz versus length of cavity—

normalized to λSPP of 30 THz SPP. B Maximum of magnitude of the electric field versus frequency

of operation for ρ0 = 0.52λSPP, where λSPP is the wavelenght of guided SPP at f = 30 THz. Also

a Lotentzian lineshape is fitted to data–based on the fit the resonance frequency is 29.70 THz while

the Lorentzian half-width is ∼ 0.30 THz.

B shows the absolute value of the maximum electric field in the cavity versus frequency.

As can be seen for length ρ0 = 0.52λSPP, the resonance occurs at around f = 29.7 THz,

resulting in roughly 1% relative error. Fitting Lorentzian form δ/π

( f− f0)2+δ2
to numerical data

yields fitting parameters as δ ≈ 0.30 THz (Lorentzian half-width) and f0 ≈ 29.70 THz

(resonance frequency).

Figure 3.14, A, illustrates the magnitude of the y-component of electric field on x-z

and x-y planes, while Fig. 3.14, B, shows the magnitude of total electric field on the same

planes, suggesting that the electric field is substantially enhanced.

3.2.2 Analysis of one-atom-thick cavities

Of particular interest is to investigate how the resonant cavities introduced in previous

sections, enhance the radiation characteristics of an emitter, e.g. atoms, molecules and

nanoparticles. Since 2D circular cavity introduced, provides more field confinement com-
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Figure 3.14: A and B Density plot of the magnitude of electric field vector and its y-component on

x-z and and x-y planes for ρ = 0.52λSPP at f = 29.7 THz (where λSPP is the wavelength of guided

SPP at f = 30 THz).

pared with the 1D geometry, here we focus our attention to the former (2D case).

As mentioned in section 2.2.6, Purcell factor captures impact of the surrounding en-

vironment on spontaneous emission of an emitter (see discussion of Purcell factor on

page 63). In this study the emitter is described as a dipole of length L oriented along

z-direction. The dipole carries current I = 1 A and is located at distance h ∼ 70 nm above

the cavity. To begin our analysis, we simplify Eq. (2.60) as following

Fp = 1 +
6πǫ0ω

Lk3
0

ℜ{Es,z(r0)}, (3.7)

in which Es,z is the z component of the scattered field due to the presence of the cavity.

Es,z can easily be obtained from numerical simulations by subtracting the incident field due

to the dipole from total field (we assumed a dipole of length 1 nm in our simulations to

mimic an infinitesimal dipole—deeply subwavelength). By evaluating the scattered field at

the location of the dipole, we obtain a Purcell factor of as large as approximately 8.2 × 104

for the dipole above the 2D cavity. We note that in this scenario the dipole is located at

approximately 70 nm above the cavity. Moving the dipole closer to the graphene sheet can

substantially enhance the Purcell effect∗∗. Our findings indicate that for a dipole sitting on

∗∗The effect of distance from graphene is studied extensively in Ref. 43
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the graphene layer, in principle, one might achieve Purcell factors as high as 107, consistent

with Ref. 54. These values are compared with the lower values for Purcell factors of order

105 for the 1D cavity.

As we mentioned in section 3.2, to better understand the characteristics of the graphene

cavity, we can exploit a circuit analogy. However, the challenge is to describe the cavity

using combination of circuit elements such as resistor, inductor and capacitor. Greffet et.

al provide such a framework in Ref. 35. Let us briefly discuss their framework and then

apply it to our problem.

As we know the time averaged power radiated by a dipole (located at r0) into the elec-

tromagnetic field is [see Eq. (2.61)]

P0 =
1

2
ℜ{iωp · E∗(r0)} (3.8)

Interestingly the structure of this equation is similar to the familiar form of electrical power

P = 1
2
ℜ{IV∗} dissipated in a load ZL with resistance R. Moreover, the electric field is given

by E(r0) =
↔
G(r0, r0;ω) · p(r0), which can be recast as follows [35]

E(r0) =

↔
G(r0, r0;ω)

−iω
· [−iωp(r0)

]

. (3.9)

This equation also has a familiar structure and is similar to the linear relation between

voltage and current V = ZI in the circuit theory. Comparing Eqs. (3.8) and (3.9) with their

electrical counterparts and considering that the dipole only has z component (p = pzẑ),

Greffet et. al have introduced following identifications [35]

I ↔ −iωpz(r0) V ↔ −Ez(r0) Z ↔ −iGzz(r0, r0, ω)

ω
, (3.10)

which enable us to establish the concept of complex impedance Z = R+iY for a dipole (e.g.,

a quantum emitter). The real part of such impedance accounts for loss (both radiative and

dissipative) and is simply expressed as ℑ{Gzz}/ω. Additionally according to our discussion
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in section 2.2.6, the spontaneous emission rate (decay rate) is proportional to the imaginary

part of Green’s function. As discussed in Ref. 35, this similarity constitutes a connection

between the decay rate and the resistive part of the impedance just defined (γ ∝ R). Such a

connection may provide an insightful way to analyze the cavity under study. For example

one can easily re-derive the Purcell factor using the concept of impedance by evaluating

the ratio between the resistance of the impedance of the dipole in vicinity of the cavity R

to that of the dipole in free-space R0 (Fp =
R
R0

).

The concept of impedance always finds significance when dealing with a collection of

interconnected elements. So the question is whether it is possible to define impedance for

other elements than the dipole. As introduced in Ref. 35, the same concepts introduced can

also be applied to the cavity geometry, meaning that if the modes of the cavity are known,

it is also possible to define an impedance for the cavity based on the Green’s function of

the cavity.

To obtain an expression for the impedance of the cavity, one can expand the Green’s

tensor in terms of orthonormal modes of the cavity un (
∫

V
un · u∗mdr3 = δnm, where δnm is

Kronecker delta) [35]

↔
G(r, r′;ω) =

∑

n

ω2

ǫ0

un(r) ⊗ u∗n(r′)

ω2
n

(

1 − i
Q

)

− ω2
, (3.11)

where ⊗ denotes the outer product, ωn is eigen-frequency associated with mode number

n and Q is the quality factor of the cavity. In Eq. (3.11), ω2
n

(

1 − i
Q

)

is the complex fre-

quency accounting for the loss in the cavity. The element lm of matrix representation of

equation (3.11) is obtained as

Glm(r, r′;ω) =
∑

n

ω2

ǫ0

un,l(r)u∗n,m(r′)

ω2
n

(

1 − i
Q

)

− ω2
. (3.12)

Since the dipole is oriented in z-direction, as we just saw from Eq. (3.10), we are only

interested in evaluating Gzz. Assuming we are operating around the resonance frequency
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ω0 (eigenfrequency), contribution from other modes are small and we can write

Gzz(rM , rM;ω) =
ω2

ǫ0

|uz(rM;ω0)|2

ω2
0

(

1 − i
Q

)

− ω2
, (3.13)

in which rM is the point where the mode amplitude is maximum and since uz(rM;ω0) is a

normalized mode of the cavity (
∫

V
|un|2dr3 = 1), the effective mode volume for the cavity is

defined as [35]

Veff =
1

|uz(rM;ω0)|2 , (3.14)

which enables us to write Eq. (3.13) as following

Gzz(rM , rM;ω) =
ω2

ǫ0

V−1
eff

ω2
0

(

1 − i
Q

)

− ω2
. (3.15)

Eqs. (3.10) and (3.15) suggest that the cavity can be regarded as a parallel RLC circuit

with R =
Qω

ǫ0Veffω
2
0

, L = 1

ǫ0Veffω
2
0

and C = ǫ0Veff [35]. Finding the ratio of R/R0 yields the

Purcell factor Fp =
3Qλ3

4π2Veff
[35]. Mode volume Veff and quality factor Q can be obtained

from numerical simulations. Assuming losses are small, using perturbation method, one

can evaluate Q from half-power fractional bandwidth
∆ f

f0
of the resonator, where ∆ f is the

distance between frequencies (around f0), for which the amplitude of the mode drops to 1√
2

of its maximum at f0 [86]

Q =
f0

∆ f
. (3.16)

Using the results from numerical simulations and carrying the calculations through for

the 2D graphene cavity, we obtain quality factor of ∼ 100 and effective mode volume of

1.6 × 10−22 m3 (1.6 × 10−7 · λ3 for λ = 10 µm), suggesting that the high Purcell factor is

mostly due to very small effective mode volume rather than high quality factor. In fact the

quality factor for the 2D cavity is in the same range as for the 1D cavity (∼ 80), so the large

Purcell effect is mainly the result of the higher mode confinement in 2D case compared

with the 1D geometry.
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Since in this section we were mostly concerned about analyzing the cavity characteris-

tics, we skip elaborating further on how the concept of impedance can be used to re-derive

the decay rate of the dipole in close proximity of the cavity. Greffet et. al offer an elegant

treatment of the problem in Ref. 35.

