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TRANSFORMATIONAL TECHNIQUES 
IN ATONAL AND OTHER MUSIC THEORIES 

DAVID LEWIN 

Let us consider the opening of Anton Webern's Piece for String 
Qtartet, opus 5 number 2, concentrating on the roles that the pitch 
class set X=(G,B,CO) and various of its forms play in this context. 
Figure 1 reproduces the music at issue. 

The passage opens with a melodic representation of X as a Kopfmotiv; 
measure 3 cadences with a chordal representation of X in the accom- 

paniment. The accompaniment chord of measure 2, repeated in 
measure 3, also projects a form of X, specifically Ts(X). The first 
chord in the accompaniment does not constitute, nor even include, 
any form of X. Rather it projects strongly the structuring force of 

pitch-class inversion about D.1 Under this inversion the pitch-class D 
mirrors itself, the dyad (A,F) of the chord mirrors the (G,B) of the 
viola melody, and the Ab as a pitch-class mirrors itself. We shall call 
the inversion "I", writing I(D)=D, I((A,F))=(G,B), I((G,B))=(A,F), 
and I(Ab)=Ab. 

In measure 1 the dyad (G,B) becomes extended to X=(G,B,C#) and 
the melody lingers on the high point Co. The questioning effect of 
this gesture is interrelated with a search in the music for Eb=I(CO) 
and (A,F,Eb)=I(X), a search which is to some extent resolved by the 
chord of measure 2, where the C# and the X trichord that embeds it 
find their I-partners. The 'cello E b of measure 2 mirrors the high C#, 
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and that Eb is embedded in a representation of I(X) which controls 
aspects of the voice-leading within the accompaniment: (A,F) within 
the first chord becomes (A,E b) within the second. Figure 2 diagrams 
the inversional structure under discussion. 

The pairing of Eb with C#, as an I-related partnership about D, is 
elaborated with even greater Entspannung in the extension of the 
phrase through measure 4. The interrelation of I(X), an accompani- 
ment formation, with events of the viola melody, as displayed by 
Figure 2, is confirmed by the "half-cadence" of the viola on the F in 
measure 2, while the accompaniment (A,Eb) sounds beneath. This 
binds all of I(X) into a simultaneity, perhaps preparing the comple- 
mentary appearance of all-of-X as a simultaneity in measure 3. 

By "complementary", above, I mean "I-related". Still, it is significant 
that I(X) is also the pitch-class complement of X within the whole- 
tone scale that embeds them both. All the forms of X that we shall 
discuss over this passage are in fact subsets of that one whole-tone 
scale, and various pairs of X-forms combine to articulate various 
four-note and five-note subsets of that scale. The terminology of 
Allen Forte is well suited to examining the patterns of abstract 
inclusion-relationships which involve these and other pitch-class sets 
over the piece.2 For the nonce, though, we are focusing on the ways 
in which X itself is transformed, rather than such patterns of 
inclusion. 

At the four-note sonority halfway through measure 2, the disposition 
of pitches in register supports the establishment of a new inversional 
symmetry which we shall denote by "J", that is inversion about F#. 
The cited four-note sonority is J-symmetrical in the registration of its 
pitch classes. J also relates the two X-forms discussed so far which 
are embedded in the sonority. That is, T8(X), represented by the 
three lowest notes of the sonority, and I(X), represented by the three 
highest notes of the sonority, are J-transforms each of the other. 
Algebraically, Ts(X)=J(I(X)) and I(X)=J(Ts(X)). 
The structuring force of J continues into the viola melody over 
measures 21/2-31/2. The pentachord (F# ,B,G,F,C#) is its own J-inversion, 
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a feature which is strongly projected by the registral disposition of the 
pitch-classes involved. Within this melodic fragment two X-forms are 
projected as serial segments; these are the inverted form K(X)= 
(B,G,F) and the transposed form T6(X)=(G,F,C#). These two forms 
are J-associates each of the other, as were I(X) and T8(X) earlier. 
That is, T6(X)=J(K(X)) and K(X)=J(T6(X)). K is that inversion which 
transforms the pitch classes C and B each into the other. The 
compositional use of this transformation was suggested by the melodic 
G-B-G of the viola at the beginning of the piece, an event recalled by 
the melodic B-G at the end of measure 2, where K(X) appears. T,, as 
well as K, leaves invariant two members of X: specifically, K(X) and X 
share the pitch-classes G and B; T,(X) and X share the pitch-classes 
G and C#. Later on, we shall explore more systematically the 
relevance of such common-tone relationships, in another context. 

Other X-forms can also be extracted from the melodic pentachord 
(F#,B,G,F,C#), but I shall consider such forms as secondary here 
because they are not as well articulated, either serially or registrally, 
or by any other criterion, as are K(X) and T6(X). Still, it is interesting 
to note that these secondary forms are X itself, (B,G,C#), and its J- 
associate J(X)=(B,F,C#). This relation makes one aware that J(X) 
too, as well as K(X) and T6(X), has a common dyad with X, specifically 
the third dyad (B,C#) of X. 

As the viola moves through its F in measure 3, the accompanying 
T8(X) form in the 'cello and second violin enters once more into the 
relations with that F which we discussed earlier: Ts(X)=(G,Eb,A) is 
heard in the lowest three notes against I(X)=(Eb,A,F) in the highest 
three; T,(X)=J(I(X)) and I(X)=J(Ts(X)) are J-associates, each of the 
other. When now the viola moves on to C#, on the fourth eighth of 
measure 3, a new form of X is thereby implicitly paired with or 
against T8(X). T8(X)=(G,Eb,A) remains implicitly below, but the 
highest three notes now implicitly form (Eb,A,C#)=T2(X). T8(X)= 
T,(T2(X)) and T2(X)=T6(T8(X)) are T6-associates, each of the other. 
We have now devoted special consideration to exactly three properly 
transposed forms of X in this passage, namely TS(X), T((X) and T2(X). 
The three intervals of transposition, that is 8, 6 and 2, represent the 
three-interval classes of X itself. For us, however, the intervals of 
transposition will mean more than interval-classes (types of two-note 
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chords) alone: "transpose by 8" e.g., is not the same operation as 
"transpose by 4." So we shall think, e.g., not "the dyad (G,B) 
instances interval-class 4 (a chord of type 2-4)," but rather "T, 
transforms the pitch-class B into the pitch-class G." In the same 
sense, T(, transforms G into C#, and T2 transforms B into C#. As these 
transformations operate on various individual pitch classes (or one- 
note pcsets) of the viola Kopfmotiv itself, we hear first among them 
the effect of T8, taking B to G, second the effect of T,, taking G to C#, 
and third the effect of T, on a larger level, taking B to C#. This order 
corresponds suggestively to the order in which we have heard the 
correspondingly transposed forms of X during the passage: first 
T8(X), second T(,(X), and third T2(X). We are also aware, in the 
"second" place above, of a T(, relation between T8(X) and T2(X). Note 
how the transformational setting engages time: things happen before 
and after; the process is of necessity rhythmic, and the transforma- 
tional networks involving T8, T(, and T2 function rhythmically on both 
smaller and larger ievels. Figure 3 provides a format which I find 
suggestive in portraying these ideas. 

The implicit four-note chord (G,Eb,A,C#) in measure 3 embeds 
forms of X other than Ts(X) and T2(X), but those forms will be 
considered secondary in this context. The situation recalls the earlier 
analysis of X-forms within the viola tetrachord (B,G,F,C#), and it is 
fruitful to contemplate other relations involving the two tetrachords. 
The earlier tetrachord was embedded in the melodic pentachord 
(F#,B,G,F,C#). That pentachord, as we noted, was J-symmetrical, 
having F# as a center of inversion. The tetrachord (G,Eb,A,C#) 
implicit within measure 3 is followed directly by the climactic high D 
of the viola, extending the tetrachord to the unordered pentachord 
(D,G,Eb,C#,A). This pentachord is I-symmetrical, having D as a 
center of inversion. In this respect it harks back to the inversional 
symmetry characteristic of the opening of the piece. 
In this context we can analyze the pentachord (D,G,Eb,C4,A) as an 
8-transpose (rather than an inversion) of the pentachord (F#,B,G, 
F,C#), because the pattern of inversional symmetries suggests a Ts 
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relation: F# as center of inversion for J returns to D as center of 
inversion for I, a center whose power persists through the middle of 
measure 4. This Ts gesture retrogrades the initial transition from I- 
symmetry to J-symmetry; originally the centers of inversion pro- 
gressed via T4 from D to F,. The large composite gesture can be 
graphed as in Figure 4. 

In Figure 4 one recognizes a rhythmic expansion of the opening 
"transformational gesture" in the pitch-class structure of the Kopf- 
motiv: G goes to B via T4, and then returns again, via Ts, to G. 

Figure 5 collates the various forms of X we have so far discussed, in a 
convenient format. The figure omits forms analyzed as "secondary." 

Figure 6 abstracts a transformational network from Figure 5. The 
arrows connecting forms of X indicate the transformations one 
applies, to get from one form of X to another. So, for example, the J- 
arrow leading from I(X) to Ts(X) on Figure 6 indicates that one 
"gets" from the pitch-class set I(X) to the pitch-class set T8(X) by 
applying the transformation J: the latter pcset is the J-transform of 
the former, i.e., Ts(X)=J(I(X)). 

To make as few analytic assertions as possible, I have included in 
Figure 6 only arrows that reflect my own hearing of a strong 
compositional connection in time, register, etc. Most of the arrows 
thus reflect earlier discussion. The arrow from X to T2(X), visible 
earlier in Figure 3, is omitted in Figure 6: I feel that this arrow 
reflects a structural idea on Figure 3, rather than an immediately 
audible compositional connection. On Figure 6, there is a new K- 
arrow, from I(X) to T2(X)=K(I(X)). K, it will be recalled, is the 
inversion operation that exchanges G with B; K thus leaves A 
invariant, leaves Eb invariant, and exchanges F for C#. The idea of 
leaving A and Eb invariant, while substituting C# for F, was covered 
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in the earlier text, in connection with the progression of the viola 
melody in measure 3 from F to C#, while the chord in the accom- 
paniment implicitly remained. 

