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Monoclinic crystals can be described in two settings: in the first setting the C2

rotation axis is parallel to the z axis and in the second setting it is parallel to the y

axis. Transformations of lattice parameters, Miller and zone indices, and atomic

coordinates is straightforward; the situation is far more complex for texture

analysis with orientation distributions and corresponding representations. This

article gives explicit transformations that need to be applied, not only for texture

analysis but also for calculations of physical properties of materials with

preferred orientation. In texture research the relationship between the

Cartesian crystal coordinate system and the unit cell must be unambiguously

defined and a uniform convention is desirable.

1. Introduction

When it comes to crystal symmetry there is a rigorous system

that was developed centuries ago, establishing lattice types,

point groups and space groups with clearly defined conven-

tions, and yet there are some aspects that can cause consid-

erable pain, not so much for single crystals, but when it comes

to crystal aggregates and texture analysis. In this article we

analyze the issue of monoclinic settings and corresponding

transformations.

For all crystals with a symmetry axis, the (crystallographic) z

axis is chosen as the unique axis, except for the monoclinic

system, where it is either the z axis (parallel to c, first setting)

or the y axis (parallel to b, second setting). The origin of this

confusion lies in mineralogy, where lattice planes are tradi-

tionally defined on the basis of morphology and the second

setting is used. For example, in mica, the ‘basal’ plane (001) is

an excellent cleavage plane but not the monoclinic mirror

plane. In pyroxenes, [001] is the direction of the silicate chains

but not the monoclinic rotation axis. Likewise, in monoclinic

feldspars, the (010) cleavage must correspond to the equiva-

lent cleavage plane in triclinic feldspars. Many crystal-

lographic data sets for monoclinic crystals (crystallographic

information files or CIFs) use the second setting. The early

editions of the International Tables for the Determination of

Crystal Structures (1935) only use the setting with the y axis.

Later, physicists introduced the more sensible setting with the

z axis, which became known as the first setting, and later

editions of the International Tables for Crystallography (1965)

list both settings. However, even today, most new structures

are described in the second setting.

Whatever the reason for the diversity, the need often arises

to transform from one to the other system. This is relatively

straightforward when it comes to lattice parameters, Miller

and zone indices, and atomic positions and has been clearly

described in the newer International Tables for X-ray Crys-

tallography (1969, Vol. 1). However, what about defining the

orientation of a monoclinic crystal relative to the sample

coordinates, or the orientation distribution of Euler angles in

texture analysis? Furthermore, what about elastic properties

of monoclinic crystals described with tensor notation? Most

texture research ignores monoclinic crystals. Some systems,

such as the analytical software Beartex (Wenk et al., 1998) and

the Rietveld system MAUD (Materials Analysis Using

Diffraction; Lutterotti et al., 1997), use the first setting. The

Los Alamos polycrystal plasticity code (VPSC; Lebensohn &

Tome, 1994) also uses the first setting. However, electron

backscatter diffraction systems such as HKL (Schmidt &

Olesen, 1989) use the second setting. For all crystals except

monoclinic there is a straightforward interface for data

exchange. Here we provide recipes for conversions from the

first setting to the second setting, and vice versa, and illustrate

them with examples.

2. Two coordinate lattice systems

Fig. 1 shows a monoclinic unit cell with lattice vectors a, b, c

assigned for the first (Fig. 1a) and the second setting (Fig. 1b).

There are three point groups in this crystal system [C2 (2), Cs

(m), C2h (2/m)]. For all these point groups a diadic C2 axis

exists in the case of normal scattering.