Lastly, on a totally different note, we would like to remark on the possibility of strong

coupling between the cavity and the emitter (dipole). In this regime the emitter might en-

able a strong plasmon-plasmon interaction, resulting in plasmon blockade, meaning that

for high intensity incident light, which results in strong coupling, average number of plas-

mons in the cavity do not follow a linear relationship with optical pump intensity (for

weak-coupling this relationship is linear regardless of power of optical pump) [65].

3.3 One-atom-thick reflectors

Pursuing our goal to establish graphene as a flatland platform for transformation optics

and metamaterials, here inspired by optical mirrors from classic optics, we introduce one-

atom-thick reflectors for infrared (IR) SPP surface waves based on graphene. We first

study the simple case of one-atom-thick straight line mirror and then show how a one-

atom-thick parabolic reflector (mirror) can be envisioned for focusing guided SPP waves

on the graphene [109].

3.3.1 One-atom-thick straight line mirror

Let us begin our theoretical study with a simple case: a straight line mirror which is one-

atom-thick variant of a plane mirror [109]—we coin term “line mirror” as opposed to plane

mirror since the thickness of graphene is extremely small compared to its other dimensions,

the boundary between two adjacent sections of a graphene layer is effectively a line rather
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than a plane. By studying this relatively simple scenario we can find a better understanding

of physics of more complicated reflectors based on graphene. As usual, the simulations are

at f = 30 THz for a free-standing graphene in air.

Earlier in this work we demonstrated that it is possible to tailor conductivity distribution

across graphene such that SPP surface waves reflect from a “boundary line” on a sheet of

graphene (section 2.2.4). And as we emphasized this phenomenon is the basic function

that many optical elements are built upon. For instance, a plane mirror in classic optics

creates an image of a point object behind the plane of mirror. For a plane mirror image is

formed at a point where if a straight line were drawn from that point to the object, it would

make a right angle with, and is bisected by, the surface of the mirror. However in a typical

mirror the image is 180◦ out of phase with the object and that is because the reflection at

the surface of mirror is -1, meaning that the phase angle of reflection is 180◦. This phase

angle shows up as a phase difference between the object and image.

We would like to address the question that whether we can utilize the concept of image

mentioned above to describe the reflection from the boundary. Of course since the phase

of reflection coefficient is not the same as the perfect plane mirror, the phase difference

between image and object is not 180◦ anymore but the phase angle of reflection from the

boundary (incidentally this is the same as what reported in table 2.1 on page 53).

Figure 3.15, A, shows the simulation of the mirror scenario for the SPP surface wave

demonstrated on a one-atom-thick graphene layer. The conductivity values of the two

segments, calculated from the Kubo formula with T = 3◦ K and Γ = 0.43 meV, are, respec-

tively, σg,1 = 0.0009+ i0.0765 mS and σg,2 = 0.0039− i0.0324 mS. The front (closer) half

section with σg1,i > 0 supports a TM SPP, while the back (farther) half with σg2,i < 0 does

not. A TM SPP surface wave, with guided wavelength of about 144 nm, and with linear

phase front, is generated using superposition of three point sources, located at λSPP/16 from

the boundary (see Fig. 3.15, A). As we said in previous chapter, the reflection of SPP at
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this line resembles the Fresnel reflection of a “plane” wave from a planar interface between

two media. Here, analogous reflection from a boundary line happens for the SPP across a

“one-atom-thick” platform. There is a little radiation loss due to high lateral confinement

of SPP surface wave.

To verify that the boundary line between the two segments acts as a “line” mirror,

we examine whether the modified version of image theory†† provides results similar to this

setting. We artificially add three “image” point sources (about 90◦ out of phase with respect

to the original sources and at the location of the images; 90◦ phase difference is dictated

by the phase angle of the reflection from the boundary line—obtained from table 2.1 on

page 53). The separation between “real” point sources and their “images” is λSPP/8 (twice

as distance between the object and mirror).

To conclude that two settings are equivalent, the superposition of the electric fields, in

the front segment, due to these two sets of sources – 3 “real” sources and 3 “image” sources

– should become similar to the original case. In Fig. 3.15, B, the simulation results display

the phase of the y-component of the electric field in this scenario. The results demonstrate

equivalence between two cases (Fig. 3.15, A and B), suggesting that the boundary between

the two segments indeed mimics behavior of a mirror. We note that this mirror is not perfect

mirror as the magnitude of reflection from boundary line is not exactly 1, however as long

as the magnitude is close to 1, this modified image theory offers a good framework for

describing the physics of the problem.

Additionally, for the case where back region has large but positive imaginary part of

conductivity, similar results can be obtained (considering the phase angle of reflection

coefficient). In the following we study another example that illustrates this possibility.

Following our first proposal, one can now envisage several other scenarios.

††By modified version, we mean that in the classic image theory for a mirror the object and image are

180◦ out of phase, while in our scenario this phase difference is the phase angle of the reflection from boundry

line.
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Figure 3.15: A Simulation results showing the phase of z-component of the electric field for the

SPP mirror scenario; the back (farther) region imaginary part of conductivity is negative and acts as

an effective one-atom-thick straight line “mirror” reflecting an IR SPP guided wave generated from

the 3 point sources located at λSPP/16 from the edge. The frequency of operation is assumed to be

f = 30 THz. B the equivalent of the problem in A using image theory, where 6 points sources, i.e.,

3 “real” point sources and 3 “image” sources have been considered with proper phase difference (L1

= 300 nm, L2 = 100 nm, and w = 200 nm). Distance between “real” sources and “image” sources

is λSPP/8. From Ref. 109. Reprinted with permission from the Elsevier. [http://www.sciencedirect.

com/science/article/pii/S0030401812001630].

Consider a 2-dimensional one-atom-thick version of a parabolic mirror for the SPP

on a single layer of graphene [109]. Figure 3.16 displays simulation results for such one-

atom-thick parabolic mirror, which may be created by patterning the graphene conductivity

nonuniformly. The conductivity values of the region in which the guided SPP surface wave

is launched (analog of air) and the opaque (mirror) region, at T = 3◦ K and with Γ =

0.43 meV, are, respectively,σg,1 = 0.0009+ i0.0765 mS and σg,2 = 0.00001+ i0.00174 mS.

Both sections have σg,i > 0 supporting TM SPP surface wave, however the mirror-like

region has a conductivity with relatively large positive imaginary part, which results in

an SPP mode that is less confined than the other section. As a result we may observe

considerable amount of reflection of SPP at the parabolic mirror line. By proper design

of the shape of the boundary (here for example a parabola), one can focus the incoming

guided SPP surface wave to a point (for example here in the focus of the parabola). Our

http://www.sciencedirect.com/science/article/pii/S0030401812001630
http://www.sciencedirect.com/science/article/pii/S0030401812001630
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numerical simulation verifies this concept as shown in Fig. 3.16.

Figure 3.16: Simulation results showing the magnitude of tangential component of the electric

field for a one-atom-thick parabolic “mirror” for the SPP focusing an IR SPP guided wave. The

frequency of operation is assumed to be at f = 30 THz. The structure is 700 nm long and 500 nm

wide. From Ref. 109. Reprinted with permission from the Elsevier. [http://www.sciencedirect.com/

science/article/pii/S0030401812001630].

In sum, the intuitive image theory discussed here might be useful in analysis and design

of graphene-based devices that function based on reflection of SPP surface waves within

a sheet of graphene. Also different one-atom-thick mirrors can form building blocks of

larger reflective optics systems.