Also new on Figure 6 are the three arrows I have drawn aiming at 
the cadential X on the right of the Figure. The arrow from T(,(X) to X 
reflects my hearing the melodic G-F-C# of the viola in measure 3 
move to the following chord (C#,B,G) in the accompaniment: the 
dyad (G,C#) is preserved; the linear order G-F-C#, presenting F 
between G and C#, is transformed into the registral order C#-B-G, 
presenting B between C#t and G. The sense of a local T, function is 
thus clarified. The arrow on Figure 6 from T8(X) to X connects the 
second and third accompaniment chords (a serial relation) in the low 
register (a registral relation). Traditional listening will emphasize 
with some justice the thematic and structural tritone G-to-C # in the 
bass line of this progression, somewhat at the expense of the T4 
arrow-relation. T4 can be "heard" nonetheless by focusing the ear 
upon the various intervals of 4 that occur between notes of (C,Eb,A) 
and notes of (C#,B,G) when the former chord moves to the latter. 
One can hear the G of the first chord move to the B of the second; 
this motion is as thematic as the tritone G-C#, and the motion G-B 
occurs in close registral position. One can also hear the "voice- 
leading" possibility of Eb-to-G; this gesture also appears in close 
registral position, though with a color change. The A of the first 
chord at issue is far from the C# of the second, but one can hear the 
T4 relation nonetheless, with some concentration, via the low C of 
the viola in measure 3, which is in close registral position to that A. 
(The pitch class C# has been pre-eminently mobile in register through 
the entire passage.) Having heard so many intervals of 4 spanned in 
this way, one hears the progression as "highly T4-ish" even if one 
does not work out aurally the arithmetic which shows that three 
intervals of 4 spanned between two three-note chords logically entail 
a T4 relation between the chords. The psychology just discussed will 
later on be reflected by an appropriate theoretical apparatus. 

It is interesting to note that the "actual" voice-leading between the 
two chords just discussed projects a TIe relation (G=T10(A) in the 
violin), a T8 relation (B=T8(Eb) in the 'cello), and a T( relation (C# = 
T(,(G) in the 'cello). All three interval-classes of X are thus represented 
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by the "actual" voice-leading here, as they are also by the three 
rightmost arrows on Figure 6; in both cases we are considering 
methods of "approach" to the cadential X sonority. These consider- 
ations might be of interest to a 'cellist deciding whether to play the 
(G,Eb) on strings IV and III, or on strings III and II, and whether to 
do so the same for both appearances of the double-stop, or to do so 
differently at its two appearances. 
The T1i arrow leading to the final X on Figure 6 is not very audible to 
my ear in connection with X-forms alone. However, as we shall soon 
see, there is a convincing link between the T1o-related X-forms here 
and the cadential Tio gesture in the viola melody lying over: C=Ti (D). 
To explore that link let us first return to the high C# of measure 1. We 
discussed in connection with Figure 2 how that C# is answered by 
the Eb of measure 2; we can also hear how the C#, during the course 
of the passage, moves down to middle C# and eventually low C#. 
Neither of these observations, though, comes to grips with our 
common-sense hearing of a connection in register between the high 
C of measure 1 and the subsequent high C of that measure. The 
high C picks up in register not just the C# but also the preceding B, 
thereby projecting the three-note cluster (B,C,C#) in register. And 
the three-note cluster is clearly an important constructive unit of this 
piece. One hears it completely governing the middle of measure 4; 
one also hears it at the melodic cadence C#-D-C of the viola line, 
within the pentachord (F#,B,G,F,C#), etc. 

Since the registral connection of the C to C in measure 1 is so 
strong, one is tempted at first to assert a transformational relation 
C=T i(C#); the three-note cluster could be derived from such a TI 
idea. However T11 clearly does not function over the passage in 
anything like the ways our other transformations do.3 In the context 
of this opening section alone, the C-embedding function of the three- 
note cluster is much clearer, as a constructive idea. But it seems 
awkward to analyze this cluster as a harmonic element independent 
of X. Forte's theory suggests that we listen for a pitch-class set that 
embeds both (a form of) X and (a form of) the three-note cluster. Our 
pentachord will do, but it is needlessly large for the purpose; the 
most economical candidate is Y=(G,B,C,C#). And, once having 
tuned our ears to Y, we can hear that every form of X portrayed in 
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Figure 5 is in fact embedded in an appropriate form of Y. Figure 7 
diagrams the expansion. 

The figure shows how the move down in register from C# to C 
within Y, in the viola over measure 1, is mirrored by the I-associated 
move up in register from E to F within I(Y), a move which is spanned 
by the first and last notes of the melodic sub-phrase in measures 1-2. 
The accompaniment chord T8(X) of measure 2 sounds beneath the 
Ab of the viola; the two elements combine to form Ts(Y). K(X) and 
T6(X) extend respectively to K(Y) and T6(Y) by adjoining the F# that 
combines with them to form the J-symmetrical pentachord. The 
implicit T2(X)=(Eb,A,C#) in measure 3 combines with the immedi- 
ately following high D to form T2(Y). And finally, the C that originally 
extended melodic X to melodic Y reappears as the melodic cadence 
tone in measure 3, where it sounds simultaneously with harmonic X 
to form harmonic Y. The web of Figure 7 catches every pitch-class 
event of measures 0-3, except for the I-centers D and Ab within the 
first chord. 

Because Figure 7 expands Figure 5 perfectly, the network of Figure 
6, which applied to Figure 5, will also apply perfectly to Figure 7 if 
we simply replace the symbol "X" on Figure 6 by the symbol "Y" 
passim. When we make that substitution, we will be reassured about 
the Tie arrow that leads to the final Y on the graph: the asserted T1i 
relation in fact leads the high D of the viola in measure 3, part of 
T2(Y), to the subsequent high C, the corresponding part of Y. The 
relation C=T1o(D) is, of course, amply audible here. 

We have seen that the network of Figure 6 is valid in our analysis for 
the forms of X and for the forms of Y indifferently. An analogous 
network would also be valid if we substituted, for X-forms or Y- 
forms, the corresponding forms of the three-note cluster. The latter 
network, one notes, would be analytically "valid" but not "complete", 
for it would not catch, e.g., the C#-D-C of the viola melody in 
measure 3, which is not embedded in a Y-form of Figure 7. The point 
is that, leaving questions of analytic pertinence aside, the conceptual 
structure of Figure 6, so far as it describes a network of relationships 
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among transformations, is completely independent of the objects 
being transformed. The purely transformational aspect of Figure 6 
remains formally determinate if we ignore completely the contents 
of its circled nodes, and graph only the transformational "gestures" 
as in Figure 8. 

If we input any suitable thing as an operand into the upper left-hand 
node of the Figure and follow the transformational arrows, the 
various other nodes will automatically be filled by appropriate forms 
of that thing: I(thing), T8(thing)=J(I(thing)), K(thing), T6(thing)= 
J(K(thing)), etc. One will automatically return to the original form of 
the thing at the lower right-hand corner of the graph. In this 
connection, it is crucial that the inversional transformations I, J and 
K be understood as meaning "inversion about D", "inversion about 
F#" and "inversion about A" respectively; they must not be defined 
by any internal property of any single "thing" that might chance to 
get sent through the mill. Then the transformational relations appro- 
priate to the graph will always obtain regardless of the operand 
being transformed: the J-associate of the K-associate will necessarily 
be its 8-transpose; etc. It is of course also understood that the 
operations of transposition and inversion will be applicable in the 
familiar pitch-class sense to the operand and its various (transposed 
and inverted) forms. Under these conditions, the graph of Figure 8 is 
well-formed no matter whether the operand to be input is X, Y, 
(B,C,C#), the pitch-class C#, a serial motif, a 12-tone row, etc. 

At this point, a little formalism will be helpful. Figure 8 instances a 
generic form which we shall call a "transformation-graph". A trans- 
formation-graph, in general, comprises a family of "nodes", together 
with an "arrow-relationship" obtaining among certain ordered pairs 
of nodes. For each ordered pair of nodes in the arrow-relationship, a 
certain transformation is specified. To be well-formed, such a graph 
must observe certain restrictions. For instance, if nodes l-and-2, 
nodes 2-and-3, and nodes 1-and-3 are all in the arrow relationship, 
then the transformation associated with 1-to-2, followed by the 
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transformation associated with 2-to-3, must produce the transforma- 
tion associated with 1-to-3. (Thus, in Figure 8, the J-associate of the 
I-associate of any suitable thing will be the 8-transpose of that thing.) 
More general restrictions of this sort must be observed; the formalities 
will be covered in an appendix. 
The graph of Figure 8 is "connected": given any two nodes, there is a 
path connecting them if we follow a suitable sequence of arrows 
forwards and/or (if necessary) backwards. This property of the 
graph enables us to infer the operand-content of all nodes, once we 
know the content of any one node. In this connection, we are 
implicitly invoking the fact that the family of operations at issue 
forms a mathematical "group". The appendix will make the matter 
formal for those who wish to pursue it. 

Figure 8 also has a certain "chronological" structure: intuitively, 
some arrows go from left to right, others go up, others go down, but 
none goes from right to left. We thus have some sense of what 
happens "earlier" and what "later" on the graph that is consistent 
with our naive sense of time.4 The appendix will also formalize the 
notion of "chronological" here, a rather tricky matter. Note that the 
chronological structure of Figure 8 has necessitated the extension of 
certain nodes from circles to ovals in the visual picture; this aspect of 
the structure, even leaving the contents of the nodes aside, embeds 
the graph in an implicit context of rhythm and relative duration, 
somewhat capturing certain rhythmic implications of Figures 5 and 7 
in an abstract graphic structure.5 

Figure 8, as a particular transformation-graph, can be given a name. 
Let us call it BIGSCHEME. We can give other names to other 
graphs; let us define by Figure 9, for instance, another graph which 
we shall call FIRST4THEN8. 

This graph, as well as BIGSCHEME, was pertinent to our analysis of 
the Webern passage. If we input into FIRST4THEN8 the operand "I- 
symmetry, center D", we will obtain the network displayed earlier in 
Figure 4, which showed the progressive shifting of inversional 
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symmetries and centers over the passage. If, on the other hand, we 
input the single pitch-class G into FIRST4THEN8, we obtain the 
network of pitch-classes displayed in Figure 10, which models the 
opening melodic gesture of the viola. 