The C2 rotation axis is parallel to either c or b. In each case

the lattice vectors are assigned so that the vector triplet obeys

the condition a � (b � c) > 0 (‘right handed lattice vector

triplet’). In order to avoid additional ambiguity, two further‡ Permanent address: Mueller-Berset-Strasse 3, 01309 Dresden, Germany.
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(>, <) conditions have to be specified: a < (>) b and c < (>) �/2.
Fig. 2 illustrates the second variant (II) for the first setting with

the choice c0 > �/2, in order to demonstrate that the resulting

(a, b, c) triplet cannot be derived from the c0 < �/2 triplet of

Fig. 1(a) using the C2 symmetry of the crystal cell. Conse-

quently, there will be different results describing the orienta-

tion of the lattice cell for an outside viewer. We will return to

these considerations in more detail in x3.
There are various rules for the conventional orientation of

the crystal lattice (e.g.Donnay, 1943), but as long as the lattice

parameters are clearly defined and the unit cell is described in

a right-handed lattice vector triplet, the relative values of a, b

and c, as well as the use of acute or obtuse angles, do not

influence any of the following discussions. For monoclinic

settings, a0 6¼ b0 and 0 < c0 < 180� (and 6¼ 90�), and corre-

spondingly a00 6¼ c00 and 0 < b 00 < 180� (and 6¼ 90�). With such

conventions and definitions the conversion of lattice para-

meters or lattice-vector-related quantities between the two

settings is straightforward:

1! 2: a00 ¼ b0; b00 ¼ c0; c00 ¼ a0;

a00 ¼ 90�; b 00 ¼ c0; c00 ¼ 90�;
ð1aÞ

2! 1: a0 ¼ c00; b0 ¼ a00; c0 ¼ b00;

a0 ¼ 90�; b 0 ¼ 90�; c0 ¼ b 00:
ð1bÞ

Correspondingly, the Miller indices (hkl) transform as

1! 2: h00 ¼ k0; k00 ¼ l0; l00 ¼ h0; ð2aÞ

2! 1: h0 ¼ l00; k0 ¼ h00; l0 ¼ k00; ð2bÞ
and the zone indices [uvw] as

1! 2: u00 ¼ v0; v00 ¼ w0; w00 ¼ u0; ð3aÞ

2! 1: u0 ¼ w00; v0 ¼ u00; w0 ¼ v00; ð3bÞ

and a similar transformation applies to atomic coordinates

x, y, z:

1! 2: x00 ¼ y0; y00 ¼ z0; z00 ¼ x0; ð4aÞ

2! 1: x0 ¼ z00; y0 ¼ x00; z0 ¼ y00: ð4bÞ
Of course, we will obtain the same characteristic d spacings of

hkl-specific crystal planes, introducing into the explicit d(hkl;

a, b, c; a, b, c) relation the set of (h0 k0 l0; a0, b0, c0; a0, b 0, c0) or
(h00 k00 l00; a00, b00, c00; a00, b 00, c00) data, if both are related by

equations (1) and (2).

3. Orientation angles

The orientation of a crystal relative to the sample coordinates

is generally specified by placing Cartesian coordinate systems

in the crystal (KB) and in the sample (KA) and expressing the

relative orientation of the two with three Euler angles that

correspond to rotations to bring the coordinate systems to

coincidence. From a first view, the determination of the

orientation of a right-handed system KB [with XB � (YB �
ZB) = +1; XB, YB, ZB = 1], relative to an other right-handed

system KA, seems to be simple, using, for example, the well

defined prescription of how KA can be oriented parallel to KB

by three successive rotations.

Whereas the problem of how to fix KA (the sample coor-

dinate system) in the sample is our free choice, the determi-

nation of a crystal coordinate system KB in each crystal in the

given polycrystalline sample may be a nontrivial problem.

Only a well defined KB specification leads to an unambiguous

description of an ‘orientation’ g = g(KB KA) � gB A. The

KB prescription is related to the crystal lattice of the substance

under consideration.

A unique prescription formulated by Haussühl (1983) and

based on much earlier conventions (von Fedorow, 1893;

Goldschmidt, 1897; Standards on Piezoelectric Crystals, 1949)

defines how to fix a right-handed Cartesian coordinate system

KB to a commonly non-orthogonal vector triplet (a, b, c) that

obeys the condition a � (b � c) > 0:
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Figure 1
Monoclinic unit cell with (a, b, c) triplets assigned for (a) the first setting
and (b) the second setting and the corresponding crystal coordinate
systems KB following prescription (5).