3.4 Transformation optics using graphene

To tame electromagnetic waves we use materials with different optical properties to con-

trol and route the corresponding electric or magnetic fields (e.g. optical waveguides, lenses,

etc.). For example a bi-convex lens has a refractive index greater than that of air, resulting

in refraction of light waves, which due to curved shape of the lens will converge to a point.

However, relying only on homogeneous materials as building blocks to produce optical ele-

ments is endowed with fundamental limitations in functionality of these elements. It might

http://www.sciencedirect.com/science/article/pii/S0030401812001630
http://www.sciencedirect.com/science/article/pii/S0030401812001630
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be difficult to overcome such limitation by merely relying on homogeneous materials—

e.g., beating diffraction limit in a conventional lens. To overcome these limitations we

may exploit and design optically inhomogeneous materials. Access to metamaterials and

design flexibility that they offer, enable engineering composite structures that might alle-

viate shortcomings inherent with conventional homogeneous refractive optics. But how

can we structure materials to exhibit a desired response? Transformation optics is one

solution [83].

Transformation optics (TO) offers recipes to design inhomogeneous materials to direct

the electromagnetic waves at will, overcoming limitations of homogeneous optics. Trans-

formation optics deals with design of material properties on a subwavelength scale. From

fabrication point of view, although likely achievable, manufacturing materials with such

miniature inhomogeneities could be burdensome.

Earlier we mentioned graphene local conductivity can be tuned through different meth-

ods, e.g., uneven ground plane underneath the substrate holding graphene layer, with a

fixed dc voltage applied between the ground plane and the graphene sheet. This proposal

can result in a less complicated manufacturing mechanism, as it facilitates the fabrication

by transforming the process of creating subwavelength inhomogeneities to simply pattern-

ing the ground plane unevenly—which in turn results in the desired conductivity pattern.

In this section, by studying two theoretical examples and without going through the techni-

cal details of transformation optics, we demonstrate that graphene can be utilized as a new

platform for TO.

3.4.1 Luneburg lens with graphene

In our first example we study 2D variant of a Luneburg lens, i.e., one-atom-thick Luneburg

lens. The Luneburg lens is a spherical lens, whose refractive index gradually decreases in
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radial direction from the center toward the surface (see the left panel in Fig. 3.17, in which

the darker regions indicate higher refractive index). Due to gradient refractive index, locus

of focal points of this special lens lies on the surface of sphere. The Luneburg lens is

aberration-free and can focus light from all directions equally well. It is well known that

SPP

Si+

Figure 3.17: (Schematic) Top-left panel illustrates the concept of a spherical Luneburg lens, while

top-right panel shows the 2D variant of this concept using graphene. Can we create a nonuniform

profile for conductivity across graphene (bottom panel) that results in the same function as in 3D

case?

for a spherical Lunebrug lens in a background medium with refractive index nbg the graded

refractive index should follow the relation

n(r) = nbg

√

2 −
(

r

R

)2

, (3.17)

where R is th radius of the lens. As can be seen from Eq. (3.17), for r = R, n = nbg and for

r = 0, n =
√

2nbg.
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Our goal here is to design conductivity profile of a circular region within graphene layer

to function as a Luneburg lens for surface plasmons. In this context we define an effective

index for TM surface plasmon-polariton surface waves and try to find an equivalent form

for Eq. (3.17). Let us define nSPP =
βSPP

k0
. Then according to Eq. (2.13) we have

nSPP =

√

1 −
(

2

σgη0

)2

, (3.18)

which can approximately be written as

nSPP ≈
2

σg,iη0

, (3.19)

Substituting Eq. (3.19) in Eq. (3.17), we obtain a simplified form as

σg,i(r) ≈ σout
g,i

[

2 −
(

r

R

)2
]− 1

2

, (3.20)

where σout
g,i

is the conductivity of the background graphene, within which the Luneburg

lens is created. Additionally to perform our numerical simulations, we consider a dis-

cretized Luneburg lens, composed of concentric rings with graded conductivities. Dis-

cretizing Eq. (3.20) results

σg,i[m] = σout
g,i

[

2 −
(

rm + rm−1

D

)2
]− 1

2

, (3.21)

where m corresponds to the number of each ring, with m = 0 denoting the center of lens. In

our numerical simulation we used 10 segments with graded SPP index following Eq. (3.21).

We also define r[m] = mr[1], where r[1] = 75 nm. The corresponding chemical potential

and imaginary part of conductivity for each segment are reported in table 3.1. Numerical

simulations of this free-standing flat Luneburg lens is shown in Fig. 3.18, revealing that the

SPP generated from a “point-like” source is evolved into a “collimated beam” of SPP on

the graphene, as a conventional 3D Luneburg lens collimates wavefronts generated from a

point source into a 3D beam. The diameter of the lens is about 1.5 µm, which is 0.15λ0—a
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Table 3.1: Corresponding chemical potential and imaginary part of conductivity for each segment

of 2D Luneburg lens.

m Chemical potential (µc in meV) σg,i[m] in mS

1 221.0 0.1264

2 222.0 0.1271

3 224.0 0.1284

4 226.7 0.1304

5 231.1 0.1333

6 232.7 0.1372

7 244.0 0.1423

8 255.0 0.1490

9 268.5 0.1581

10 287.0 0.1706

notably subwavelength size. This study suggests that various subwavelength IR devices

(e.g., convex and concave lenses) might be possible using graphene.

Transformation optics offers an approach to control the propagation of light by spa-

tially varying the optical properties of a material [57, 83, 94]. Because the effective index

of the lens is changed gradually rather than abruptly, scattering losses can be reduced. In

addition to their imaging functionalities, lenses of any kind are basic elements for optical

signal processing (e.g., Fourier transforming). Thus, Luneburg lens based on graphene

could find applications in realizing optical signal processing elements such as spatial fil-

ters, correlators, and convolvers that are only one-atom-thick [106]. Another advantage of

Luneburg lens is the flexibility in control of its focal length that is vital to optical signal

processing applications. Lastly, this flat Luneburg lens has prospects for integration with

other photonic components.

As a second scenario for transformation optics using graphene, we look at 2D variant of

Pendry’s super lens proposed in 2000 [81]. The resolution offered by a conventional lens is

dictated by wave optics; no conventional lens can recover object features smaller than half

of wavelength of the light emanated from an object onto the surface of the lens. This lim-
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Figure 3.18: One-atom-thick Luneburg lens: Simulation results showing the phase of Ez of the SPP

at f = 30 THz along the graphene (D = 1.5 µm, w = 75 nm, L = 1.6 µm). Reprinted from Ref. 106

(by permission of the AAAS). [http://www.sciencemag.org/content/332/6035/1291].
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n = -1
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Figure 3.19: Schematic of a superlens;

the red lines illustrate tails of the evanes-

cent waves amplified by the slab.

itation of the conventional lens is associated with loss of high spatial Fourier components

(choosing axis of the lens as y, these spatial frequency components are kx and kz) of the

object as they become evanescent and die out before reaching surface of the lens (meaning

that for
(

k2
x + k2

z

)1/2
> ωc−1 the wave number in z direction becomes imaginary). Conse-

quently the resolution is limited to ∼ πcω−1 = λ/2 [81]. Pendry’s proposal foils this limit,

http://www.sciencemag.org/content/332/6035/1291
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thanks to features of DNG media. Assuming a slab of negative refractive index material,

these missing components can be recovered, if one condition is satisfied: n = −1. If this

condition holds even the evanescent waves have total transmission through the slab. Also it

can be shown in the electrostatic limit c0

(

k2
x + k2

z

)1/2 ≫ ω a slab of material with ǫr = −1,

can still act as a superlens for TM-polarized waves radiated from an object placed at dis-

tance d from a slab, which is 2d-thick (the image will be recovered at distance d behind the

slab) – see Fig. 3.19. Here we leverage this idea to create a 2D superlens using graphene

as we can achieve negative and positive effective permittivity for graphene by changing

density of local carriers (effective permittivity was introduced based on conductivity in

section 2.2). Although originally superlens idea was not introduced in a transformation

optical context, later, transformation optics was employed to interpret the perfect lensing

mechanism [56]. As such here we study this case as an example of TO.

