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ABSTRACT 
This paper explores the use of software transformations as a 
formal foundation for software evolution. More precisely, we 
express software transformations in terms of assertions 
(preconditions, postconditions and invariants) on top of the 
formalism of graph rewriting. This allows us to tackle scalability 
issues in a straightforward way. Useful applications include: 
detecting syntactic merge conflicts, removing redundancy in a 
transformation sequence, factoring out common subsequences, 
etc. 

1. INTRODUCTION 
Software evolution is one of the most important problems in 
software engineering, because of its inherent complexity and 
because of the lack of a solid formal foundation. In an attempt to 
provide such a foundation, this paper elaborates on the paradigm 
of transformational software evolution. In this paradigm, 
evolution is achieved by means of explicit software 
transformations that can be manipulated directly. This gives rise 
to a wide range of interesting ways to improve support for 
evolution. 

One area of interest lies in support for merging parallel evolutions 
of the same software [3, 9]. Software merging is needed when 
separate lines of software development are carried out in parallel 
and have to be merged at regular intervals. Because this is a 
complex time-consuming process, automated support tools are 
essential. Unfortunately, most existing merge tools either lack 
flexibility or expressive power. To counter this problem, we need 
to establish the formal foundations of software merging first. For 
this purpose, graph rewriting appears to be a promising 
lightweight formalism [11]. 

Software transformations are also useful to provide support for 
refactoring application frameworks in a behaviour-preserving 
way. Refactorings improve the design or structure of object-
oriented frameworks, making them more robust towards evolution 
[13, 14, 16]. 

For merging as well as refactoring, there is a need to express 
evolution transformations in a scalable way. Indeed, in practice, 
the software that is being developed as well as the software 
transformations that are applied to it can be quite large. 

A promising formal approach which has not yet been thoroughly 
explored is the use of assertions for expressing software 
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transformations. In [16], pre- and postconditions were used to 
express refactoring transformations. In [11], pre- and 
postconditions were attached to software transformations to detect 
merge conflicts. This paper performs a more thorough 
investigation, and shows how assertions allow us to express 
software transformations in a uniform and scalable way. 

2. CONDITIONAL GRAPH REWRITING 
We represent software artifacts (whether it be analysis, 
architecture, design or implementation artifacts) in a uniform way 
as graphs [10]. This enables us to use the powerful formalism of 
conditional graph rewriting [4, 5, 6, 11] for representing 
evolution transformations. 

2.1 Graphs and Graph Rewriting 
Graphs provide a simple yet expressive formalism for 
representing software. Nodes in a graph can represent any kind of 
software entity (classes, modules, objects, methods, variables, 
statements, etc...), while edges express dependencies between 
these entities (data-flow, control-flow, containment relationships, 
etc...). Each node and edge has a label and a type attached to it.  

Definition. Let NodeID be the set of node identifiers, EdgeID the 
set of edge identifiers, Label the set of node and edge labels, and 
Type the set of node and edge types. A graph G is a tuple (V, E, 
source, target, label, type) consisting of a node set V ⊆  NodeID 
and an edge set E ⊆  EdgeID with V∩E = ∅ ; functions 
source: EÆV and target: EÆV; and functions label: V∪ EÆLabel 
and type: V∪ EÆType. 

For example, in graph R depicted in Figure 1, V={a,c}, E={f}, 
label(a)=area, type(a)=operation, label(f)=uses, type(f)=uses, 
source(f)=a and target(f)=c. We distinguish types from labels by 
writing types in boldface.  

Since graphs represent software artifacts, evolution of these 
artifacts can be expressed by graph rewriting. Because we will 
manipulate graph rewritings explicitly, they should be decoupled 
from the actual graphs to which they are being applied. This is 
achieved by introducing the notion of a graph production 
P: LÆR that transforms a source graph L into a target graph R. In 
order to apply this production to an initial graph G, a match 
m: LÆG is needed to specify which part of the initial graph G is 
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being transformed. Together, P and m uniquely define a graph 
rewriting G ⇒ P,m H. This graph rewriting also induces a co-match 
m*: RÆH that specifies the embedding of R in the result graph H. 