Figure 2
Example of a second variant (II) for the first setting with the choice
c0 > �/2, in order to demonstrate that the resulting (a, b, c) triplet cannot
be derived from the (c0 > �/2) triplet of Fig. 1(a) using the C2 symmetry of
the crystal cell. Consequently, there will be different results describing the
orientation of the lattice cell for an outside viewer. Orientations will be
described in more detail in x3.
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ZB k c; YB k ðc� aÞ and XB ¼ ðYB � ZBÞ: ð5Þ
This prescription was not invented for texture analysis but

simply follows from the fact that it is mathematically (and

computationally) more elegant to describe physical

phenomena in a real Euclidian system (Figs. 1 and 2).

There are various conventions for performing these rota-

tions. Bunge (1965) rotates the sample frame into the crystal

frame (rotation axes ZA, XA0, ZA0 0 || ZB, angles ’1, �, ’2). Roe
(1965) also rotates the sample frame into the crystal frame, but

using a different order of rotations (rotation axes ZA, YA0, ZA0 0

|| ZB, angles �, �, �), and there are other rotation variants.

Here we use Roe angles, but rename them �, �, � according to

the convention adopted by Matthies et al. (1987). In the {�, �,
�} variant, which originates from modern theoretical physics

(Edmonds, 1957), the angles � and � are directly related to the

commonly used spherical angles, describing a direction, i.e. � is

the polar angle of ZB in KA and � its azimuth. (The Matthies

Euler angles �, �, � are not to be confused with the lattice

parameter angles a, b, c, always given in bold.) There are

simple relationships between the Euler angle conventions that

do not depend on crystal symmetry:

� ¼ � ¼ ’1 � 90�; ð6aÞ

� ¼ � ¼ �; ð6bÞ

� ¼ � ¼ ’2 þ 90�: ð6cÞ
Owing to the ambiguity of how to fix the (a, b, c) triplet

[obeying a � (b � c) > 0 and perhaps additional conditions] to

the frame of a crystal cell in the non-triclinic case, there are

NBmax > 1 KB variants, and correspondingly NBmax different

orientations of the considered (‘empty’) cell relative to a fixed

KA. Using for the prescription information from inside the

crystal cell the numberNB of physically equivalentKB variants

describing one cell may be less than NBmax.

A unique situation of describing orientations appears by

introducing in the orientation space (G space)

g � G; 0� 	 �; � 	 360�; 0 	 � 	 180�; ð7Þ
NB equivalent ‘elementary G-space regions’, with corre-

spondingly lower {�, �, �} regions than in equation (7). The

problem is how to select the NB ‘true’ KB variants from the

NBmax KB variants (‘starting set’) [see Table 5.1 of Matthies et

al. (1987)].

For the monoclinic system of interest, orientation distribu-

tions derived from normal scattering data possess a diadic C2

symmetry with NB = NBmax = 2 [for details see Table 14.1 of

Matthies et al. (1987)]. Therefore in the monoclinic system

(independent of the ‘setting’ considered) there are two choices

for defining physically equivalent KB and KB systems, as can

be seen in Fig. 3.

Comparing the directions of the ZB and ZB axes in a fixed

coordinate system KA (which determine the corresponding

orientation angles � and �), it can be deduced that the two

elementary regions for the two settings can be chosen as

G01: 0 	 � 	 360�; 0 	 � 	 180�; 0 	 � 	 180�; ð7aÞ

G02: 0 	 � 	 360�; 0 	 � 	 180�; 180 	 � 	 360�; ð7bÞ

G001 : 0 	 � 	 360�; 0 	 � 	 90�; 0 	 � 	 360�; ð7cÞ

G002 : 0 	 � 	 360�; 90 	 � 	 180�; 0 	 � 	 360�: ð7dÞ

A spatially fixed vector r is described in a given coordinate

system K by its x, y, z components, r = (x, y, z)� (x1, x2, x3). In

mathematical operations we consider r as a column vector.