To begin consider a similar geometry as in Fig. 3.19 within graphene—i.e., a one-atom-

thick strip of width 2d and a point source at distance d in front of the strip. The boundary

line between the strip and background is virtual; as usual the strip is not necessarily a dis-

integrated segment from rest of the graphene layer. The contrast in conductivity of the strip

and its background can be achieved by proper choice of biases, resulting in required con-

ductivity values. With proper adjustment of the width of the strip and separation between

the source and the strip, we can implement an approximate superlensing effect. Simulation

results for Ez of SPP surface waves are presented in Fig. 3.20, A and B (for f = 30 THz).

Panel A shows simulation result for only one point source (the black area in the curve on

right displays normalized magnitude of transverse electric field for the point object). As

can be seen the proposed superlens yields a shaper image at distance d = 10 nm behind the

lens – compare red (with superlens) with blue (without superlens). However the real test

is to check whether this lens can capture two features of the object that have separation of

less than wavelength. To test this we consider a second scenario presented in Fig. 3.20, B.
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Here two point sources are placed on the object line (which is 10 nm in front of the lens).

The separation between these two objects is s = 55 nm – at 30 THz the wavelength of

guided SPP waves is about 144 nm, so 55 nm is less than λSPP/2. It is worth mentioning
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Figure 3.20: Flatland “superlens”: Simulation results for Ez of SPP at f = 30 THz on the graphene

with a subwavelength strip region with conductivity σg,2 whose imaginary part is negative, while

the rest of graphene has the conductivity σg,1 with positive imaginary part. A The object–a point

source–and image lines are assumed to be, respectively, 10 nm away from the left and right edges

of the strip (w = 2d = 20 nm). The normalized intensity of Ez at the image line is shown for two

cases with and without the strip (Normalization is with respect to their respective peak values). The

subwavelength “focusing” is observable as the width of image with superlens is less than without

superlens. B Now two sources, distanced apart by 55 nm, are placed in front of the lens. Without

superlens the image is blurry and the subwavelength features cannot be distinguished, whereas

using superlens high spatial frequencies associated with feature sizes less than wavelength can be

recovered. Reprinted from Ref. 106 (by permission of the AAAS). [http://www.sciencemag.org/

content/332/6035/1291].

that the superlensing can be linked to the existence of edge waves at the two edges of the

strip (these edge waves were introduced earlier). The perfect transmission of the evanes-

cent waves might be due to the excitation of two SPP edge waves at the edges of the strip.

If two surface plasmons have similar energies, then they can couple efficiently, resulting

in a resonance in the system and near perfect transmission. Of course in presence of loss,

which is the case here, the transmission cannot be perfect. As such the intensity of light

http://www.sciencemag.org/content/332/6035/1291
http://www.sciencemag.org/content/332/6035/1291
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received on the image line is less than that of object.

The 2D superlens could serve as the basic building block for 2D hyperlens, finding ap-

plication in transforming deeply subwavelength “input’ field distributions to desired “out-

put” field distributions. This can be of use in optical signal processing and subwavelength

imaging within single layer of graphene. Following our work in Ref. 107, there have been

proposals for achieving hyperlens using graphene [6, 112].
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Chapter 4

Fourier Optics on Graphene

Optical signal processing systems are designed to collect, process and transmit spatial in-

formation. For example optical filters perform mathematical operations (e.g., removing

some unwanted signal components or enhance others) on spatial signals, just as do electric

filters on time signals [33, 34]. One of the basic, yet integral, optical elements used in opti-

cal signal processing is the conventional lens. This element provides a simple yet powerful

way for obtaining Fourier transform of spatial signals. Optical signal processing based on

conventional lenses is not new. However, constructing miniaturized optical systems for

processing information at rates higher than the current state-of-the-art call for more than

conventional optics, requiring novel ideas in this realm. Here we propose graphene as a

new platform for “one-atom-thick” optical signal processing. Our theoretical findings show

that by creating a specific pattern of conductivity within a sheet of graphene, one can take

spatial Fourier transform of optical signals propagating as SPP waves. There are two ad-

vantages in using graphene as far as dimension is concerned: first, by using graphene, one

can shrink the thickness of the optical system down to multiples of a carbon atom diameter

(∼ 0.34 nm); second, since the optical signals propagate along the graphene in the form
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of tightly-confined SPP surface waves with guided wavelength much shorter than the free-

space wavelength other two dimensions of the system are also substantially compressed to

deep subwavelength scales. These two features can facilitate realization of ultra-compact

optical systems. Additionally we previously mentioned that, at least in mid-IR region of

the spectrum, quality of SPPs in graphene might be better than in noble metals.

4.1 Lensing mechanism on graphene

The physical process underpinning operation of our proposed one-atom-thick lens is simply

borrowed from conventional optics; function of a conventional optical lens in transform-

ing light waves is replicated within graphene. When light is illuminated onto surface of

a conventional lens (e.g., when a plane wave is impinging on surface of the lens), far-

ther away from axis of the lens—which has higher refractive index compared with outside

medium—phase fronts experience smaller phase differences. The nonuniform phase differ-

ence distribution generates curved phase fronts at the output of the lens, coming into a focus

point. The same can be visualized for the SPP surface waves within graphene. Consider

the geometry depicted in the left panel of Fig. 4.1. This picture illustrates one of the pro-

posed methods to create nonuniform conductivity: using “uneven ground plane” to create

a lentil-shaped inhomogeneity in conductivity of a graphene sheet. In this method, highly

doped silicon substrate with uneven height profile may serve as the ground plane. Apply-

ing a fixed electric bias between the ground plane and graphene results in different values

of electric field at different segments of graphene due to differing distance between the flat

graphene and the uneven ground plane. This in turn may lead to an inhomogeneous carrier

density and consequently inhomogeneous chemical potential distribution, which produces

a nonuniform conductivity pattern across graphene layer. We note that to make numerical
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Figure 4.1: Left: Sketch of proposed one-atom-thick lensing system for optical Fourier trans-

forming; geometry consists of a free-standing layer of graphene with inhomogeneous conductivity

pattern across. Such inhomogeneity may be achieved by several techniques [106], e.g., by placing

a highly doped silicon substrate with uneven height profile as ground plane underneath graphene.

Left panel reproduced from Ref. 108 by permission of the American Physical Society. [http://prb.

aps.org/abstract/PRB/v85/i7/e075434]. Right: Sketch of a planar gradient index lens similar to the

one proposed in Ref. 116.

simulations simpler, we assume that the boundary line between the neighboring regions

with different conductivity values is “sharp”. In practice, the variation from one region

to another is not sharp; however, this will not affect validity of concepts introduced here.

Moreover, in practice the distance between the ground plane and graphene is filled with a

regular dielectric spacer, e.g. SiO2. Again for simplicity in our numerical simulations, we

assume that graphene is free standing and no spacer or ground plane is present.

In the following we show that this lentil-shaped region with different conductivity (and

therefore different equivalent SPP refractive index) acts as a one-atom-thick lens. The

shape of the inhomogeneity is similar to cross section of a conventional optical double-

convex lens, but given flexibility in tuning graphene conductivity, other shapes can be

considered as well. For example a planar gradient index lens can act similar to our proposed

lens [116] (Fig. 4.1, right panel).

Fourier transform of an object located at the front focal plane of a conventional double-

convex lens is formed at the back focal plane of the lens. Through numerical simulations,

http://prb.aps.org/abstract/PRB/v85/i7/e075434
http://prb.aps.org/abstract/PRB/v85/i7/e075434
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we show that the proposed inhomogeneity within graphene also obtains the Fourier trans-

form of objects located at its front focal line. To show this the following conditions must

hold:

(i) The lens must obtain the Fourier transform of a point-like object—which generates

circular phase fronts of the SPP on the graphene—placed at its front focal point as

linear phase fronts at exit

F {t(x) = δ(x)}
∣

∣

∣

∣

fx=
kx
2π

= 1 , (4.1)

where F and t(x) denote, respectively, the spatial Fourier transform and transmittance

of the object located at the front focal point, and fx and kx are spatial frequency and

wavenumber, respectively.