The relation of Figure 4 to Figure 9, Figure 10 to Figure 9, and 
Figure 6 to Figure 8 can be generalized by the notion of a "trans- 
formation-network". This construct comprises a transformation-graph, 
a certain family of operands for the transformations, and a function 
CTN associating each node with the particular operand it is to 
"contain". The statement "T(,(X)=CTN(node 5)" can thus be read as 
stating "the operand T,(X) is the contents of node 5." A transformation- 
network is formally restricted by stipulating that if node 1 and node 2 
are in the arrow relation, and if the transformation F is associated 
with that arrow, then F(operand 1)=operand 2, where operand 1 
and operand 2 are the respective contents of nodes 1 and 2. The 
appendix will take all this up again, yet more formally. 
Because of the various restrictions we have built into these constructs, 
it is possible to generate an entire connected transformation-network 
by stipulating (1) its graph, (2) any specific node, and (3) a specific 
operand which that node is to contain. We can then follow arrows 
forward and/or backward on the graph, filling in the appropriate 
operand-forms for the contents of the various nodes according to the 
indicated chains of transformations. In this way, for instance, the 
network of Figure 10 can be generated from the graph FIRST4- 
THEN8 of Figure 9, by stipulating that the left-hand node of that 
graph is to contain the pitch class G. If we call the left-hand node 
"lhn", we can then refer to the network of Figure 10 as (FIRST4- 
THEN8,lhn,G). In a similar spirit we can call the network of Figure 
4 (FIRST4THEN8,lhn,(I-symmetry,center D)). If we denote by "uln" 
the upper left-hand node on Figure 8, we can call the network of 
Figure 6 (BIGSCHEME,uln,X). If we want to refer to the analogous 
network which expands each form of X to the corresponding form of 
Y, modeling Figure 7, we can call that network (BIGSCHEME,uln,Y). 

By using the formalism of transformation-graphs and networks, we 
can assert a very specific formal relationship between the G-B-G of 
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the viola melody and the progression of I-and-J-symmetries over the 
entire cited passage: each aspect of the music instances a trans- 
formation network whose graph is FIRST4THEN8. We shall call the 
two networks "isographic", to reflect that relationship. 

The networks (BIGSCHEME,uln,X) and (BIGSCHEME,uln,Y) are 
also isographic. The relation between the compositional representa- 
tions of the two networks is quite different, however, from the 
relation between the G-B-G network and the inversional symmetry 
network. Specifically, each X-form that represents the contents of a 
node of (BIGSCHEME,uln,X) is musically embedded, node by node, 
in the compositional representation of the second. This enables us to 
assert a very much stronger relation of X to Y in this piece than the 
mere embedding of X itself in Y itself, either abstractly or in the 
music of measures 0-1. And the transformation-graphs and networks 
are essential to a precise formulation of that strong relationship. 

Such graphs and networks are well-suited to illustrating points of 
contact between atonal theory and transformational theories of tonal 
functions. To make this clear, we need only conceive "dominant of", 
"parallel of", etc. as transformations which, when applied to a given 
chord/root/key, produce another chord/root/key. The transforma- 
tional outlook introduces an attractive kinetic component into theories 
which suffer from a static character when "dominant" et al. are 
conceived merely as labels for particular chords/roots/keys in partic- 
ular contexts.6 

To illustrate the point, let us define a tonal transformation S-~(ess- 
inverse): the statement "S-~(C)=G" asserts that C=S(G), i.e. C is the 
subdominant of G. We shall use S-', rather than S, because in the 
work at hand we shall want to associate S-', not S, with forward- 
pointing arrows on chronological transformation-graphs, asserting 
thereby that "C becomes subdominant of C (via S-') rather than "G 
progresses to its subdominant (via S)." In like spirit, D-~ will be the 
inverse dominant transformation. A D-' arrow from C to F on a 
network will mean "C becomes the dominant of F." Better yet, and 
more in the spirit of Riemann, we can think and speak of "functions" 
rather than chords, roots, and/or keys; we can make statements like 
"the harmony of measure 1 functions as the subdominant of the 
harmony in measure 2." In this spirit, I have constructed the 



Figure 11 

OD- 

Figure 12 

S 
- 

O s-OI0 

0^ ^^ 

Qo-1 

0O.~,0D-1 D-1 



331 

transformation-graphs of Figures 11-12, and have attempted to 
demonstrate how these graphs apply to the networks suggested by 
Figures 13 and 14. 

Note the way in which Figure 12 expands Figure 11. The former 
graph uses the latter to "diminute" a mirror image of itself. The 
abstract structure can be defined formally by our machinery, of 
course. We might say that the relation of the G6 and F6 functions to 
the final C function, in each of Figures 13 and 14, is "anti-isographic" 
to the progression that governs measures 1-2, and the progressions 
that govern measures 3-4, in each Figure. 

One sees in Figures 13-14 the logic of using S-' and D- rather than S 
and D, to associate with pertinent graphs. If one used S and D, then 
all the arrows on Figures 11 and 12 would lead right-to-left, rather 
than left-to-right. Alternatively, one could construct the retrograde 
graphs of Figures 11-12, using S and D arrows left-to-right, but those 
alternate graphs would analyze the music backwards. The implica- 
tions for Riemann-like tonal theories are important, but this is not 
the place to develop them. 

Riemannian theory would, I think, best analyze the dominant seventh 
harmonies, bracketed in Figures 13 and 14, as combined D-and-S 
functions: they prolong the dominant function of the G harmony 
from measure 2 of each Figure; they also prolong the subdominant 
function, since the F root of measure 4 in each Figure becomes the 
seventh of the G7 harmony. From this point of view, it is logical that 
the G7 harmony does not fill any node in the graph of Figure 12; it 
rather prolongs the functions of the earlier G6 and Fs harmonies, 
which do fill nodes. 

This analysis, while "logical", is of course still far from an adequate 
discussion of the musical passages; any such discussion would have 
to engage the structural voice-leading, and any voice-leading analysis 
will have to attribute more autonomy to the G7 harmonies, whose 
bass notes are the goals of activity in the bass lines initiated at the 
very openings of the pieces. Voice-leading interpretations can, never- 
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theless, be strongly influenced by the kinesis of Figures 12 through 
14: the arrow patterns specifically support hearing Figure 15(a) as 
the voice-leading paradigm underlying both the Beethoven and the 
Mozart passages, rather than say Figure 15(b) or (c) for the Beethoven, 
or Figure 15(d) for the Mozart passage. Unfortunately, it would be out 
of place here to pursue farther the implications and problems of 
Figures 15(a)-(d). Very crucial matters of tempo, texture and register, 
e.g., become involved at once; these require a larger context within 
the music itself for adequate exploration.7 

Despite the strong prompting of Figure 12 it is not necessary, I think, 
to go so far as Figure 15(a) in denying large tonic function to the 
opening sonorities of the piece at issue, particularly the bass notes 
which after all are "the opening sonorities" in a very literal sense. 
Still, I find Figure 15(a), in conjunction with Figures 12-13-14, a 
useful reading to contemplate because of the attention it focuses on 
the functional distinction between the opening harmonies and the 
tonic downbeats that occur at the ends of Figures 13-14, distinctions 
which are reflected by striking changes in texture and register in 
both cases (and also tempo and mode in the Mozart piece). In this 
connection Figure 12 provides a good model for the functional 
distinction: a tonic filling the left-hand node of a graph has a formal 
"input" function, while a tonic filling the right-hand node of the 
graph has a formal "output" function. 

In sum, the mechanics of transformation-graphs and networks provide 
a useful conceptual connection between Riemann-like tonal theories 
and aspects of traditional atonal theory.8 In these contexts, ideas of 
isography (anti-isography, isographic diminution, etc.) come naturally 
into play. The use of isographic techniques, while far from ubiquitous 
in the atonal literature, is quite common in Webern's practice, and 
not uncommon in other atonal music. Figure 16, for example, 
demonstrates Schoenberg's use of isographic networks in the song 
opus 15, number 11. As in earlier examples, the intervals of the 
Kopfmotiv are represented as transpositional relations between pitch- 
classes (or one-note pcsets); this formalism enables us to relate the 
intervals by which the Motiv is transposed to the internal intervallic 
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network within the Motiv itself. In this case, the procedure enables 
us to avoid attributing "roots" to the "major-minor triads" involved, 
thinking of the first "triad" as being "prolonged" harmonically, etc. 
(Some analysts may not wish to avoid such discourse; still, it is nice 
to be able to adopt it by choice, and not faute de mieux.) 

Figure 17 illustrates a mores subtle use of isography in Schoenberg's 
Piano Piece opus 19, number 6. Certain intervals of the opening 
chord, regarded as transpositional relations among its constituent 
pitch-classes, also govern the pattern through which the melodic 
motif of the "falling minor 9th" (or 16th) is developed through the 
piece. The pitch-class intervals of the opening chord at issue here, 
NB, are also represented by "falling" pitch-relationships, as indicated 
by the downward-pointing arrows on Figure 17. The compositional 
presentation of those structural arrows thus joins many other "falling" 
gestures of this piece which, according to Willi Reich, "is said to have 
been sketched out immediately after Schoenberg returned home 
from Mahler's funeral."9 

The height of Schoenberg's involvement with such techniques is no 
doubt the Passacaglia, number 8 from Pierrot Lunaire opus 21. The 
graph associated with the succession E-G-Eb of the Kopfmotiv, a 
graph we might call 3PLUS8EQUALS11, is ubiquitous over the 
piece, and generates a host of other graphs as well.10 The piece is 
exceptional in the extent to which these techniques are manifest in 
the very forefront of the listening experience. 

In fact, it is correct to view transformation-graphs and networks in 
general not as ubiquitous features of atonal music, but rather as 
paradigms that are only sometimes completely fulfilled in any given 
piece. Such paradigms are important for two reasons: first, they 
exemplify in a pure form the tendency of transformational gestures 
to exfoliate over phrases and complete pieces; second, they interrelate 
on the one hand transformations affecting pitch-class sets, centers of 
inversion, etc., and on the other hand transformations affecting 
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individual pitch classes (or one-note pcsets). Networks of the latter 
transformations take over the role played in conventional atonal 
theories by such notions as "motive structure", "interval content", etc. 