As an example, consider the graph rewriting of Figure 1. The 
match m: LÆG  maps node a of L on node 2 of G. The co-match 
m*: RÆH additionally maps node c of R on node 3 of H, and 
edge f of R on edge f of H. 
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Figure 1: An example of a graph rewriting 

2.2 Assertions 
Assertions are well established in the software community as a 
formal way to specify the behaviour of programs [7, 12]. Three 
kinds of assertions are distinguised. Preconditions must be 
satisfied for a certain operation to be applicable. Postconditions 
are guaranteed to be true after the operation has been applied. 
Invariants are assumptions that remain unaltered by the operation. 

Another distinction is made between positive assertions, that 
indicate the presence of a certain property, and negative assertions 
that indicate its absence. Table 1 presents the positive assertions 
that can be expressed in our graph formalism, together with the 
notation used throughout this paper. Negative assertions are 
precisely the opposite: they express the absence of some entity in 
a graph, and are denoted by a minus sign. E.g., –source(E,N) 
expresses that edge E does not have node N as its source.  

Table 1: Positive assertions 

Positive assertion Notation 

A node or edge with identifier Id should be 
present 

+Id 

Edge E should have node N as its source +source(E,N) 

Edge E should have node N as its target +target(E,N) 

A node or edge Id should have label L +label(Id,L) 

A node or edge Id should have type T +type(Id,T) 

We also want to express more general constraints like: "node N 
does not have any outgoing edges" or "node N is the target of at 
least one edge". The former constraint is expressed as -
source(*,N), and the latter as +target(*,N). All positive wildcard 
assertions used in this paper are enumerated in Table 2. Negative 
wildcard assertions are merely the negation of their positive 
equivalents. For example, -source(*,N) is the negation of 
∃  E ∈  EdgeID: source(E) = N, i.e., ∀  E ∈  EdgeID: source(E) ≠ N 

Table 2: Positive wildcard assertions 

Positive assertion Notation 

∃  E ∈  EdgeID: source(E) = N +source(*,N) 

∃  E ∈  EdgeID: target(E) = N +target(*,N) 

∃  N ∈  NodeID: source(E) = N +source(E,*) 

∃  N ∈  NodeID: target(E) = N +target(E,*) 

∃  L ∈  Label: label(Id) = L +label(Id,*) 

∃  T ∈  Type: type(Id) = T +type(Id,*) 

Some assertions automatically imply other assertions. For 
example, the absence of a node implies the absence of any label or 
type for this node, as well as the absence of any incoming or 
outgoing edges for this node. These implicit assertions are called 
derived assertions and are mentioned in Table 3. Whenever we 
specify a set of assertions S, we assume that all derived assertions 
are also included in this set, even if they are not specified 
explicitly. 

Table 3: Derived assertions 

Assertion Derived Assertions 

-N -label(N,*), -type(N,*), -source(*,N), -
target(*,N) 

-E -label(E,*), -type(E,*), 
-source(E,*), -target(E,*) 

+source(E,N) +E, +N 

+target(E,N) +E, +N 

+label(Id,L) +Id 

+type(Id,T) +Id 

2.3 Conditional Graph Productions 
The main distinction between our approach and the “common” 
use of assertions [7, 12, 15] is that we do not use assertions to 
attach behavioural constraints to programs. Instead, we use 
assertions to represent evolution transformations (as in [11, 16]). 
In other words, we attach assertions to graph productions rather 
than to graphs themselves. 

Each assertion can be used either as precondition, postcondition 
or invariant of a graph production P. The sets of all these 
assertions are denoted by Pre(P), Post(P) and Inv(P) respectively. 
We also use the shorthand notations Before(P) = Pre(P) ∪  Inv(P) 
and After(P) = Post(P) ∪  Inv(P). 

Given a graph rewriting G ⇒ P,m H, one can easily write an 
algorithm that calculates the minimal set of assertions that 
determines the production P. For example, in Figure 1 we can 
identify the following minimal assertions: 

Pre(P) = {-c, -f, +label(a,surface), +type(a,attribute)} 

Inv(P) = {+a, -source(*,c)} 

Post(P) = {+label(a,area), +type(a,operation), +c, 
+label(c,radius), +type(c,attribute), +f, +source(f,a), 
+target(f,c), +label(f,uses), +type(f,uses)} 

If necessary, extra assertions can be added to these sets in order to 
restrict the applicability of production P to a smaller set of initial 
graphs. For example, if we would impose the extra invariant -



target(*,a), P would not be applicable anymore to the graph G of 
Figure 1. 