(ii) The lens must also obtain the Fourier transform of a uniform object—which generates

uniform linear phase fronts—placed at the front focal line, as circular phase fronts

converging at back focal point of the lens

F {t(x) = 1}
∣

∣

∣

∣

fx=
kx
2π

= δ(
kx

2π
) (4.2)

(iii) The lens output must stay invariant, except for a linear phase shift, with respect to

shift in the input in the transverse direction; in other words, moving the object along

the front focal line must result only in a linear phase variation in the spatial frequency

domain at the back focal line. That is

F {t(x) = δ(x − x0)}
∣

∣

∣

∣

fx=
kx
2π

= eikx x0 (4.3)

(iv) Finally the lens must yield the Fourier transform of an object with a uniform intensity

and a linear phase variation located at the front focal line as a converging circular

phase fronts to a point shifted along the back focal line

F {t(x) = eik0 x}
∣

∣

∣

∣

fx=
kx
2π

= δ(
kx

2π
− k0

2π
) (4.4)
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Verifying conditions above, we can assure that the inhomogeneity on the graphene can

indeed perform as a lens.

In line with our intuition, our numerical simulations demonstrate that the inhomogene-

ity indeed exhibits these properties, confirming that the one-atom-thick lens obtains the

Fourier transform of the object at its focal line—since everything here occurs on a mono-

layer, the 2-dimensional object plane of regular optics collapses to a line, hence the de-

scriptor focal “line” [108].

As usual in our simulations, the temperature and the frequency of operation are T =

3◦ K and f = 30 THz, respectively. We emphasize that we could choose any other

temperature—e.g., room temperature—in these simulations and still expect similar qual-

itative effects. The advantage of operating at T = 3◦ K, however, is that at this temper-

ature the amount of loss in graphene will be much less than the corresponding amount

at room temperature. We would like to maintain the chemical potential of the “back-

ground” graphene layer at µc = 150 meV, corresponding to complex conductivity σg,1 =

0.0009+ i0.07651 mS. As mentioned in section 2.2.1, for this conductivity, the guided TM

SPP has ℜ{βSPP,1} = 69.34k0 and ℑ{βSPP,1} = 0.71k0—equivalently effective SPP index is

nSPP = 69.34.

As a side note, to create a segment with desired shape and specific conductivity within

graphene, the chemical potential must be changed across that segment—for example to

create a region that acts as a double-convex one-atom-thick lens, a higher effective index

for the SPP surface waves is required. In order for the lens region to have an index larger

than the background graphene region (nSPP,1 < nSPP,2), the ground plane can be patterned

such that its distance to the graphene sheet underneath the lens segment (d2) is larger than

its distance to the graphene beneath the background region (d1). For example, creating a

chemical potential µc = 120 meV in the lens region, results in complex conductivity σg,2 =

0.0007 + i0.05271 mS. For this conductivity,ℜ(βSPP,1) = 100.61k0 and ℑ(βSPP,1) = 0.64k0
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Figure 4.2: Simulation results for Fourier transforming within graphene for the case of point source

illumination: A Top view of the snap shot in time of transverse component of the electric field of

guided SPP wave. The circular waves generated from the point source hit the one-atom-thick lens

and exit as an SPP “line” wave. B Phase pattern of this SPP wave: this picture demonstrates the

“point” to “line” Fourier transformation in A. C Top view of the snap shot in time of transverse

component of the electric field of the SPP wave for case A, where the point source is shifted along

the left focal line. D Phase pattern of the SPP wave in part C, showing how the shift in the position

of the point source in the left focal line results in the phase shift in the SPP line wave in the exit

at the right focal line. Reproduced from Ref. 108 by permission of the American Physical Society.

[http://prb.aps.org/abstract/PRB/v85/i7/e075434].

(equivalently nSPP = 100.61). The dimensions for geometries in simulations of Figs. 4.2

and 4.3 are as following: L= 13.3λSPP,1 ≈ 1.916 µm, Llens = 2.7λSPP,1 = 4λSPP,2 ≈ 386.8 nm,

and w = 10λSPP,1 ≈ 1.444 µm. Figure 4.2 shows the simulation results for the case in

which circular SPP waves generated from a point source, guided along the graphene and

impinging onto the double convex lens. Figure 4.2, A and B, demonstrates the snap shot in

time and distribution of the phase of the transverse component of the electric field across

http://prb.aps.org/abstract/PRB/v85/i7/e075434
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the graphene layer. These results clearly demonstrate that the output of the proposed lens

is almost a linear SPP wave at the exit of the lens. So the condition (i) is satisfied. By post

processing the simulation results, we estimate the focal length of the proposed lens to be

around f = 4λSPP,1 ≈ 580.2 nm. Figure 4.2, C and D, shows the snap shot in time and

phase patterns of the transverse component of the electric field for the case in which the

location of point source is shifted down 2λSPP,1 on the object line. It is clear that the effect

of shift appears as a linear phase shift in the spatial frequency domain—on the back focal

line. This confirms that condition (iii) holds.

Now we consider the scenario in which the lens is illuminated with a guided SPP sur-

face wave with a linear phase front (see Fig. 4.3). The lens transforms such SPP “line”

waves into converging circular SPP waves. Figure 4.3, A and B, displays the snap shot in

time and phase pattern of the transverse component of the electric field across the graphene

sheet. We can observe that at the output of lens, circular SPP waves converge at the focal

point of the lens. This is a verification of condition (ii). In Fig. 4.3, C and D, we present the

snap shot in time and distribution of the phase of the transverse component of the electric

field for the case of oblique incidence. The effect of shift appears as linear phase shift on

the image line as the focus moves along the back focal line, asserting that condition (iv)

mentioned above holds.

4.2 One-atom-thick 4f system

As an application for the lensing property, in the following we demonstrate a simple exam-

ple that is analog of an archetypal setup from conventional Fourier optics: a 4f system [34].

A 4f system consists of two identical lenses that are 2 f apart from each other. This element,

which is four focal lengths long, recovers a replica of an object, with even transmittance
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Figure 4.3: Simulation results for the same graphene lens, but for the incident guided SPP “line”

wave: A Top view of the snap shot in time of transverse component of the electric field of the guided

SPP line wave incident on the lens from left, forming an SPP circular wave converging into the focal

point on the right. B Phase pattern of this SPP wave in A. C Top view of the snap shot in time of

transverse component of the electric field of guided SPP “line” wave oblique incidence. D Phase

pattern of this guided SPP wave in C. This demonstrates the “line” to “point” Fourier transformation

and how the phase shift in the SPP line wave on the left can translate into the shift in the location

of the focal point on the right. Reproduced from Ref. 108 by permission of the American Physical

Society. [http://prb.aps.org/abstract/PRB/v85/i7/e075434].

http://prb.aps.org/abstract/PRB/v85/i7/e075434
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Figure 4.4: A 4f System on graphene: A Top view of the snap shot in time of transverse component

of the electric field for an SPP “line” wave incidence on the system from left. B Phase pattern of

this guided SPP wave propagating through the 4f system, clearly showing how this one-atom-thick

4f system transforms the SPP wave from “line” to “point”, and then to “line” again. Reproduced

from Ref. 108 by permission of the American Physical Society. [http://prb.aps.org/abstract/PRB/

v85/i7/e075434].

http://prb.aps.org/abstract/PRB/v85/i7/e075434
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function of space, placed at one focal length in front of the first lens, at one focal length

behind the second lens. This follows from familiar identity F {F {t(x)}} = t{−x}. The first

lens yields the Fourier transform of the object at its back focal line. In turn, the second lens

performs another Fourier transform, delivering a duplicate of the object. In Fig. 4.4, the

simulation results are presented for a one-atom-thick “4f optical system”. The first lens is

illuminated with SPP waves with linear phase front. As can be seen, the illuminated waves

are approximately recovered at the exit of the second lens.

The 4f system is of particular significance for optical signal processing purposes, since

it forms foundation of a “4f correlator”, which finds application in implementing the math-

ematical operations of cross-correlation and convolution [49, 110]. As such a 4f correlator

enables a wide variety of image processing operations such as spatial filtering of optical

signals [33, 34]. A 4f system is also the basis for functions such as matched filtering and

phase-only matched filtering, that are employed in pattern recognition.