Let the reader recall in this connection my earlier discussion of the T4 
relation between the second and third chord-formations in the 
Webern passage: (C#,B,G)=T4(G,Eb,A). Despite the "actual" voice- 
leading, I claimed that the T4 relation could be heard by focusing on 
the quantity of intervals 4 between notes of (G,Eb,A) and notes of 
(C#,B,G): (C#=T4(A), B=T4(G), and G=T4(Eb). See Figure 18. 

Two ways of reading Figure 18 are of interest here. The first reading 
says, "there are three ways of spanning the interval 4 between notes 
of the respective chords." This reading refers specifically to a directed 
pitch-class interval "4", and models the pertinent relation between 
the chords by invoking my "interval function" as a pertinent con- 
struct: INTF(chord 1, chord 2, 4)=3.11 The second reading says, "if 
we apply the transformation T4 to the first chord, it will then have 
three common tones with the second chord." This reading does not 
involve any specific reference to an "interval"; rather it uses the idea 
of transformation (T4) and common-note relationship. An implicit 
question is posed: "If I apply T4 to chord 1, how much like chord 2 
will it be?" In this case, the answer is, "completely," as far as pitch- 
class content is concerned. Given the cardinalities of the chords, that 
answer reflects the formal equation CMNF(T4, chord 1, chord 1)=3, 
an equation which uses Regener's "common-note function."12 A 
virtue of the common-note model is that it can ask analogous 
questions about inversional transformations (and cycle-of-fifths trans- 
formations, etc.) as well as transpositions. In general, I can ask, "if I 
operate on chord 1 with the operation OP, how much will it be like 
chord 2, i.e. how many common tones will OP(chord 1) have with 
chord 2?" The answer is given by the number CMNF(OP, chord 1, 
chord 2). 

To appreciate the suggestiveness of the transformational approach 
here, let us examine certain aspects of Schoenberg's Piano Piece 
opus 19, number 6, that grow out of relations between the two 
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opening chords.'3 If we call the first chord "rh" and the second chord 
"lh", Figure 19 collates diagrams involving all transpositional and 
inversional operations OP that satisfy CMNF(OP, rh, lh)=2. (No 
such operation satisfies CMNF(OP,rh,lh)=3.) 

The notes of rh and Ih are written on the Figure using open note- 
heads; the meaning of the solid note-heads will be explained pres- 
ently. Figure 19(a) illustrates the relation CMNF(T6,rh,lh)=2. If we 
transpose rh by 6, then the F# of rh is transformed to the C of Ih and 
the B of rh is transformed to the F of Ih; the lines on Figure 19(a) 
depict those relations. The progression from rh to Ih thus sounds 
"fairly T6-ish." In order for it to sound "completely T6-ish", one of two 
things would have to happen. Either the A of rh would have to be 
replaced by C#, or the G of Ih would have to be replaced by D#. The 
pertinent C# for rh and D# for Ih are portrayed by the solid note- 
heads on Figure 19(a). 

Figure 19(b) illustrates in analogous fashion how the progression 
from rh to lh sound "fairly T1-ish." For it to sound "completely T1-ish", 
the A of rh must be replaced by E, or the F of Ih by Bb. Figure 19(c) 
illustrates how the progression sounds "fairly I-ish", where I is 
inversion about A. For the progression to sound "completely I-ish", 
the A of RH must be replaced by C# or the F of Ih by A. In the latter 
respect, note how Figure 19(c) resembles 19(a): in each case, the 
indicated substitution in rh is C#-for-A. In an exactly analogous 
respect, Figure 19(d) illustrates how the progression sounds "fairly J- 
ish", where J is inversion exchanging F# for F and B for C. Intuitively, 
all four of Figures 19(a)-(d) try to match the fourth (F#,B) of rh with 
one of the two fourths of Ih, either by an appropriate transposition or 
by an appropriate inversion. The solid notes of rh in those figures 
try to extend (F#,B) to an appropriate form of lh in each case, that 
form being of necessity either (F#,B,E) or (C#,F#,B); this is why the 
solid notes of rh are all either E or C# in 19(a)-(d). The solid notes of 
Ih, in 19(a)-(d), reflect various ways of selecting one of the two 
fourths of Ih and adjoining a solid note to create a form of rh. Note 
how all this formalism handles both transpositions and inversions in 
absolutely analogous fashion. 
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Figures 19(e)-(f) match the dyad (A,B) of rh with the dyad (G,F) of 
lh, by transposition (19(e)) or inversion (19(f)). The operation K of 
19(f) is the appropriate inversion operation, exchanging A with G 
and B with F. K thus exchanges F# with Bb and E with C. E 
continues to appear as the solid note of rh in 19(e)-(f), since the only 
form of lh that includes (A,B) must perforce be (A,B,E). The solid 
notes of lh in Figures 19(e)-(f) are interesting since they reinforce as 
it were the lust of Bb and D to be generated from the progression rh- 
to-lh, that lust which was already portrayed in 19(b) and 19(d). 

In fact, one sees that 19(e) pairs off "naturally" with 19(d) in a 
certain formal respect here, as regards the solid notes involved. In 
this context, that is, we can meaningfully assert a formal similarity 
between the "fairly T8-ish" quality of the progression rh-to-lh and the 
"fairly J-ish" quality of the progression: both qualities urge rh to 
generate an E, and/or lh to generate a D. (The virtue of the 
theoretical apparatus is of course that it enables us to translate these 
"qualities" and "urges" into demonstrable features of Figure 19.) 
Just as 19(e) pairs off with 19(d), so 19(f) pairs off with 19(b). That 
is, the "fairly K-ish" and "fairly Ti-ish" qualities of the progression 
both urge rh to generate an E, and/or lh to generate a Bb. All four of 
the above "qualities" urge rh to generate an E; 19(a) and 19(c), in 
distinction, urge rh to generate a C#. 

I find it suggestive to think of these generative lusts as musical 
tensions and/or potentialities which later events of the piece will 
resolve and/or realize to greater or lesser extents. The reader will 
recall, from the discussion on the Webern piece about Figure 2 
earlier, that we spoke of the urge of the viola's high C#, and the urge 
of the completed X-form, to find their inversional partners in that 
context. Figure 2 showed how those urges were satisfied, and the 
event sent into motion a train of events leading to the eventual 
formation of a complex transformation-network. Just so, Figure 20 
attempts to show, in connection with the present Schoenberg piece, 
how the various lusts and urges reflected by the solid notes of Figure 
19 eventually become satisfied during the subsequent music (q.v.), 
as the various concomitant transformations of Figure 19 jockey one 
with another for priority in potential network-formation. 
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Figure 20(i) shows how the urge depicted in Figure 19(a), for the A 
of rh to find its T6-transform D#, is satisfied by the D# that is in fact 
the next pitch-class event of the piece after the repeated statement 
of rh-lh. And the next event is the E depicted in Figure 20(ii) and 
(iii); as the Figures indicate, this event expands, prolongs and 
confirms the Ti-ish, J-ish, T8-ish and K-ish qualities of the rh-lh 
progression according to the schemata of Figures 19(a),(d),(e) and (f) 
respectively. And so on, through Figure 20(viii). In the latter Figure 
we see the natural pairing-off of T, and I discussed earlier in 
connection with Figures 19(a) and (c). 

Figure 20(ix) shows an analogous natural pairing-off of T1 and K, as 
per Figures 19(b) and (f), when aspects of Figures 20(ii) through (v) 
are combined to indicate certain possibilities for a transformation- 
network involving 4-note chords. Figure 20(x) does the same for the 
natural pairing-off of J with T,. 

The combination of Figures 20(ii) through (v) into Figure 20(ix) 
analyzes the generation of the new chord (C,F,Bb) as the outcome of 
a complex system of potentialities and urges induced by the kinetic 
character of transformations characterizing a progression, namely rh- 
to-lh. It is also legitimate, indeed necessary, to point out that the new 
chord (C,F,Bb) can be generated more simply, just by transposing lh 
via one of its own most common internal intervals. The T; operation 
which transposes lh into (C,F,Bb) is not, however, a "kinetic" or 
"progressive" operation in the sense of Figures 19-20. That is, it does 
not arise from any aspect of the progression rh-to-lh. Rather, it arises 
from the prominence of 5 as a static vertical interval within lh itself. 
(The interval 5 also appears as a static verticality within rh.) This is 
not at all to argue that T, and T7 are "unimportant", or even of 
subordinate importance to the progressive transformations of Figures 
19-20. Indeed, T5 and T7 do a good deal of work in the music, 
especially in extending chains of fourths up and down.14 What I wish 
to emphasize is that our theoretical format enables us to distinguish a 
formally different function for T5 and T7, than for T6, T1, Ts etc. in 
this context. T5 and T7 we can call "internal", "spatial", "prolonga- 
tional" etc. These transformations have to do with static, internal 
features of various events. The importance of Ti has to do with the 
fact, e.g., that T5(lh) has two common tones with Ih itself; this does 
not involve any relationship in time between Ih and something else 
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that comes before or after. In contrast, the "kinetic", "dynamic" or 
"progressive" transformations T6, Ti, Ts, I, J and K assume importance 
because of the relative similarities between one thing (rh), when 
suitably transformed, and a subsequent and different thing (lh) to 
which it is moving. 
This distinction between "spatial" or "internal" and "dynamic" or 
"progressive" transformations is methodologically attractive. It is 
also strikingly modeled and reflected by certain algebraic relations 
among the abstract transformations themselves. To pursue this 
matter, let us first isolate all the strongest "internal" transformations 
associated with rh and/or Ih in our present example. Two such 
transformations are Ti and T7, as already noted. The interval-class 5 
appears maximally often both in Ih and in rh, and 5 is a unique 
maximal interval class in Ih. To put this in our terms, T;(rh) and 
T7(rh) each have as many tones in common with rh as does any other 
transposed form of rh; T5(lh) and T7(lh) each have two tones in 
common with Ih, strictly more than does any other transposed form 
of Ih. 