Following the notation of Perry [15], the assertions for production 
P are depicted as ellipses in Figure 2, while P is represented as a 
grey rectangle. Preconditions appear on the upper horizontal side 
of the rectangle, postconditions on the lower horizontal side, and 
invariants on the vertical sides. For positive assertions, the + sign 
is omitted in the figures. When they are needed, derived assertions 
are depicted by dashed ellipses. Finally, we abbreviated the last 
five postconditions of P to (f,a,c,uses,uses). 
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Figure 2: Graphical notation of a conditional production 

[11] expressed every possible graph transformation in terms of a 
number of primitive productions that are sufficient to express any 
kind of change to a graph. For example, AddEdge(f,a,c,uses,uses) 
adds an edge f from a to c with label uses and type uses. Table 5 
shows all primitive productions and their corresponding 
assertions.3 

Table 5: Primitive graph productions 

Graph 
Production 

Pre Inv Post 

AddNode 
(N,L,T) 

-N -source(*,N) 
-target(*,N) 

+N 
+label(N,L) 
+type(N,T) 

AddEdge 
(E,Ns,Nt,L,T) 

-E +Ns 
+Nt 

+E 
+label(E,L) 
+type(E,T) 
+source(E,Ns) 
+target(E,Nt) 

DropNode 
(N) 

+N -source(*,N) 
-target(*,N) 

-N 

DropEdge 
(E,Ns,Nt) 

+E 
+source(E,Ns) 
+target(E,Nt) 

+Ns 
+Nt 

-E 

Relabel 
(Id,L1,L2) 

+label(Id,L1) +Id +label(Id,L2) 

Retype 
(Id,T1,T2) 

+type(Id,T1) +Id +type(Id,T2) 

3. PRODUCTION SEQUENCES 

3.1 Well-formedness 
A production sequence is a sequence of graph productions that 
can be applied successively. It is well-formed if the assertions 
imposed by a production in the sequence do not contradict 
assertions imposed by earlier productions. 

Definition. A production sequence P1; P2; ..; Pn is well-formed if 
∀  Ak ∈  Before(Pk) with k ∈  {2..n}: if (∃  Ai ∈  After(Pi) with i<k 
such that Ai contradicts Ak) then (∃  Aj ∈  After(Pj) with i<j<k such 
that Aj = Ak). Otherwise, the production sequence is ill-formed. 

Table 6 mentions all possible contradicting assertions. For 
example, the sequence P1; P2 = AddNode(a,surface,attribute); 

AddNode(a,area,attribute) is ill-formed because +a ∈  After(P1) 
contradicts -a ∈  Before(P2). The sequence P1; P2; P3 = 
AddNode(a,l1,t1); RelabelN(a,l1,l2); RelabelN(a,l2,l3) is well-
formed because the contradiction between +label(a,l1) ∈  After(P1) 
and +label(a,l2) ∈  Before(P3) is absorbed by +label(a,l2) ∈  
After(P2). 

Table 6: Contradicting assertions 

Assertion Contradicts where 

+A -A +A is some arbitrary 
positive assertion 

+source(E,N1) +source(E,N2) N1 ≠ N2 

+target(E,N1) +target(E,N2) N1 ≠ N2 

+label(Id,L1) +label(Id,L2) L1 ≠ L2 

+type(Id,T1) +type(Id,T2) T1 ≠ T2 

3.2 Detecting Syntactic Merge Conflicts 
Ill-formed production sequences can be used to detect syntactic 
merge conflicts. These typically occur when different software 
developers are making changes to the same software in parallel, 
and these changes need to be merged. 