In summary our theoretical findings indicate that graphene can be a low-loss platform

for Fourier optics functions. Due to tight confinement of the guided SPP wave to the

surface of graphene, the entire signal processing occurs effectively in an extremely thin

volume around the graphene. As a result, one can envision several parallel graphene sheets

closely packed (but far enough apart not to affect the conductivity dispersion of each single

sheet) to have parallel and independent optical signal processing. This unique platform

could open new vistas in nanoscale and photonic circuitry and massively parallel platforms

for high-speed information processing [108].
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Chapter 5

Conclusion

5.1 Summary

In this thesis we theoretically and numerically examined prospect of graphene, a mono-

layer of carbon atoms, as a new platform for one-atom-thick metamaterial and transfor-

mation optical devices. Owing to its unusual band structure, graphene exhibits properties

unlike that of any conventional material. Although graphene offers various exciting elec-

tronic features (which facilitates study of many condensed-matter physics concepts using

only a table-top experiment that may not have been possible otherwise), our interest in this

work was mainly focused on interaction of electromagnetic waves with this one-atom-thick

material and possible applications that could follow in optical and plasmonic design.

In chapter 2, we presented theoretical background underpinning the proposals in chap-

ters 3 and 4. In chapter 2 we first reviewed a theoretical model (Kubo formalism) for

graphene conductivity, which was used in our numerical simulations throughout this work.

As we mentioned, the results from this formula are in good agreement with experiments

by other groups, ensuring validity of physical concepts and discussions presented. The
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graphene conductivity is generally a complex quantity and accounts for loss and stored

energy in graphene (see the discussion in appendix A). This quantity depends on chemi-

cal potential (which is related to carrier concentration in graphene), temperature, frequency

and scattering rate (which represents loss). We also observed that the conductivity is related

to two transition mechanisms: interband and intraband. The intraband contribution takes

a familiar Drude form (free electron gas model) and is dominant below critical frequency

~ω = 2µc. Below this critical frequency losses are small, making frequencies lower than

this critical value favorable for design of mid-IR metamaterial devices based on graphene.

Since CO2 lasers are available in the range 28 THz to 32 THz, this range was chosen for

our studies. In this range of frequency, for temperatures around few Kelvins and for the

chemical potentials less than 300 meV losses are relatively small. For frequencies higher

than ~ω = 2µc, the interband contribution becomes significant and since interband transi-

tions are lossy, these frequencies may not be favorable for realization of optical devices.

Then we showed that depending on the sign of imaginary part of the conductivity graphene

can support TE and TM surface waves. If imaginary part of the conductivity is positive,

graphene can support TM surface plasmon polariton (SPP) surface waves, while TE waves

are suppressed. Conversely if the imaginary part of conductivity is negative, the TM modes

are not present and instead TE waves are supported. As we studied in detail, TM modes

are tightly confined to the surface of graphene, showing potential for small-scale circuitry

(in other words they have very large guided wave number βSPP,TM ≫ k0). However the TE

modes have wave numbers comparable with that of the free-space (βSPP,TE ∼ k0), making

them less attractive since they cannot be exploited in miniaturized circuits.

In chapter 3, we provided various examples and case studies, suggesting that graphene

can indeed be a superb platform for low-dimensional plasmonic metamaterial structures

and transformation optical devices. We showed that by creating inhomogeneous patterns

across graphene, we can reflect and refract TM SPP surface waves to direct these waves
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in desired forms. For example, we offered scenarios in which graphene could be used to

build waveguides or beam-splitters by simply varying conductivity nonuniformly across

the graphene layer. Several types of waveguides were proposed: a 2D variant of a metal-

insulator-metal waveguide, a 2D variant of a optical fiber waveguide and one-atom thick

waveguides based on coupling of edge modes. In general two different types of modes

could be identified. One set of modes are concentrated in the middle of the graphene,

while the other category, the so-called “edge modes”, are concentrated around the edges.

The edge modes happen to have smaller guided wavelength compared with the middle

region modes. Following the waveguiding scenarios presented, resonant cavities based on

graphene were studied. It was shown that using a 2D circular cavity one may achieve

Purcell factors as high as 107 (depending on the distance of the emitter from the cavity),

suggesting that graphene might also be an excellent medium for enhanced light-matter

interaction. It was noted that this high Purcell factor is largely due to the very small mode

volume of the cavity rather than very large quality factor of the cavity. Then we looked at

a category of devices based on graphene inspired by conventional mirrors in classic optics.

It was argued that a segment within graphene with negative imaginary part of conductivity

may act as a mirror for SPP waves. Modified version of conventional image theory was

exploited to describe reflection from such region of conductivity. Additionally, we showed

that the function of mirror might as well be mimicked by a region of conductivity whose

imaginary part is positive but large enough to enable total internal reflection of the TM

waves. Mirror is a fundamental element in classic optics and several devices are built

upon concept of mirror. Similar devices for SPP surface waves can be envisioned based on

graphene, although more compact thanks to atomically thin graphene.

Finally in chapter 4, we introduced the concept of one-atom-thick Fourier optics using

graphene. It was illustrated that by creating a region with different effective SPP index

(defined as
βSPP

k0
) that is shaped similar to cross section of a 3D lens, it is possible to achieve



CHAPTER 5. CONCLUSION 121

Fourier transforming functions on a single layer of graphene. As it is well known, an optical

lens is the building block of optical signal processing systems. This elements is the basis of

systems for filtering spatial signals. Our findings can pave the way for realizing high-speed

low-dimensional signal processing elements using graphene. In such paradigm, one may

envision stacks of graphene layers spaced by dielectric layers – that are only hundreds of

nanometer thick – to form a compact optical information processing system that is orders

of magnitude smaller than the current state-of-the-art.

5.2 Future directions

The field of graphene metamaterials and transformation optics is in its infancy. In this

thesis we talked about several examples of graphene-based metamaterials, however many

of these ideas might still be far from implementation and need further detailed studies.

Moreover, there are just various directions to pursue on the topics we introduced in this

thesis; it is indeed impossible to summarize all of these directions here, but we refer to a

subset of them that could be followed in the future.

• Mid-infrared circuits using graphene: Interestingly, our first excitement about

graphene was whether it can serve as a new platform for optical nano-circuits in-

troduced in Refs. 23 and 25. Although we have had some progresses in this terri-

tory (see appendix D for some primary results), this idea is worth investigating and

developing further, as it can lead to a new class of circuits that are fast, light and

ultra-small.

• Fourier optics using graphene: As discussed in chapter 4, graphene is an excellent

host for Fourier optics. Although we have laid out the basics and showed thw possi-

bility of Fourier optics functions on graphene, the idea is worth pursuing for further
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studies. Expanding ideas in chapter 4, one can achieve larger-scale information pro-

cessing systems in mid-IR domain that are much faster than the current available

systems.

• Efficient coupling of a plane wave to graphene SPPs: As pointed out in sec-

tion 2.2.7, it is of great significance to couple power efficiently to graphene SPPs.

Our studies showed that the common techniques in conventional plasmonics are not

effective for coupling light with SPP modes (the coupling efficiencies are below 1%).

However by proper design of layered nanostructure (such as a plasmonic-dielectric-

plasmonic layered nanosphere), one might be able to largely increase the coupling

efficiency. This could be subject of further investigation and studies.

• Inverse scattering problem on graphene and applications for tomography: An-

other interesting problem is the study of inverse scattering of SPP from inhomo-

geneities within graphene. In other words whether it would be possible to retrieve

the conductivity of an inhomogeneity by detecting the scattered SPP field due to

that entity. This problem particularly is of interest in tomography applications using

graphene (see Fig. 5.1). Tomography using graphene can become a powerful tech-

nique in imaging non-flat objects (consider an object with uneven height profile) for

which direct imaging is not an option, since it may cause damages to the object under

study. Additionally this technique is capable of detecting subwavelength features of

non-flat objects.

5.3 Final Thoughts

Graphene is indeed intriguing; aside from its 2-dimensionality and low losses in mid-IR,

one feature that makes it particularly favorable, is its tunability and the design flexibility
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Figure 5.1: Left panel shows a future idea about how graphene may be used to recover the height

profile of an unknown bump. On the right panel the steps required to retrieve the profile are illus-

trated.

it offers. Since graphene’s first isolation, prospects for graphene electronics have been

extensively studied by condensed matter physicist and engineers. This work and several

others suggest that graphene is also an excellent candidate for plasmonics and photonics.

Graphene can be the base material for a new generation of circuits that integrate electronics,

photonics and plasmonics functionalities.