Interval-class 2 is also characteristic of the internal structure of both 
rh and Ih; further, it is the only interval-class other than 5 contained 
in Ih. So T2 and TIo are also transformations with a special "internal" 
character here. 

There are of course quite a few inversions preserving one note or one 
dyad of rh, and quite a few preserving one note or one dyad of Ih. 
Two inversions do more than this, as regards the internal structures 
of rh and Ih. Inversion about C, which we shall call operations L, 
preserves all of Ih: L(lh)=lh. And M, the inversion which exchanges 
F and B, also exchanges F and C; thus M(rh) has two common tones 
with rh, and also M(lh) has two common tones with Ih. 

In sum, we can collate the transpositions T; and T2, their inverses T7 
and Tl0, and the two inversions L and M, as the transformations of 
"maximally internal" character here.15 They contrast with the "max- 
imally progressive" transformations TI, T6, Ts, I, J and K. The 
"internal" transformations make a thing or each of two things (rh 
and/or Ih) very like itself; the "progressive" transformations make 
an earlier thing (rh) very like a later, different thing (Ih). Now if I 
first transform rh to be very like Ih, and then transform the result to 
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be very like itself, it is likely that the final result will still and again 
be very like lh. We can thus reasonably expect an-internal-trans- 
formation-following-a-progressive-transformation to be itself a pro- 
gressive transformation. Figure 21 tabulates some algebraic equations 
that instance just such features of our situation. 

The table can be read: column-heading operation, followed by table- 
entry operation, results in row-head operation. Thus T6, the second 
column-head, followed by M, the table entry in the fourth row of that 
second column, results in J, the operation at the head of the fourth 
row. If we transpose something by a tritone, and then take the M- 
associate of that tritone-transpose, we will have at hand the J- 
associate of the original operand. Algebraically, we express this as 
M(T,(operand))=J(operand), or even more simply MT,=J. Again, 
the latter equation can be read, "the M-associate of the tritone- 
transpose is the J-associate." In similar fashion, inspecting the third 
column and the fifth row, we note the relation LT,=K, which we can 
read, "the L-associate of the 8-transpose (of any operand) is the K- 
associate (of that operand)." One sees from the table in how many 
various ways the progressive transformations, at the heads of columns 
and rows, are related in this fashion by internal transformations 
entered onto the table. The progressive transformation T1, for 
example, can be expressed in four different ways as the composition 
of an internal with a progressive transformation: T, =T7T,, Ti =T5TS, 
T,=LJ, and Ti=MI. The progressive transformation J can also be 
expressed in four different such ways: J=LTi, J=MT(,, J=T7K, and 
J=T,I. 
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If we isolate the three progressive transpositions, we can arrange 
them in a transformation-network by invoking such equations. (See 
Figure 22.) 

The T, arrow from the bottom to the middle node of the figure 
means TJT8=Ti; the T2 arrow from the top to the bottom node means 
T2T(=Ts. Here (all) the three progressive transpositions are the 
contents of nodes, and (all) the internal transpositions act as trans- 
formations associated with arrows on the graph. Figure 23 shows 
that (all) the three progressive inversions can be arranged in a 
network isographic with Figure 22. The analogous Ti and T, arrows 
here mean J=TjI, I=T2K. 

We can highlight the "internal" character of the graph-transforma- 
tions very effectively by pointing to yet another isographic network, 
namely that one which can be read directly from (all) the internal 
intervallic relations within lh itself (Figure 24). 

One can thus show formally how the internal structure of Ih itself is 
thematically "prolonged" via certain interrelations among the progres- 
sive transformations, as those transformations jockey for power in 
the manner of Figure 20. The isography of Figures 22-23-24 is 
amusing but not really very startling (compared say to that of Figure 
17); it is really close to implicit in the very logic of "internal" and 
"progressive" transformational categories. What is actually being 
exhibited powerfully here is the utility of the transformational 
outlook, and its organizing force in connection with common-note 
considerations. 
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Let me hasten to caution any readers who may be unfamiliar with 
this piece that the foregoing discussion does not constitute an analysis. 
It is purely an elaboration of Figure 19, to support an assertion that 
such theoretical material is relevant to analysis.16 

To exemplify further the analytic possibilities inherent in transforma- 
tional theory, we shall now examine certain rhythmic aspects of the 
viola melody from the Webern piece studied earlier. Figure 25 
transcribes the pitches and durations of that melody. 

Underneath the note-heads of the Figure I have written numbers 
measuring how many written eighths, before or after the first bar line 
of the score, each note is attacked. The opening G is attacked 4 
eighths before the bar line; the subsequent B is attacked 2 eighths 
before; the subsequent G is attacked one eighth after; the subsequent 
Ct 2 eighths after. And so on. I ignore the fermata for reasons that 
will become clear presently. 

By this means one obtains three sets of time points, PH1, PH2 and 
PH3, corresponding as indicated on the Figure to the attack points of 
notes within the three "phrases" of the melody. PHI is the time- 
point set (-4, -2,1,2), PH2=(5,6,7,8,10), and PH3=(13,14,15,17,19, 
20,22). We shall be examining certain "progressive" transformational 
relations between PH1 and PH2, between PH2 and PH3, and 
between PHI and PH3. In this situation, we can easily ignore the 
fermata because any translation of PH2 and PH3 forward in time, 
due to the fermata, will simply be reflected by a corresponding 
algebraic translation ("transposition") of the transformations at issue 
between PH1 and PH2, or PH1 and PH3. Further observations on 
problems of modeling are developed in a footnote.17 The numerical 
labels for time-points make it easy to compute standard transforma- 
tions of the sets PH1, PH2 and PH3, and to count common-element 
relations among transformed sets. For instance, given any integer i 
we can ask this question: suppose PH2 were performed i eighths 
later; how many common attack-points would it share with PH3? 
That is, how many common things are there between Ti(PH2), the i- 
transpose of PH2, and PH3? That is, what is the numerical value of 
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CMNF(Ti, PH2, PH3)? A convenient format for answering this 
question is provided by the matrix of Figure 26. 

The time-points of PH3 are listed horizontally along the top of the 
Figure; the time-points of PH2 are listed vertically at its left. Each 
numerical entry on the table is the difference between the number 
that heads the column, and the number which heads the row, in 
which that entry appears. For instance, the number entered in the 
column headed "19" and the row headed "7" is the number 12= 
19-7. 

If the number i appears N times as an entry on the table, then there 
are N different ways of writing i=y-x subject to the constraint that 
y and x be members of PH3 and PH2 respectively. Conversely, if 
there are N different ways of writing i=y-x subject to that con- 
straint, then there will be N entries of i on the table. Subject to the 
constraint, i=y-x if and only if y=i+x, which is so if and only if y is 
the i-transpose of x, that is y=Ti(x). So i appears N times on the table 
if and only if N members of PH2 have their i-transposes lying within 
PH3. And that is so if and only if Ti(PH2) has N common members 
with PH3. Thus, finally, the number of times that i appears on the 
table is N=CMNF(Ti, PH2, PH3). 

Since PH2 has five members, that number N can never be greater 
than 5. Inspecting Figure 26, we see that no entry actually appears 
five times; this means that no transposed form of PH2 is completely 
embedded in PH3. However, each of the numbers i=7,9 and 12 
appears four times on the table; thus T7(PH2), T9(PH2) and T12(PH2) 
each have four common attack-points with PH3. In our earlier 
parlance, the relation between the attack structures of PH2 and PH3 
sounds "fairly T7-ish," "fairly T9-ish," and "fairly T 2-ish." Or, to put it 
yet another way, the attack structure of PH3 includes something like 
a variation of the attack structure of PH2, played 7 eighths later, 
something like a variation of that attack structure played 9 eighths 
later, and something like a variation played 12 eighths later. Figure 
27 illustrates these relationships. 
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The TI2 relation in Figure 27 is easy to hear because it is powerfully 
supported by pitch and contour associations within the melody: the 
re-attained low C#, the leaps up from C# with agogic accents, the 
rhythmic match-up of the final cadential gestures within PH2 and 
PH3, etc. The T12 relation is also supported by the "strong" and 
"weak" implications of the written meter, but it is dubious to invoke 
that criterion in this context. One does hear the written meter, I 
would say, but not on the basis of the attack patterns alone. Crucial, 
e.g., are the eighth rests at time-points 4 and 12, each followed by 
attacks on three successive eighths. The rests are not picked up by 
our attack-point analysis; there are only three entries of 8 on Figure 
26, as opposed to four entries of 7 and four entries of 9. Thus Figure 
26 cannot model our urge to associate the three pickup eighths at the 
end of measure 2 (following a rest) with the three pickup eighths at 
the end of measure 1 (following a rest). It offers us not Ts, which the 
latter hearing suggests, but T7 and T9. 

I do not mean to deny interesting functions for T7 and T9 as 
"progressive" transformations here. (And the "internal" T2 that relates 
them is indeed important; we shall pick it up later.) Still I do not 
think that attack-point transposition is an optimal way to think of 
transforming PH1 "progressively" into PH2, or either into PH3. 
Attack-and-release analysis, or attack-and-duration analysis could go 
farther. An even better model, I suspect, might eventually be 
provided by some scheme of "grammatical" transformations, which I 
have tried to suggest intuitively by the format of Figure 28. 

However, it seems a lengthy and difficult project to try to work out a 
pertinent formal grammar, for such a scheme, rigorously and with 
general applicability to other pieces. 

More revealing than attack-point transpositions here are various 
"progressive" attack-point inversions (i.e. retrogrades). This is not 
surprising if one recalls Webern's fondness for palindromes, manifest 
in his later work and, as we shall see, already latent here. Common- 
member relations involving inverted forms of our time-point sets can 
be tabulated by using a method of "sums" analogous to the method 
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of "differences" reflected in Figure 26. Figure 29 below gives tables 
of sums (a) for PHI and PH2, (b) for PH2 and PH3, and (c) for PH1 
and PH3. 