Of interest are the relations between the components of one

and the same vector described in KA or KB for the known

orientation g = gB A. They can be described by a matrix

defined as

rB ¼ ðxB1 ; xB2 ; xB3 Þ ¼ gB A � rA; xBi ¼
P3
j¼1

gi;jx
A
j ði ¼ 1; 2; 3Þ;

ð8aÞ

rA ¼ ðxA1 ; xA2 ; xA3 Þ ¼ gA B � rB; xAi ¼
P3
j¼1

g�1i;j x
B
j : ð8bÞ

Describing the orientation gB A = {�, �, �} of KB relative to

KA by the {�, �, �} variant of Euler angles, together with the

corresponding rotation prescription, the angle � denotes the

polar angle of ZB in KA and � its azimuth, as already

mentioned. � belongs to the remaining rotation around ZA in

order to bring the Y axis of the already rotated KA (with ZA ||

ZB) into the direction YB.

The explicit expression of the g matrix in terms of its matrix

elements gi,j is
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Figure 3
Two ways to place a physically equivalent coordinate system KB in a
monoclinic crystal as a result of the C2 symmetry. (a) First setting K0B and
K0B. (b) Second setting K00B and K00B. KB follows from the (a; b; c) triplets
shown in the right rear corners. Both triplets (a, b, c) and (a; b; c) obey the
definition of the lattice parameters for the monoclinic case and the
condition a � (b � c) > 0.
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g ¼

cos � cos� cos � sin � cos� cos � � sin� cos �
� sin � sin � þ cos � sin �

� cos � cos � sin � � sin � cos � sin � sin � sin �
� sin � cos � þ cos� cos �

cos � sin � sin� sin � cos�

0
BBBBBBBB@

1
CCCCCCCCA
:

ð9Þ
Because g is a (real) unitary matrix, it holds that

g�1i;j ¼ gj;i ¼ ðgB AÞ�1i;j ¼ gA B
i;j ¼ gB A

j;i : ð10Þ
For KA = KB

0 and KB = KB
00 it follows from Fig. 1 that

gðK00B  K0BÞ � g00 0 ¼ f0; �=2; �=2g ð11aÞ
and

gðK0B  K00BÞ � g0 00 ¼ f0; �=2; �=2g�1 ¼ f�=2; �=2; �g:
ð11bÞ

If a transformation of a single orientation g00 = {�00, �00, � 00},
given in the second setting, into the first setting g0 = {�0, �0, � 0}
is necessary, we use the following relation:

f�0; �0; � 0g ¼ g0 ¼ gB
0 A ¼ gB

0 B00 � gB00 A ¼ g0 00 � g00
¼ f�=2; �=2; �g � f�00; �00; � 00g: ð12Þ

In order to determine the angles {�0, �0, � 0} the representation
of an orientation g by its matrix [equation (9)] can be used. If

the matrix elements of g are known, from g3,3 it follows that

� ¼ arccosðg3;3Þ; 0 	 � 	 �;

with B ¼ sin � ¼ ð1� cos2 �Þ1=2 
 0:
ð13Þ

Using g3,1 and g3,2 we obtain

� ¼ arccosðg3;1=BÞ; ð14aÞ
and

for signðsin �Þ ¼ signðg3;2Þ< 0 take ð2�� �Þ for �: ð14bÞ
Correspondingly we obtain � by

� ¼ arccosð�g1;3=BÞ; or ð2�� �Þ for signðg2;3Þ< 0: ð15Þ
For � = 0, � (B = 0) we can use the relations {�, 0, �} = {� + �, 0,
0}, {�, �, �} = {� � �, �, 0}. After defining � � 0, it is sufficient

to determine � only. For the case � = 0 and � = 0, �, by
equation (9) it follows that g2,1 = �sin� and g2,2 = cos�, which
leads to