Appendices

124



125

Appendix A

Analogy between Graphene Complex

Conductivity and a Parallel RLC Circuit

Here we briefly point out an analogy between graphene complex conductivity model and

a parallel RLC circuit (see Fig. A.1). As we know the total admittance of a parallel RLC

circuit is written as

Y =
1

−iωL
− iωC +G

= G + i

(

ωL − 1

ωC

)

= G + iB (A.1)

where Y , G and B respectively denote admittance, conductance ( 1
R

) and suceptance. Comparing

this equation with conductivity of graphene σ = σr + iσi, we can draw a simple analogy:

the real part of conductivity represent loss of graphene (similar to conductance of the RLC

circuit), while the imaginary part of conductivity relates to the stored energy in graphene

(as C and L store energy in different cycles and causing the reactive behavior of the circuit).

As a result we might interpret the collective reactive response of the electrons in graphene

based on the sign of imaginary part of conductivity. As we have discussed in the main text,
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L RC

Figure A.1: Analogy between parallel RLC circuit and complex conductivity of graphene.

graphene can attain both positive and negative values of imaginary part. However other

conventional 2-dimensional electron gas (2DEG) systems, e.g. GaAs/AlGaAs quantum-

well structures, conductivity can only have positive values. We have seen that graphene,

due to this feature, can support TE SPP waves, whereas other 2D electron systems do

not [67].
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Appendix B

Methods for Numerical Simulations

As each simulation required a different treatment and special care, elaborating on subtle

details of all simulations in this work is not in the scope of this thesis and probably not in

the interest of the readers. As such below we provide the general method of simulations.

We have used commercially available full-wave electromagnetic simulator software,

CST Studio Suite™ to perform our numerical simulations [1]. For the purpose of 3D sim-

ulations, the thickness of graphene is assumed to be 1 nm, although other extremely small

values for this thickness obtain similar results. This technique is based on the derivation

of dispersion relation in chapter 2. We assumed 1 nm thickness for graphene and as-

signed the corresponding permittivity in our simulations according to the derivation shown

in section 2.2. As long as the thickness chosen is extremely small compared to the wave-

length, the choice of thickness is not essential—for example assume thickness of 0.5 nm

for graphene and finding the corresponding permittivity value, yields almost exactly the

same simulation results.

Due to the large contrast in the dimensions of the graphene layer, i.e., contrast between

thickness and width and between thickness and length, and due to the special form of
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the conductivity function of graphene, time-domain method is not appropriate (it usually

required a very long run-time and sometimes led to instability) and we chose frequency-

domain Finite Element Method (FEM) solver in the CST Studio Suite. This solver solves

the problem for a single frequency at a time. For each frequency sample, the system of lin-

ear equation is solved by an iterative solver. Adaptive tetrahedral meshing with a minimum

feature resolution of 0.5 nm was used in all simulations. A discrete port (a point source

which is equivalent of an infinitesimal dipole antenna) or waveguide ports were utilized for

the excitation of surface-Plasmon polariton (SPP) wave in the structures. All the simula-

tions reached proper convergence; a residual energy of 10−5 of the peak value was reached

in the computation region.

To absorb all the energy at the ends of the computational domain and to have approx-

imately zero-reflection boundary on the receiving sides, in all the simulations a technique

similar to the well known Salisbury Shield method [29] was implemented (with proper

modifications for a TM SPP mode).

Depending on the nature of the problem, perfect magnetic conducting (PMC), perfect

electric conducting (PEC) or open boundary conditions were applied to different bound-

aries, to mimic the two-dimensionality of the geometry.
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Appendix C

Universal Plasmon Dispersion for

Graphene Nanoribbon Waveguides

Christensen et. al [16] propose an interesting methodology to find a universal dispersion re-

lation for graphene nanoribbons’ plasmon modes. In their study they argue that the plasmon

modes are of electrostatic nature (due to relatively small size of the waveguide compared

with the wavelength of light). As such the modes can be treated as 2D multi-poles. Elec-

trostatic is scale-invariant thus the wavelength does not define an absolute length scale. As

such the resonances of the nanoribbon system are determined only based on the geometry

and optical properties of graphene. By neglecting losses, denoting the width of nanoribbon

by W, for each mode, one can define scaling parameter

ζ =
1

4πǫ0

ℑ{σ(ω)}
ωW

, (C.1)

which at resonance peak frequency is independent of W, µc and other physical parame-

ters, and only depends on dimensionless quantity β∞W. Then for each mode analytical

curves can be extracted (through curve-fitting) for the relation between ζ and β∞W. Such

analytical relations with Eq. C.1 can be used to determine the dispersion relation or cutoff

condition for SPP modes of graphene. From Eq. C.1 we can also find the width at which



APPENDIX C. DISPERSION OF GRAPHENE NANORIBBONS 130

the cutoff occurs

W =
λSPP

4π2ζ
, (C.2)

which is different from the familiar condition λSPP for a classical rectangular waveguide.

For a detailed discussion of this topic please see [16].
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Appendix D

Mid-Infrared nano-circuits using

Graphene

The concept of optical nanocircuits using subwavelength plasmonic and conventional di-

electric nanoparticles was first proposed by our group in 2005 [25]. Depending on the

real part of its permittivity, a nanoparticle can mimic behavior of lumped elements such

as inductor and capacitor; a plasmonic nanoparticle whose imaginary part of permittivity

is negative can act as an inductor while nanoparticles made up of conventional dielectric

(ℜ{ǫ} > 0) may behave as a capacitor. Additionally any particle with non-zero imaginary

part of permittivity can act as a resistor. Field of metamaterial can assist us in realizing

desired material properties for these nanoparticles.

Here we propose graphene as a platform for integrated optical nanocircuits. As we

have seen throughout this thesis, graphene conductivity can be tuned locally using chem-

ical doping or/and dc electric bias. Also in section 2.2, we introduced an equivalent per-

mittivity based on graphene conductivity. Then we showed that the real part of such equiv-

alent permittivity is linked to the negative of the imaginary part of graphene conductivity



APPENDIX D. GRAPHENE NANO-CIRCTUITS 132

V V

A B

Figure D.1: Optical nanocircuits using graphene: A Graphene patches with different conductivity

values acting as lumped circuit elements (inductors, capacitors and resistors). B Graphene stereo-

circuit: depending on the direction of applied current different response can be obtained from the

circuit.

(ℜ{ǫg,eq} ∝ ℑ{σg} – see Eq. 2.18a). As such one can hypothesize that a subwavelength∗

graphene patch, whose imaginary part of conductivity is negative (positive) might act as a

capacitor (inductor). Also since ℑ{ǫg,eq} ∝ ℜ{σg}, a graphene patch with non-zero real part

of conductivity can also exhibit a resistive behavior. However it is possible to have these

patches within one single layer—a single layer’s conductivity can be tuned locally so that

different locations (patches) possess different values of conductivity (and different signs)

(see Fig. D.1, A).

In addition the notion of “stereo-circuitry” might be realized using a graphene layer,

meaning that depending on the direction of current applied to the circuit, a different re-

sponse can be expected (Fig. D.1, A versus B).

The concept of graphene optical nanocircuit is yet to be explored further, but here we

present some primary results that show prospect for this type of circuitry. We carry out our

simulations for frequencies around 14 THz (13−15 THz). Since here we are only interested

in showing the concepts, the particular choice of frequency is not of significance.

Consider the geometry illustrated in Fig. D.1. The middle region is a graphene patch

with positive imaginary part of conductivity, while the two outer regions next to the middle

∗SPP wavelength
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Figure D.2: A series graphene nano-circuit: A The geometry of a series graphene nanocircuit; as

shown in the bottom part the middle region behaves as an inductor while the two outer regions

to the middle region act as capacitors; the material losses of each segment is described as resistor

ℜ{σg} , 0 (also a snapshot in time of the electric field vector is shown, indicating that the electric

field direction flips upon entering from one patch to another). B illustrates the circuit model of the

same geometry, however effect of fringe electric field are described as capacitance in parallel with

the original elements.

region have negative imaginary part of conductivity. The length of the middle region and

outer regions are, respectively, 69.2 nm and 15.4 nm—overall length of circuit is 100 nm,

which is much less than the SPP wavelength at 14 THz (∼ 775 nm), so the circuit can be

deemed as a lumped circuit. This circuit can be fed by two electrodes that are sketched

schematically in the figure (note that the structure is 2-dimensional in the lateral direction).