Figure 29(a) tells us that there are three instances of y+x=6, or 
y=I6(x), such that y is a member of PH2 and x is a member of PH1. 
There are also three such instances of y=I8(x). Here the numbers 6 
and 8 are used to label inversion operations for obvious algebraic 
reasons. We should remember, though, that the sum of the numbers 
y and x, unlike their difference, depends on the distances of the 
corresponding events from the event labeled as time-point zero. 
Time-point zero, and the distances of the y and x events therefrom, 
may be irrelevant to the musical effect of the inversion. In particular, 
we should not expect to find any pertinent structural event at time- 
point "6", when we examine the influence of "I6" in relating PH1 to 
PH2. Rather, the important structuring moment in connection with 
I6 is the center of inversion, time-point 3. If y=2I3x), then y=6-x 
and y-3=3-x; hence the event at y comes just as far after time- 
point 3 as the event at x came before time-point 3.18 Figure 30(a) 
shows the structuring influence of I6 in relating PH1 to PH2; the 
dotted line demarcates the center of inversion at time-point 3, which 
labels the fermata on the C . Attack-points paired by the inversion 
(whose time numbers add to 6) are connected by slurs on the Figure. 

Figure 30(b) shows in analogous fashion the structuring influence of 
Is in relating PH1 to PH2. The dotted line demarcates the center of 
inversion at time-point 4, where the rest begins. 

The idea that some temporal inversion relates PH1 to PH2 is 
attractive because of the general sense of contour retrograde affecting 
the corresponding melodic gestures. The ambivalence between 
Figure 30(a) and Figure 30(b), as to just how the quasi-palindrome 
works itself out, is also attractive in modeling a certain floating 
character in the rhythmic effect of the music. The fermata and the 
rest assume interesting formal functions in this connection. 
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The two progressive inversions that relate PHI to PH2, I6 and Is, are 
themselves related by the "internal" transposition T2. That is, 18=T216. 
The latter equation can be verified algebraically: if y is the Is- 
associate of x and z is the I6-associate of x, then y=8-x=2+(6-x)= 
2+z=T2(z); hence I8(x)=y=T2(z)=T2I6(x). The musical effect of this 
relation can be seen in Figure 30: for example, the I6-associate of 
time-point 1 is time-point 5 (Figure 30(a)); the Is-associate of time- 
point 1, time-point 7, arrives 2 eighths later (Figure 30(b)). 

T2 is an "internal" transformation specifically in connection with the 
internal structure of PH2. PH2 contains three temporal intervals of 
2, as many as it does intervals of 1; it contains fewer than three 
instances of all other temporal intervals. Equivalently, if we displace 
PH2 one or two eighths later, the displaced form will have three 
common attack-points with PH2 itself; other forward-displaced forms 
of PH2 will have fewer than three common attack-points with PH2. 
This "internal T2-ishness"of PH2 is arguably the first indication 
anywhere in the music that the written eighth notes group function- 
ally in pairs, rather than in threes, not at all, etc. And that metric 
function for T2 is also displayed in its relating the two quasi-palin- 
dromes we have just examined, via the equation IS=T216. 

In contrast to PH2, PH1 has no "internal T2-ishness." Indeed, it has 
no "internal Ti-ishness" for any temporal interval i. Its four time- 
points span one interval of 1, one interval of 2, one interval of 3, one 
interval of 4, one interval of 5 and one interval of 6. PH1, then, is a 
sort of rhythmic all-interval or equal-interval set. The way in which 
PH1, PH2 and PH3 each "unfold" their internal rhythmic structures, 
as they are exposed in time, time-point by time-point, can con- 
veniently be studied using machinery I have developed elsewhere.19 

Let us return to Figure 29(b). It shows that I25 and I27 will have 
maximal structural influence among inversions, in relating PH2 to 
PH3. The internal transformation T2 is again involved:I27=T2zIz. 
Figures 31(a) and (b) indicate how the influences of the new inversion 
operations are manifest in the music. Since 25 and 27 are odd 
numbers, the centers of inversion now lie halfway between eighth- 
beats in the score. As noted earlier, our simple attack-point model 
cannot adequately engage the crucial rests that, along with the 
attacks which follow them, suggest a Ts relation between PH2 and 
PH3. 
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Figure 29(c), finally, shows us that Ii is the unique inversion that 
completely embeds an inverted form of PH1 in PH3. (In fact, I,i(PH1) 
is a completely unique form of PHI embedded inside PH3; examin- 
ation of a difference-table for PHi and PH3 will reveal that no entry 
appears as many as four times, so no transposed form of PHi can be 
embedded in PH3.) Investigating farther, we can note that II; is also 
a strong "internal" transformation with respect to PH2. Specifically, 
I1i is a unique proper-transposition-or-inversion operation such that 
the corresponding form of PH2 has as many as four common time- 
points with PH2 itself. So, among all proper transpositions and 
inversions, I, transforms PH2 into something most like itself. That 
aspect of IIi, as well as the complete embedding of IlI(PH1) in PH3, 
can be observed in Figure 32. 

The pitch-structure of the melody supports the palindromic aspects 
of the Figure nicely. Within the music for PH2, the "minor third" E- 
C# at time-points 5 and 7 is answered by the "minor third" Ab-F at 
time-points 8 and 10, suggesting retrograde-inversion of the pitch 
succession. The opening "major third" C-B at time points -4 and -2 is 
similarly answered, now in transposed retrograde, by the "major 
third" F-C# at time-points 17 and 19. The closure of the quasi- 
palindrome on the low C# at time-point 19 is attractive: it interacts 
well with other surprising aspects of the following D-C in the melody, 
and it brings out a large-scale relation of the low C# to the opening G 
which fits well with our earlier pitch-class analysis of the passage. 

The palindromic aspects of Figure 32 are important because they 
indicate a rationale for asserting a structural closure of some sort 
toward the end of PH3 in the rhythmic context as a whole. The large 
palindrome embedding Ili(PH1) in PH3 and emphasizing the close- 
ness of I, (PH2) to PH2 itself is intrinsically of strong effect. It also 
can be thought of as "resolving" smaller-scale ambiguities about 
weaker quasi-palindromes, ambiguities manifest in Figure 30(a)-(b) 
and Figure 31(a)-(b). The ability of our system to model structural 
closure here is particularly significant because nothing else at hand 
provides such a model. That includes specifically the attractive 
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"transformational grammar" of Figure 28, which did not model any 
such closure. If the grammar could be made rigorous in an intuitively 
plausible way, it seems to me that the issue of closure would have to 
be confronted and resolved. (And there is a lot more that makes the 
"if" a big "if".) 

We have explored transformational techniques in an atonal pitch- 
class context. We have noted points of contact with Riemann-like 
tonal theories, and we have applied our machinery, mutatis mutandis, 
to an atonal rhythmic context. The notions exposed can easily be 
applied to yet other contexts. Transformational graphs and networks 
are obviously relevant to the disposition of row-forms in a classical 
twelve-tone piece.20 The ideas of transformational "urges", and of 
various transformations jockeying for network-forming priority, that 
came up in connection with some of our work, might be particularly 
suggestive in approaching the study of open-form pieces. Do such 
considerations, for instance, influence a performer in constructing an 
intuitively convincing performance from the score of Stockhausen's 
Klavierstueck XI? Here one would want to consider at least rhythm, 
heavily influenced by the composer's directions, as well as pitch. 
Plus Minus might also repay such investigation; heavy computer 
assistance would be welcome and perhaps even essential, to cope 
with all the potential transformations involved. 

APPENDIX 

Here I shall develop more rigorously the formalities of transformation- 
graphs, etc. I have tried to make the discourse as accessible as 
possible to a determined reader, but here and there I have had to 
assume a certain degree of familiarity with mathematical set-theory 
and group theory. 

There is a wide variety of formal definitions possible for the constructs 
involved. I have selected my definitions here on the basis of three 
criteria. (1) The defined constructs are optimally applicable for the 
purposes to which I have put them in this paper. (2) The definitions 
are easy to modify, should other purposes suggest any of a number of 
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conceivable modifications. (3) The constructs are easy to define and 
manipulate on computers using LISP-based languages; they fit easily 
into the sorts of contexts typically considered and manipulated by 
Artificial Intelligence.21 

DEFINITION 1. A node-arrow system is an ordered pair (NODES, 
ARROW) comprising a finite family NODES of undefined "nodes" 
N, and an unspecified relation ARROW on the family of nodes. 

The relation ARROW is considered to be a collection (any collection) 
of ordered pairs of nodes. Nodes N1 and N2 are "in the arrow 
relation" if the ordered pair (N1,N2) is a member of the collection 
ARROW. 

DEFINITION 2. A node-arrow system is disconnected if NODES 
can be partitioned into two proper subsets NODES1 and NODES2 
in such fashion that, for every node N1 in NODES1 and every node 
N2 in NODES2, neither (Ni,N2) nor (N2,Ni) is in the arrow relation. 
A node-arrow system is connected if it is not disconnected. 

It is easily shown that any disconnected node-arrow system can be 
partitioned into a finite number of "connected components", none of 
which communicates with any other via ARROW. Hence, for practical 
purposes, we can restrict our attention to connected systems. 

DEFINITION 3. In a node-arrow system, nodes N and N' are 
coextensive if N=N', or if both (N,N') and (N',N) are in the arrow 
relation. 

For example, on Figure 6 earlier the node containing Ts(X) is co- 
extensive with the node containing I(X); it is also coextensive with 
the node containing T2(X). Although the I(X) node and the T2(X) 
node are both coextensive with the Ts(X) node, they are not co- 
extensive with each other. Simply by inspecting the graph, without 
reference to the music under analysis, we can see that the I(X) node 
is "earlier than" the T2(X) node, in some sense. We can formalize 
that intuition by a definition. 

DEFINITION 4. In a node-arrow system, node N is earlier than 
node N', and N' is later than N, if there exists any sequence of nodes 
NO,NI,...,NK such that No=N and NK=N', and also such that 
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(Nk-1,Nk) is in the arrow relation for each k=1,.. .,K, and also such 
that not every (Nk,Nk-1) is in the arrow relation. 

Intuitively, we demand some path from N to N' within the system 
that involves traversing (t least one one-way arrow. The definition 
makes the I(X) node on Figure 6 "earlier than" the T2(X) node. It 
makes the left hand X node, on that Figure, "earlier than" the node 
containing Ts(X) (because of the one-way Ts arrow). Note that the 
T,(X) node is both coextensive with and earlier than the T2(X) node. 