� ¼ arccosðg2;2Þ; and for signðsin �Þ ¼ signð�g2;1Þ< 0

take ð2�� �Þ for �: ð16Þ

Now equation (12) can be rewritten (using �0 � �0 + �00) as

f�0; �0; � 0g ¼ f�=2; �=2; �gf0; �00; � 00gf�00; 0; 0g
¼ f�0; �0; � 0gf�00; 0; 0g ¼ f�0 þ �00; �0; � 0g: ð17Þ

The g0 00 = {�/2, �/2, �} matrix has the form g0 00i;j = 0, except

g0 001;3 = g0 002;1 = g0 003;2 = 1, and for the matrix of interest �0 � {�0,
�0, � 0} = {�/2, �/2, �}{0, �00, � 0 0} it follows that

�03;3 ¼ sin �00 sin � 00; �03;1 ¼ � cos �00 sin � 00;

�03;2 ¼ cos � 00; �01;3 ¼ cos �00; �02;3 ¼ � sin �00 cos � 00;

�02;2 ¼ sin � 00; �02;1 ¼ cos�00 cos � 00:

ð18Þ

The explicit relations for obtaining �0, �0 and � 0 from �00, �00

and � 00 are, using �0 = �0 + �00,

�0 ¼ arccosðsin �00 sin � 00Þ; B0 ¼ ½1� ðcos�0Þ2�1=2; ð19aÞ

�0 ¼ arccosð� cos �00 sin � 00=B0Þ
or ð2�� �0Þ for signðcos � 00Þ< 0;

ð19bÞ

� 0 ¼ arccosð� cos�00=B0Þ
or ð2�� � 0Þ for sign ð� sin �00 cos � 00Þ< 0:

ð19cÞ

For �0 = 0, � (�00 = �/2, and � 00 = �/2 or 3�/2), since � 0 � 0 it

follows that

�0 ¼ arccosðsin � 00Þ ¼ 0 or �: ð19dÞ
Vice versa, for obtaining orientations in the second setting

from values in the first setting we have

f�00; �00; � 00g ¼ g00 ¼ gB
00 A ¼ gB

00 B0 � gB0 A ¼ g00 0 � g0
¼ f0; �=2; �=2g � f�0; �0; � 0g; ð20Þ

and correspondingly, using �00 � �00 + �0

�00 ¼ arccosð� sin �0 cos � 0Þ; B00 ¼ ½1� ðcos�00Þ2�1=2; ð21aÞ

�00 ¼ arccosðcos �0 cos � 0=B00Þ
or ð2�� �00Þ for signðsin � 0Þ< 0;

ð21bÞ

� 00 ¼ arccosð� sin �0 sin � 0=B00Þ
or ð2�� � 00Þ for signðcos�0Þ< 0:

ð21cÞ

For �00 = 0, �, since � 00 � 0 it follows that

�00 ¼ 3�=2: ð21dÞ
Note that the short forms of equations (19) and (21) assume

that the � parameters on the right side of the equations (i.e. �0

or �00) are given in the standard region 0 	 � 	 180�.
If for special applications the g0({�0 0, �00, � 00}) or g00({�0,�0,� 0})

relations are needed in matrix form, equation (12) or equa-

tions (20) and (9) should be used, owing to the simple form of

the matrices {�/2, �/2, �} and {0, �/2, �/2}, which contain only

three elements (= 1) not equal to zero.

Because of the nontrivial metrics of the G space, the

orientation distributions for a polycrystalline sample may look

remarkably different for the two settings and interpretations

need to take this into account. An example will be illustrated

in a later section.

4. Elastic properties

In texture analysis physical properties are often of interest,

and they are obtained by averaging single-crystal properties

over the orientation distribution. For monoclinic crystals, the

data of physical properties are almost universally given in the

second setting (e.g. Nye, 1957).
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How do we transform, for example, a fourth-rank tensor

from the second to the first setting? For a vector given by its

vector components (x, y, z) = (x1, x2, x3) the transfer relations

follow directly from equations (8a) or (8b), with A = 00, B = 0

and g = g0 00 = { �/2, �/2, �}:

x0i ¼
P3
j¼1

g0 00i;j x00j : ð22Þ

In analogy with the transfer relations for (hkl) [equation (2)],

[uvw] [equation (3)] and the atomic coordinates [equation (4)]

it follows that

x0 ¼ x01$ z00 ¼ x003; y0 ¼ x02$ x00 ¼ x001; z0 ¼ x03$ y00 ¼ x002 :