This geometry can be regarded as a series combination of two capacitors and one in-

ductor each shunt with a resistor as shown in Fig. D.1, A. Also Fig. D.1, B, shows a more

sophisticated circuit model for the geometry, describing the effect of fringe electric fields

by use of capacitors in parallel with each element.
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The total impedance of the circuit is defined as following

Z =
V

I
= −

∫

l
E · dl

∮

S
ǫE · ds

, (D.1)

in which l is a line through the circuit and S is a mathematical surface cutting cross section

of the circuit †. The electric field can be obtained from full-wave numerical simulations.

Using the results obtained from simulations, we can find the total impedance of the circuit

as a function of frequency (as shown in Fig. D.3). However to verify validity of the equiv-

alent circuit proposed, we have to evaluate the capacitance, inductance and resistance of

each lumped element of the equivalent circuit and examine whether the circuit combination

proposed yields a similar impedance as the simulations. The admittance of these segments

can be obtained using following expressions

YC =
σg,C

W
lC − iωCf,C, YL =

σg,L

W
lL − iωCf,L, (D.2)

where σg,C and σg,L denote the complex conductivity of the capacitive and inductive seg-

ments and W is the width of the circuit (w = 35 nm). The total impedance then is

Z =
2

YC

+
1

YL

. (D.3)

In Eq. D.2, Cf,L and Cf,C are equivalent fringe capacitances that capture the effect of the

electric field fringe. To compute these fringe capacitances, we assumed that the fringe

fields can be associated to two cylindrical wires at two ends of each segment with diameter

D equal to the thickness of graphene (t). Based on this idea and the fact that the capacitance

of a two-wire transmission line follows the form

C f = πǫ0
W

cosh−1
(

l
D

) , (D.4)

†This mathematical surface crosses the middle of that graphene sheet and is extended such that the fringe

field lines cross this surface
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Figure D.3: Series graphene circuit impedance based on numerical simulations and circuit theory.

we can compute the fringe capacitance parallel with each segment. Figure D.3 also shows

the impedance of the circuit based on the proposed circuit model (with and without the

fringe capacitances). As clearly can be seen the impedance based on the circuit model (with

fringe capacitances) mimics very closely the impedance obtained from the simulations

(using Eq. D.1).

In summary here we show-cased a graphene-based series circuit, which can be analyzed

using conventional circuit theory. Although this study is in its early stage, it may herald a

potential for integrated optical nanocircuits, thanks to tunability of graphene conductivity.
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Appendix E

Matlab Code for Calculation of Complex

Conductivity of Graphene

This is a piece of code written in Matlab that we used to calculate the complex conductivity

of graphene using Kubo Formula.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %

% Calculation of Conductivity of Graphene using Kubo Formula %

% Author: Ashkan Vakil %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clc

clear;

j = sqrt(−1);
e = 1.6e−19;
K B = 1.3806503e−23;
T = 3;

hb = (6.626e−34)/(2*pi);
% tau = 3e−12; % form GW Hanson paper

% tau = .64e−12; % Soljacic paper

% gamma = 1/(2*tau);

gamma = 0.65460252158e12; % Gusynin J. Phys.: Cond. Mat.

sigma min = 6.085e−5;
vf = 10ˆ6;

w = pi*2e12*linspace(5,400,200); % CO2 lasers are this range
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m = length(w);

mu c = 1.6e−19*[.15];
n = length(mu c);

mu ct = repmat(mu c,m,1); % generating the matrix for chemical potential

wt = repmat(transpose(w),1,n); % generating the matrix forfrequency

sigma d intra = ...

−j*((eˆ2*K B*T)./(pi*hbˆ2*(wt−j*2*gamma))).*((mu ct)/(K B*T)...

+2*log(exp(−mu ct/(K B*T))+1)); %intraband term

sigma d inter = zeros(m,n); % interband term variable definition

eps = 1.6e−19*linspace(0,10,600000);
q = length(eps);

% Interband term calculations

for i = 1:n

muc = mu c(i);

f d meps = 1./(1+exp((−eps−muc)/(K B*T)));

f d peps = 1./(1+exp((eps−muc)/(K B*T)));

for k = 1:m

sigma d inter(k,i) = ...

trapz(eps,−(j*eˆ2*(w(k)−j*2*gamma)/(pi*hbˆ2))...
*(f d meps−f d peps)./((w(k)−j*2*gamma)ˆ2−4*(eps/hb).ˆ2));

end

end

sigma tot = sigma d inter+sigma d intra; % total conductivity

C = {'k','r','b','c','g','m','y'};
p1 = zeros(1,n);

pp1 = zeros(1,n);

s1 = cell(1, n);

p2 = zeros(1,n);

pp2 = zeros(1,n);

s2 = cell(1, n);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure(1)

subplot(2,1,1)

for i = 1:n

hold on

p1(i) = ...

plot(1e−12*w/2/pi,(transpose(real((sigma d inter(:,i)))))/...

(eˆ2/hb/4),'Color', C{i},'Linewidth',2);hold on

pp1(i) = ...

plot(1e−12*w/2/pi,(transpose(real((sigma d intra(:,i)))))/...

(eˆ2/hb/4),'Color', ...

C{i},'Linewidth',2,'Linestyle','−.');hold on

s1{i} = sprintf('mu {c,%d} = %d meV',i,1e3*mu c(i)/(1.6e−19));
end
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ind = 1:n;

% axis square

box on

xlabel('f (THZ)','fontsize',20,'fontweight','b');

ylabel('Re(\sigma)','fontsize',20,'fontweight','b');
legend(p1(ind), s1{ind});

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%figure(2)

subplot(2,1,2)

hold on

for i = 1:n

hold on

p2(i) = ...

plot(1e−12*w/2/pi,−(transpose(imag((sigma d inter(:,i)))))/...

(eˆ2/hb/4),'Color', C{i},'Linewidth',2);hold on

pp2(i) = ...

plot(1e−12*w/2/pi,−(transpose(imag((sigma d intra(:,i)))))/...

(eˆ2/hb/4),'Color', ...

C{i},'Linewidth',2,'Linestyle','−.');hold on

s2{i} = sprintf('mu {c,%d} = %d meV',i,1e3*mu c(i)/(1.6e−19));
end

% axis square

box on

xlabel('f (THZ)','fontsize',20,'fontweight','b');

ylabel('Im(\sigma)','fontsize',20,'fontweight','b');
% legend(p2(ind), s2{ind});
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[4] A. Alú and N. Engheta. Three-dimensional nanotransmission lines at optical fre-

quencies: A recipe for broadband negative-refraction optical metamaterials. Physi-

cal Review B, 75(0243304), 2007.

[5] D. R. Anderson. Graphene-based long-wave infrared tm surface plasmon modulator.

Journal of Optical Society of America B, 27(818), 2010.

[6] A. Andryieuski and A. V. Lavrinenko. Graphene hyperlens for terahertz radiation.

Physical Review B, 86(121108), 2012.

[7] C. A. Balanis. Advanced Engineering Electromagnetics. John Wiley & Sons, New

York, 1989.

139

http://www.cst.com/


BIBLIOGRAPHY 140

[8] Q. Bao and K. P. Loh. Graphene photonics, plasmonics, and broadband optoelec-

tronic devices. ACS Nano, 6(5):3677–3694, 2012.

[9] Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P.

Loh. Broadband graphene polarizer. Nature Photonics, 5:411–415, 2011.

[10] W. L. Barnes, A. Dereux, and T. W. Ebbesen. Surface plasmon subwavelength

optics. Nature, 424(824), 2003.

[11] M. L. Brongersma, J. W. Hartman, and H. A. Atwater. Electromagnetic energy trans-

fer and switching in nanoparticle chain arrays below the diffraction limit. Physical

Review B, 62(24), 2000.

[12] W. Cai and V. Shalaev. Optical Metamaterials: Fundamentals and Applications.

Springer, New York, 2010.

[13] V. V. Cheianov, V. Falko, and B. L. Altshuler. The focusing of electron flow and a

veselago lens in graphene p-n junctions. Science, 315(1252), 2007.
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