DEFINITION 5. A node-arrow system is chronological if no pair of 
nodes (N,N') exists, such that N is both earlier than and later than N'. 

As mentioned earlier in the text, non-chronological systems are by no 
means uninteresting for musical applications. Still, it is nice to have 
Definition 5 available for formal purposes. Alternate definitions for 
"earlier than" etc. are possible, leading to alternate definitions of 
"chronological" systems. 

DEFINITION 6. A transformation-graph is an ordered triple 
((NODES,ARROW),G,tr), where (NODES,ARROW) is a node-arrow 
system, G is a mathematical group, and tr, the "transition function", 
is a function assigning to each member (N1,N2) of ARROW a value 
tr(N ,N2) in the group G, subject to the following condition. Condition: 
suppose N=No, (No,NI) and (N,,N2) and...and (NK-1,NK) are all in 
the arrow relation, and Nk=N'. Suppose also N=N', (N',N[) and 
(N ,N2) and... and (NJ- ,NJ) are all in the arrow relation, and NJ=N'. 
For each k between 1 and K, set Xk=tr(Nk- ,Nk). For each j between 
1 and J, set x'=tr(N' -,Nj). Then the group products Xk. . .X2Xl and 
... . .x2x are equal. 

The point of the condition is to ensure that different arrow paths 
from N to N' will not lead to different overall implicit transformations 
relating the potential contents of N to the potential contents of N'. 
Figure 33 should clarify the context to which the condition applies. 

Definition 6 could be considerably broadened if we replaced the 
group G by a general semigroup. Much of the following work could 
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be carried through. Broadening the definition would also allow more 
musical applications. But it would make our model, already quite 
cumbersome, subject to even further mathematical niceties and 
qualifications. And sticking to groups has definite advantages in 
connection with connected graphs. A later remark will pick this issue 
up. 

DEFINITION 7. Given transformation-graphs 
((NODES,ARROW),G,tr) and ((NODES',ARROW'),G',tr'), 

an isomorphism of the first onto the second is an ordered pair (f,g) 
satisfying conditions (1) through (3) following. (1) f is a 1-to-l map of 
NODES onto NODES' such that (N1,N2) is a member of ARROW if 
and only if (f(NI),f(N2)) is a member of ARROW'. (2) g is an 
isomorphism of G onto G'. (3) For every member (N1,N2) of ARROW, 
tr'(f(N,),f(N2))=g(tr(N ,N2)). 
For an example of such isomorphism, let us first consider Figure 8, 
which diagrams a transformation-graph ((NODES,ARROW),G,tr) 
pertinent to the Webern piece. G is the abstract group of "transpo- 
sitions and inversions". In this graph, I,J and K mean respectively 

"invert about D", "invert about F#", and "invert about A, so as to 
exchange G and B". Now imagine the Webern piece transposed up 
a half-step, producing a piece Webern&. An analogous graph 
((NODES&,ARROW&,G&,tr&) would evidently apply to the analy- 
sis of Webern&. We shall see that the intuitive "analogy" here is a 
formal isomorphism in the sense of Definition 7. The nodes and 
arrows of the new graph would evidently be the same as the nodes 
and arrows of Figure 8. Also, all the transpositions attached to the 
arrows of Figure 8 would evidently obtain as well in the new graph. 
But the centers of inversion pertinent to Webern& would all shift up 
a half-step along with the rest of the music. So in place of I,J and K, 
the new graph would have I&, "invert about Eb ", J&, "invert about 
G, and K&, "invert about Bb so as to exchange Ab and C." 

Now we are ready to demonstrate the formal isomorphism. Take 
NODES&=NODES and ARROW&=ARROW; take the identity map 
as the function f of Definition 7. Take G&=G; the new group, like 
the old, is the abstract group of all transpositions and inversions. The 
isomorphism g of Definition 7 works as follows: g(Tj)=Tj for any 
transposition operation Tj; if L is any inversion operation, then 
g(L)=L&, where, if L exchanges pitch classes u and v, L& exchanges 
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pitch classes T,(u) and T,(v), each a half-step "higher". Using the 
latter relation, we can set w=Tl(u) and compute L&(w)=T1(v)= 
T1L(u)=T1LT1-'(w). So L&=TiLTi-'. Thus g(L)=T1LTi-1 for any 
inversion L. Also g(Tj)=Tj=TTjTi-1 for any transposition Tj. In sum, 
then, g(OP)=Ti OP T,-' for any member OP of G, and g is in fact an 
inner automorphism of G=G&, a fortiori an isomorphism as de- 
manded by Definition 7. Condition 3 of the Definition is clearly 
satisfied, and hence the intuitive "analogy" of the graphs is indeed a 
formal isomorphism. 
Definition 7 can be extended in the obvious ways to cover "homo- 
morphisms", "automorphisms" etc. Several kinds of "homomorphisms" 
can be studied. If the mapping of NODES into NODES' is not 1-to-l, 
many finesses become involved. The embedding of graphs within 
other graphs, as instanced in Figures 11-12 earlier, is also worth 
some study. 

DEFINITION 8. A transformation-network is an ordered quadruple 
(((NODES,ARROW),G,tr),S,CTN,F), where ((NODES,ARROW),G,tr) 
is a transformation-graph, S is a set of "operands", CTN is a function 
from NODES into S, and F is a faithful representation of G as a 
group of operations Fx on S, all subject to this condition: for every 
member (N1,N2) of ARROW, if x=tr(N,,N2) and sl=CTN(NI) (the 
"contents" of N1) and s2=CTN(N2) (the "contents" of N2), then 
Fx(S )=S2. 

In a connected transformation-network, given the transition-graph, 
the set S, the representation F, and the contents CTN(No) of any one 
node No, one can uniquely infer the contents CTN(N) of every other 
node N. This inference relies upon the fact that G (or at least its 
representation on S) is a group, not just a semigroup. 
One avoids a lot of mathematical grief by stipulating, as I have done 
in definition 8, that the representation of G on S be faithful. The 
stipulation could conceivably be relaxed, should any good reason 
arise for wishing to relax it. 

At last we are in a position to define "isography" rigorously. 

DEFINITION 9. Two transformation-networks are isographic if 
their constituent transformation-graphs are isomorphic. 
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Not, NB, if they have "the same" transformation-graph. First of all, it 
is not clear what "the same" is to mean, especially when we want to 
compare e.g., transformations operating on individual pitch-classes, 
with transformations operating on sets of pitch-classes, with trans- 
formations operating on centers of inversion, etc. etc. We have so far 
skirted the problem by thinking of "an abstract group" and various of 
its (faithful) representations, in this context. But in what way can we 
abstractly distinguish two general abstract groups that are iso- 
morphic? Hence Definition 9 seems indicated. Note that it makes 
Figure 6 "isographic" with the analogous figure for Webern&, even 
though the latter network would involve different transformations 
(I&,J& and K&). 

One could go on to generalize, by formal definition, the special 
relation noted earlier in connection with the graph BIGSCHEME, 
between the network involving S=forms-of-X and the network 
involving S'=forms-of-Y. Many other formal constructs can be ex- 
plored abstractly, following the promptings of imagination, and/or 
analytic situations, and/or compositional ideas. In particular, one can 
explore a formal model for the way in which transformations can 
"jockey for power" in trying to establish rival provisional or potential 
networks. The latter study will involve not only the mechanics of the 
common-member function, but also notions of expectations, informa- 
tion, entropy et al. 

NOTES 

1. This aspect of the piece was noted and discussed by Bruce Archibald in 
his article "Some Thoughts on Symmetry in Early Webern: Op.5,No.2", 
Perspectives of New Music 10,2 (Spring-Summer 1972), 159-163. Archi- 
bald notes and discusses, too, other matters that will come up shortly in the 
present text. 

2. Allen Forte, The Structure of Atonal Music (New Haven and London: 
Yale University Press, 1973). Another excellent approach to these matters 
can be found in John Rahn, Basic Atonal Theory (New York: Longman, Inc., 
1980). Rahn's approach to atonal transformations resonates powerfully 
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with much of the material to be developed here. So do his remarks 
elsewhere on graphs and networks, as e.g. in "Relating Sets," Perspectives 
of New Music 18,2 (Spring-Summer 1980), 483-498, especially 494-497. 

3. Consider the pitch-class set Z that comprises X and the accompaniment 
chord of measures 0-1, together with the Eb that is to be the I-partner of C#. 
The complement of Z (i.e. the set of pitch classes not yet stated) is the 
tetrachord (Gb,Bb,C,E). This tetrachord has a familiar form. It embeds 
T1 (X)=(Gb,Bb,C), together with an associated inverted form of X. On 
Figure 1, one sees Gb withheld until the final sub-phrase of the melody 
begins, in measure 2. On Figure 1, Bb has yet to appear. The first Bb of the 
piece, in fact, appears as the twelfth pitch-class directly after Figure 1 ends. 
The Bb appears over Gb (F#) in the bass; one can analyze the dyad as in T, 
relation to the opening (G,B). When, after breaking off at the end of Figure 
1, the melodic Hauptstimme resumes in measure 5, its sequence of pitch 
classes is Bb-E-C-F#-(D)-F-E; the gesture occurs over F and F# in the bass. 
Here the Z-complementing tetrachord (Gb,Bb ,C,E) is expanded into a TI- 
form of the pentachord already discussed earlier: (F,Bb,Gb,E,C)= 
T,i(F#,B,G,F,C#). Thus T11 does eventually exert a large-scale influence 
over events of the piece, but not within the opening section itself. 

4. By no means do I wish to imply that "non-chronological" graphs would 
be useless for analytic purposes. A number of recent studies speak elo- 
quently to the contrary. See for instance Jonathan Kramer, "Multiple and 
Non-Linear Time in Beethoven's Opus 135," Perspectives of Newl Mulsic 
11,2 (Spring-Summer 1973), 122-145. 

5. Suggestive here is the theory explored by Allen Forte in his article 
"Aspects of Rhythm in Webern's Atonal Music," Music Theory Spectrum 
2(1980), 90-109. One might, for instance, associate with each node of a 
chronological graph a beginning time-point and an ending time-point, or 
permissible ranges for beginning and ending points, in such a way as to 
engage Forte's constructs. 