Using the formalism of conditional graph rewriting, software 
merging can be formalised [11] by the notion of parallel 
independence [5]. Intuitively, two graph rewritings are parallel 
independent if they can be sequentialised in any order without 
changing the end result.  Unfortunately, this definition does not 
specify what to do when two graph rewritings cannot be merged 
(read: sequentialised). If this is the case, we say that they give rise 
to a syntactic conflict. For example, suppose that graph G 
contains a node, and production P1 removes this node while P2 
independently adds an edge originating from this node. This 
yields a syntactic conflict since trying to merge both parallel 
evolutions would lead to an edge without a source. 

Definition. Two graph rewritings G ⇒ P1,m1 H1 and G ⇒ P2,m2 H2 
lead to a syntactic conflict if the production sequence P1; P2 (or 
P2; P1) is ill-formed. 

By comparing the different kinds of assertions that hold for P1 and 
P2, we can easily determine when a syntactic conflict occurs. It 
suffices to find a contradicting assertion between After(P1) and 
Before(P2), using Table 6. For example, for the primitive 
productions of Table 5 we identify the following syntactic 
conflicts: 

• Prohibited node removal if -v ∈  After(P1) and +v ∈  
Before(P2). This is for example the case if P1 = DropNode(v) 
and P2 = AddEdge(e,v,w,l,t). One cannot add an edge with a 
certain source node if this node has been removed before. 
Prohibited edge removal is defined similarly.  

• Dangling source if +source(e,v) ∈  After(P1) and -
source(e,v) ∈  Before(P2). This is for example the case if P1 = 
AddEdge(e,v,w,l,t) and P2 = DropNode(v). One cannot 
remove a node that still has outgoing edges. Dangling target 
is defined similarly. 

• Prohibited node introduction if -v ∈  Before(P2) and +v ∈  
After(P1). Prohibited edge introduction is defined similarly.  



• Prohibited relabeling if +label(id,l1) ∈  After(P1) and 
+label(id,l2) ∈  Before(P2). Prohibited retyping is defined 
similarly. 

For approaches that can detect semantic conflicts rather than 
syntactic conflicts, we refer to [1, 2, 8]. 

3.3 Dependencies 
Between the productions in a sequence we can determine 
dependencies based on which assertions are satisfied by assertions 
of productions earlier in the sequence. These dependencies will be 
used to address scalability issues in section 4. 

Definition. Let P1; P2; ..; Pn be a well-formed production 
sequence and i<j. An assertion Aj ∈  Before(Pj) is satisfied by an 
assertion Ai ∈  After(Pi) if Aj = Ai.  

We can distinguish four satisfaction dependencies: 

• Ai ∈  Post(Pi) and Aj ∈  Pre(Pj): Pj modifies (or removes) an 
entity that was already modified (or introduced) by Pi. For 
example, Pj = DropEdge(e,b,c) depends on Pi = 
AddEdge(e,b,c,uses,uses) because Pj removes the edge e that 
was introduced by Pi. This is detected by +e ∈  
Post(Pi) ∩ Pre(Pj) 

• Ai ∈  Post(Pi) and Aj ∈  Inv(Pj): Pj relies on an entity that is 
modified by Pi. For example, Pj = AddEdge(e,b,c,uses,uses) 
depends on Pi = AddNode(c,radius,attribute) because +c ∈  
Post(Pi) ∩ Inv(Pj) 

• Ai ∈  Inv(Pi) and Aj ∈  Pre(Pj): Pj modifies an entity that was 
relied on by Pi. For example, Pj = DropNode(b) depends on 
Pi = DropEdge(e,b,c)  

• Ai ∈  Inv(Pi) and Aj ∈  Inv(Pj): Pj relies on the same entity as 
Pi. For example, Pj = RetypeN(a,attribute,operation) depends 
on Pi = RelabelN(a,surface,area)  

The first three satisfaction dependencies are strong dependencies 
because changing the order of Pi and Pj yields an ill-formed 
production sequence. For example, we cannot add an edge 
between two nodes if one of these nodes is not yet present. 
Graphically, strong dependencies are represented by a solid line 
from Aj to Ai. 

The fourth dependency is a weak dependency, because Pi and Pj 
can still be commuted without affecting the end result. For 
example, it is irrelevant whether we first relabel a node and then 
retype it or vice versa. Weak dependencies are represented by a 
dotted line from Aj to Ai. 