6. The interested reader will find further development of general notions 
along such lines in my article "A Formal Theory of Generalized Tonal 
Functions," Journal of Music Theory 26.1 (Spring 1982), 23-60. 

7. For instance, I would be ready to argue that a completely adequate 
analysis of the Beethoven passage requires its conceptual integration into 
contexts that include the opening of the Rondo, that include hearing E4, 
rather than E3, as the structural bass underlying the E major material of 
the second group in the first movement, etc. 
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8. Historically intermediary between the classical style of Figures 12-14 
and the atonal idiom represented by the Webern passage, certain aspects of 
Wagner's motivic harmonic practice should be particularly well suited for 
investigation by transformation-graphs and networks. 

9. Willi Reich, Schoenberg, trans. Leo Black (London: Longman Group 
Limited, 1971), page 55. I do not know any further who said what to whom 
on what occasions. 

10. 3PLUS8EQUALS11 governs transposition networks through which the 
Kopfmoti? itself gets sent, along with various of its forms (clarinet, measure 
8; piano, measure 9; piano, measure 12; piano, measure 13; etc.). The "11 
arrow" of 3PLUS8EQUALS11 generates the descending chromatic line 
which is first heard as an "independent" countersubject to the Kop)fmotit. 
The clarinet begins to make this generation clear in measure 11; the piano 
makes it all too obvious through measures 19-23. And so on. 

11. For an explanation of this construct in depth, the reader can consult my 
article "Forte's Interval Vector, my Interval Function, and Regener's 
Common-Note Function," Journal of Mtusic Theortl 1977, 194-237. 

12. See note 11. 

13. I am indebted to Michael Bushnell, who turned my attention to many 
of the following points with work leading to an unpublished research paper 
at the State University of New York, Stony Brook, 1981. Bushnell restricted 
his attention to relations involving intervals, transpositions and interval 
functions. Here I translate some of his work into common-note discourse, 
and augment the context by including inversions, as well as transpositions, 
in the family of germane transformations. 

14. This aspect of the piece can be made the basis for an interesting 
analytic overview. Jonathan Kramer carried such an analysis through many 
years ago in an unpublished research paper at the University of California, 
Berkeley. 

15. Systematic methods exist for being sure one has found all the "max- 
imally internal" operations one wants to find here. Similar methods enable 
one to be sure one has found all the "maximally progressive" transformations 
relating rh to Ih, etc. A good method is to label the pitch classes with 
numbers 0 through 11 according to some consistent convention, and then to 
inspect certain tables of differences and sums of such labels (modulo 12). 
An analogous method, using numerical labels for various time-points, will 
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be demonstrated in some detail later on, in connection with some rhythmic 
analysis. I have avoided attaching numerical labels to pitch-classes here for 
reasons I have expounded elsewhere. ("A Label-Free Development for 12- 
Pitch-Class Systems," Journal of Music Theory 1977, 29-48.) 

16. The ability of this little piece to sustain (and withstand!) indefinite 
analysis of all kinds is truly remarkable. Important published analyses 
include Allen Forte, "Context and Continuity in an Atonal Work," PNM 
volume 1, number 2, 72-82; idem, The Structure of Atonal Music (New 
Haven and London: Yale University Press, 1973), 97-100; Robert Cogan 
and Pozzi Escot, Sonic Design (Englewood Cliffs, New Jersey: Prentice- 
Hall, Inc., 1976), 50-59; and Elaine Barkin, "Arnold Schoenberg's Opus 
19/6," In Theory Only volume 4, number 8, 18-26. A detailed rhythmic 
analysis of the first half of the piece appears in David Lewin, "Some 
Investigations into Foreground Rhythmic and Metric Patterning," Music 
Theory: Special Topics, ed. Richmond Browne (New York: Academic Press, 
1981), 110-117. To illustrate the point I made at the beginning of this note, 
let me add some observations in the way of "Romantic" analysis. The rh 
and Ih chords can be heard as two tolling bells (at Mahler's funeral). They 
toll unevenly, every 7=3+4 quarters. The events of measures 7/4 to 9 
represent the ruminations of Schoenberg during one of these tolling periods, 
now articulated by the first attack of measure 7, the last attack of measure 
8, and the first attack of measure 9, into 7=4+3 quarters. These rumina- 
tions, that is, are "inside the bells". Note "genau im Takt. " The D-C*-D-()- 
Eb gesture in measure 7 might refer to the same succession of pitch-classes 
(and three exact pitches) in the first movement of the Eroica Symphony, 
during the opening 'cello theme. The rumination eulogizes the memory of 
Mahler as a hero (in a complicated poetic way, via Beethoven's inscription 
on the symphony); it also possibly recalls a memory of Mahler conducting 
the symphony. The idea of recollection is supported by numerous musical 
recollections from the first number of the opus. The progression rh-lh itself 
strongly echoes the vertical sonorities (A,B) and (G,C,F) on the first attack 
and at the fourth eighth of measure 1, in number 1. The Dot-E-D# that 
follows, in number 6, strongly echoes the same melodic gesture, that closed 
off the end of number 1. These recollections are "compressed" in number 6, 
as were the poetic ruminations of Schoenberg in the Romantic analysis. 

17. We cannot engage even the rhythmic structure of the sustained melody 
adequately without also taking into account its durations or its release- 
points, as well as its attack-points. (Given the attack-points, the release- 
points can be inferred from the durations, or the durations from the release- 
points.) In this connection, we should attach two numbers to each rhythmic 
event in the melody: its attack and release, or its attack and duration. We 
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could then apply various techniques to this two-dimensional model. How- 
ever, we can still legitimately study the attack-structure of the melody in 
itself, and it simplifies our transformational formalism a good deal to do so 
here. 

Figure 25 assigns the time label "zero" to a point at which nothing is 
actually "happening" in the sound. One can ask just what "time" the 
number 0 is labeling, and this question will lead us into very deep 
philosophical waters. The safest, but not very satisfying, answer is that it is 
not directly labeling any time at all, but rather a certain notational feature 
of the score, the bar line, which we presume by various historical and 
cultural conventions to be significant. This throws the main burden of 
explication back on those conventions, which is fair but not very enlight- 
ening. In addition, it is not clear to what extent the conventions are still 
legitimate for music in this style. 

Another answer, more satisfying but very difficult to handle, is that the 
number 0 is labeling an equivalence class of "real" moments in time, an 
equivalence class to which the bar line also refers. Each moment in that 
class is defined as the "real" time, within any specific competent perform- 
ance of the piece, at which we feel we have gone as far beyond the attack of 
the B as that attack was beyond the attack of the G. This attribution of 
meaning to the number 0 certainly engages our listening better than the 
other, purely notational, meaning. But it raises hosts of new issues and 
complexities. How can we define what is a "competent" rhythmic perform- 
ance without circularity in this situation? What is "any specific performance"? 
All those that I have heard? All that have ever been? All that ever could be? 
All that I have ever mentally imagined? That anyone has ever (competently) 
imagined? Could ever imagine? Etc. And, yet further, in what sense is the 
"real" time of these occasions "real"? Suppose that at the same moment one 
quartet in New York has just reached the bar line of measure 1, another 
quartet in New Haven has just reached the F# corresponding to our "attack- 
point 13"; in what formal sense does this "moment" coincide with two 
distinct non-equivalent "times" by our criterion, and "real" times at that? A 
theory adequate to the resolution of all these difficulties would probably 
have to define musical time by clocks based on pertinent "local activities." 
Such a theory might well have common features with various aspects of 
Bergsonian time and Special Relativity. Two times would be "equivalent" if 
they marked suitably similar stages in suitably similar local systems of 
activity, performed or imagined. It is not clear to me how "musical activity" 
could be defined without invoking "musical time" a priori; perhaps one 
would have to take "musical activity" as an undefined primitive concept 
here, somewhat in the spirit of John Cage. This would raise other philo- 
sophical problems, probably soluble but not to the taste of everyone 
interested. 
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I suspect that the big underlying problem is the inadequacy of the present 
tense in Indo-European languages to discuss matters involving the immedi- 
acies of musical time. For example, when I say, "the A in measure 9 is 
(beautiful/sustained/a passing tone/etc.)," in what time-system is "the A" 
(whatever that is) in a temporal present along with me? Few will be content 
with a semiotic fantasy of light rays striking my eye after reflecting off an 
area including a certain black circle on one of certain agreed-on pieces of 
paper, or with my imagining at the present moment such an event. The 
sense in which "the" A "is" in my present, beyond such a purely notational 
sense, involves in many ways just the same problems as those encountered 
in attributing more than notational significance to "time-point zero". To 
specify what I mean when I say "the A in measure 9 of this piece is.. .," I 
would probably find myself saying instead "this particular class of equivalent 
stages, within that particular class of equivalent series of competent local 
activities, is... .". (Or, instead of "is", "bears such and such relations to such 
and such other classes of stages.") 

18. The article "A Label-Free Development... .," cited at the end of note 
15 earlier, goes into the abstract modeling problems raised by attaching 
numerical labels to inversion operations. The discussion there, in connection 
with pitch classes and numbers modulo 12, applies here, mutatis mutandis, 
in connection with time points and ordinary integers. 

19. "Some Investigations Into Foreground Rhythmic and Metric Patterning," 
Music Theory: Special Topics, ed. Richmond Browne (New York and 
London: Academic Press, 1981), chapter 5, pages 101-137. 

20. For example, consider Webern's Piano Variations opus 27. The graph 
consisting of two nodes connected by one arrow, along with the trans- 
formation "pitch-class invert about A (or Eb)," is associated with many 
events lasting only two eighths in the second movement, and also with 
longer antecedent-consequent relations affecting entire row-forms at the 
beginning and end of the third movement. In any Schoenberg piece using a 
semi-combinatorial row, the local disposition of row forms throughout the 
piece typically involves many isographic networks of rows, based on the 
graph that has four nodes, all interconnected by arrows labeled "make 
retrograde", "combinatorially invert", and "combinatorially retrograde- 
invert," and subgraphs of that graph. 

21. An excellent introductory text for interested uninitiates is that by 
Patrick Henry Winston, Artificial Intelligence (Reading, Massachusetts and 
Menlo Park, California: Addison-Wesley Publishing Company, 1977). 
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