Figure 4 shows all satisfaction dependencies in a sequence of 
three primitive productions. There is a strong dependency from 
the invariant +b of the second production to the postcondition +b 
of the first production, and from the precondition type(b,attribute) 
of the second production to the postcondition type(b,attribute) of 
the first. Finally, there is a weak dependency from the invariant 
+b of the third production to the same invariant of the second 
production. 
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Figure 4: An illustration of satisfaction dependencies 

Figure 4 also shows another kind of dependency from the 
postcondition +source(e,b) of the last production to the invariant 
-source(*,b) of the first. In general, some assertions of earlier 
productions can become captured by a postcondition of a later 
production, meaning that the earlier assertion can be ignored. 

Definition. Let P1; P2; ..; Pn be a well-formed production 
sequence and i<j. An assertion Aj ∈  Post(Pj) captures an 
assertion Ai ∈  After(Pi) if Aj contradicts Ai.  

A capture is also a strong dependency in the sense that it 
prevents Pi and Pj from being commuted. Graphically, such a 
dependency is represented by a dashed line from postcondition Aj 
to postcondition (or invariant) Ai. This is illustrated in Figure 4 
between +source(e,b) and -source(*,b). 

The following complex production sequence illustrates all the 
dependencies introduced before: 

RelabelN(a,surface,area); AddNode(b,perimeter,attribute); 
RetypeN(a,attribute,operation); RetypeN(b,attribute,operation); 
AddNode(c,radius,attribute); AddEdge(e,b,c,uses,uses); 
AddEdge(f,a,c,uses,uses); DropEdge(e,b,c); DropNode(b) 

Figure 7 displays the assertions of each production in the 
sequence, together with all dependencies between them. Each 
assertion is the source of at most one dependency, that always 
points to the closest preceding assertion on which it depends. 
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Figure 7: Dependencies in a production sequence 

4. COMBINING GRAPH PRODUCTIONS 
This section illustrates some important ways in which 
dependencies between assertions can address scalability issues 
when using large evolution sequences. 

4.1 Composite Graph Production 
A first way to address scalability is by treating complex sequences 
in exactly the same way as primitive productions. For example, 
the production sequence of Figure 7 can be considered as an 
atomic production P, as long as we are able to determine all of its 
assertions from the assertions of its constituent productions and 
the dependencies between them. The assertions of the so-called 
composite production P are calculated as follows: 

(1) Identify all preconditions Pre and invariants InvPre that have 
no outgoing dependencies. Omit all derived assertions. 

(2) Identify all postconditions Post and invariants InvPost that 
have no incoming dependencies. Omit all derived assertions. 

(3) Calculate the assertions of the composite production P: 
Inv(P) = (InvPre ∩ InvPost) ∪  (Pre ∩ Post) 
Pre(P) = (InvPre \ InvPost) ∪  (Pre \ Post) 
Post(P) = (InvPost \ InvPre) ∪  (Post \ Pre) 

In Figure 7, all the assertions in the sets Pre, InvPre, Post and 
InvPost of steps (1) and (2) are represented as shaded ellipses.  

The actual preconditions, postconditions and invariants of the 
composite production P are shown as ellipses on the surrounding 
rectangle of Figure 7. For example, Pre(P) = {-target(*,c)} ∪  {-c, 
-f, label(a,surface), type(a,attribute)}, but the assertion -
target(*,c) is omitted since it can be derived from -c. 

4.2 Simplifying pairs of productions 
Another way to address the scalability is by reducing a production 
sequence P1; P2; ...; Pn by simplifying or eliminating pairs of 
successive5 productions Pi; Pi+1. This is particularly relevant if we 
rely on a predefined set of productions (as in Table 5). Two kinds 
of simplifications can be distinguished. A pair of successive 
productions can be absorbed into a single predefined production, 
or the pair is redundant when the constituent productions cancel 
each other's effect. In the latter case, the pair can be removed 
without changing the overall behaviour of the graph rewriting. For 
both situations, a definition and concrete example is presented 
below. 

Definition. A sequence of two graph productions P1; P2 is 
absorbing if there is a predefined graph production P such that 
Pre(P) = Pre(P1; P2), Post(P) = Post(P1; P2), and 
Inv(P) = Inv(P1; P2) 

Figure 8 illustrates an absorbing production pair. Node addition 
AddNode(b,perimeter,attribute) followed by node retyping 
RetypeN(b,attribute,operation) is absorbed into a single node 
addition AddNode(b,perimeter,operation).  
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Figure 8: An absorbing production pair 

Definition. A sequence of two graph productions P1; P2 is 
redundant if Pre(P1; P2) = ∅  and Post(P1; P2) = ∅ . 

With redundant pairs of productions, only the invariant set can be 
nonempty. Figure 9 illustrates a redundant production pair P1; P2. 
A node b is added and removed again. The resulting composite 
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absorbing productions do not directly follow one another in the 
sequence. 



production has an empty set of pre- and postconditions, while 
Inv(P1; P2) = {-b}.6 Also note the capture dependencies 
originating from -type(b,*) and -label(b,*).  
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Figure 9: A redundant production pair 

4.3 Reordering 
If two successive productions in a sequence do not have a strong 
dependency between them, their order can be changed. When 
doing this, we need to modify all involved dependencies 
accordingly. This is illustrated in Figure 11 where we changed the 
order of the last two productions in the sequence of Figure 4. This 
was possible because there is only a weak dependency between 
the two productions that are being commuted. The reordered 
production sequence has the same overall effect as the original 
one because the assertions of the corresponding composite 
production are identical in both cases. 
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Figure 11: Reordering primitive productions in the sequence 

of Figure 4 

4.4 Removing Redundancy 
Reordering can be used to remove redundant and absorbing 
production pairs in a given sequence, even if the involved 
productions do not directly follow one another. In this way we can 
make the production sequence shorter, thus reducing the amount 
of memory required to store a production sequence 
(compression); improving the efficiency of algorithms that 
manipulate production sequences; making the production 
sequence easier to understand; etc… 

Instead of giving the details of the redundancy removal algorithm, 
we illustrate how it works by means of a nontrivial example. 
Removing redundancy in the production sequence of Figure 7 
yields the production sequence of Figure 12, containing only 4 
instead of the original 9 primitive productions: 

                                                                 
6 The assertions -source(*,b), -target(*,b), -type(b,*) and -label(b,*) can 

be ignored as they are derived assertions of -b. 

RelabelN(a,surface,area)

label(a,surface)

a

label(a,area)

RetypeN(a,attribute,operation)

type(a,attribute)

a

type(a,operation)

AddN(c,radius,attribute)

-c

label(c,radius) ctype(c,attribute)

AddE(f,a,c,uses, uses)

-f

label
(f ,uses)

ftarget
(f,c)

source
(f,a)

a

c

type
(f,uses)

-target(*,c)
-source(*,c)

 
Figure 12: Final result after redundancy removal 

This result is achieved by applying the following steps, starting 
from the production sequence of Figure 7: 

1. Reorder of RetypeN(a,attribute,operation) and its immediate 
successor RetypeN(b,attribute,operation), making 
RetypeN(b,attribute,operation) the immediate successor of 
AddNode(b,perimeter,attribute). 

2. Transform the absorbing subsequence 
AddNode(b,perimeter,attribute); RetypeN(b,attribute,operation) 
into a single production AddNode(b,perimeter,operation). 

3. Reorder of AddEdge(f,a,c,uses,uses) and its immediate 
successor DropEdge(e,b,c), making DropEdge(e,b,c) the 
immediate successor of AddEdge(e,b,c,uses,uses). 

4. Transform the redundant subsequence 
AddEdge(e,b,c,uses,uses); DropEdge(e,b,c) into a single trivial 
production that only consists of invariants: {-e,+b,+c}. 

5. Remove this trivial production, and redirect the dependencies 
accordingly. 

6. Move the production DropNode(b) to directly behind 
AddNode(b,perimeter,operation). This does not require 
redirection of any dependencies, since DropNode(b) only depends 
on AddNode(b,perimeter,operation). 

7. Transform the redundant subsequence 
AddNode(b,perimeter,operation); DropNode(b) into a single 
trivial production that only consists of invariants: {-b}. 

8. Remove this trivial production. This concludes the redundancy 
removal, since no absorbing or redundant production pairs 
remain. 

4.5 Refactoring Common Subsequences 
In the context of team development, tool support is essential, 
especially when making parallel evolutions or customisations of 
the same software artifact. We can identify similarities between 
these changes by factoring out all commonalities between the 
parallel transformations. This is not only useful for reducing code 
duplication, but also during software merging to reduce the 
number of merge conflicts. 
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Figure 17: Factoring out commonalities in parallel evolutions 

Schematically, the idea is represented in Figure 17. If we have two 
parallel productions P and Q that are applied to the same initial 
graph G, we can compare their assertions, and construct a new 
production C that contains only the common assertions, while the 
variable ones are specified in two other productions VP and VQ. 

4.6 Undo Mechanism 
In an industrial-strength software development environment, it 
should be possible to make changes undone selectively, even if 
these changes are part of a complex sequence. Suppose we want 
to undo only one production in a sequence. We cannot simply 
remove the production and reapply the resulting shorter sequence, 
because later productions in the sequence may still depend on the 
removed one. Therefore, we additionally need to remove all later 
productions that strongly depend on the removed production 
(either directly or indirectly). 

For example, in order to undo AddNode(b,perimeter,attribute) in 
the sequence of Figure 7, we also need to undo all its strongly 
dependent productions RetypeN(b,attribute,operation), 
AddEdge(e,b,c,uses,uses), DropEdge(e,b,c) and DropNode(b). 

4.7 Parallelising Independent Subsequences 
A final use of dependencies has already been discussed by 
Roberts [16]. In order to apply large production sequences in a 
more efficient way, they can be split up in parallel subsequences 
that can be applied independently from one another. This allows 
us to parallelise the process of applying complex transformations 
to a graph. It also makes large evolution transformations more 
manageable by splitting them up in smaller independent chunks 
that are more understandable. 

For example, the production sequence of Figure 12 can be 
parallelised into the following independent subsequences: 

RelabelN(a,surface,area); RetypeN(a,attribute,operation) and 

AddNode(c,radius,attribute); AddEdge(f,a,c,uses,uses) 

5. RELATED WORK 
Perry was one of the first to use assertions for dealing with certain 
aspects of software evolution. In [15] he describes a semantic 
interconnection model that uses assertions to annotate software 
artifacts. This model is used to detect the effects of changes by 
recursively determining the assertions that are affected by the 
change. In our approach, we do not use assertions for expressing 
the behaviour of software artifacts themselves, but to express 
semantic dependencies between the evolution transformations 
instead.  

If we focus on formal support for merging parallel evolutions, our 
work is closely related to [9]. Lippe and van Oosterom propose an 
operation-based merge technique that uses software 
transformations (called operations) to represent evolution, and 
detects and resolves merge conflicts using the information 
contained in these transformations. Dependency information 
between transformations is used to address the issue of scalability, 
but assertions are not used to identify the dependencies. 

The research in this paper is a logical consequence of the work on 
reuse contracts [17]. Mens [10, 11] provides a formalism for 
reuse contracts that uses pre- and postconditions to express graph 
transformations and relies on formal properties of conditional 
graph rewriting [4, 5, 6]. 

The research of Roberts [16] is also closely related. Pre- and 
postconditions are used to express refactoring transformations 
(which are usually behaviour-preserving), and some scalability 
issues are addressed as well. 

6. CONCLUSION 
Typed graphs, combined with graph transformations that are 
based solely on assertions (i.e., preconditions, postconditions and 
invariants) provide a general formalism for software evolution. 
Assertions make it easy to detect syntactic merge conflicts 
between parallel evolution transformations, and allow us to define 
composite graph transformations in an intuitive and 
straightforward way. Dependencies between the assertions allow 
us to address several scalability issues, such as changing the order 
in a transformation sequence, removing redundant transformations 
in a sequence, and extracting a common subsequence from two 
(or more) given transformation sequences. 

The approach seems very promising, but still needs to be 
validated in a large-scale case study. Also, the underlying 
formalism can be extended in many ways: a notion of subtypes 
could be introduced; more complex assertions could be defined; 
the productions could be made more generic; etc… 
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