ð23Þ
In the same way a tensor T (of the rank n) can be transferred

simply by considering it as a set of n vectors with the tensor

(vector) components Ti1, i2, i3, . . . , in:

T 0i1; i2; i3; . . . ; in ¼
P3

j1;j2;j3;...;jn¼1
g0 00i1;j1 g

0 00
i2;j2 g

0 00
i3;j3 � � � g0 00in;jn

� T 00j1; j2; j3; . . . ; jn: ð24Þ
Because of the simple form (g0 00i;j = 0, except g0 001;3 = g0 002;1 =

g0 003;2 = 1) of the matrix g0 00 = {�/2, �/2, �} it directly follows

that

T 0ði1 ¼ 1; 2; 3Þ; ði2 ¼ 1; 2; 3Þ; ði3 ¼ 1; 2; 3Þ � � � ðin ¼ 1; 2; 3Þ
lll lll lll lll

T 00ði1 ¼ 3; 1; 2Þ; ði2 ¼ 3; 1; 2Þ; ði3 ¼ 3; 1; 2Þ � � � ðin ¼ 3; 1; 2Þ:
ð25Þ

A special case are the tensors describing the linear elastic

properties (Hooke’s law), the stiffness C or compliance S

tensors. Because one is the inverse of the other we only

consider the stiffness tensor. C is a tensor of rank 4, i.e. its

original components have the form Ci1, i2, i3, i4. However, the

elastic tensors of crystals possess special symmetries (Nye,

1957). First, considering i3 and i4 as j1 and j2, there is a pair

symmetry (i$ j):

Ci1; i2; j1; j2 ¼ Cj1; j2; i1; i2: ð26Þ
Moreover, inside a pair the indices can be exchanged [‘(1$ 2)

symmetry’]:

Ci1; i2; j1; j2 ¼ Ci2; i1; j1; j2 ¼ Ci1; i2; j2; j1: ð27Þ
Because of equation (27), from the 3� 3� 3� 3 = 9� 9 = 81

index variants only (9! 6) 6 � 6 = 36 C components possess

independent values. The symmetry [equation (26)] leads

finally to only 21 (J 
 I; I, J = 1–6) independent values of an

effective 6 � 6 symmetric C matrix, with the matrix elements

CI,J = CJ,I for triclinic symmetry. In Voigt’s notation (Voigt,

1928; Nye, 1957), connecting i or j with I and J we obtain

i1; i2 ðor j1; j2Þ: 1; 1 1; 2 1; 3 2; 2 2; 3 3; 3
2; 1 3; 1 3; 2

l
Iðor JÞ 1 6 5 2 4 3

ð28Þ

and for the two settings in the monoclinic case it follows that

C01;1 ¼ C003;3; C
0
1;2 ¼ C001;3; C

0
1;3 ¼ C002;3; C

0�
1;4 ¼ C00�3;6; C

0�
1;5 ¼ C00�3;4;C

0
1;6 ¼ C003;5;

C02;2 ¼ C001;1; C
0
2;3 ¼ C001;2; C

0�
2;4 ¼ C00�1;6; C

0�
2;5 ¼ C00�1;4;C

0
2;6 ¼ C001;5;

C03;3 ¼ C002;2; C
0�
3;4 ¼ C00�2;6; C

0�
3;5 ¼ C00�2;4;C

0
3;6 ¼ C002;5;

C04;4 ¼ C006;6; C
0
4;5 ¼ C004;6;C

0�
4;6 ¼ C00�5;6;

C05;5 ¼ C004;4;C
0�
5;6 ¼ C00�4;5;

C06;6 ¼ C005;5:

ð29Þ
For monoclinic symmetry the coefficients marked with an

asterisk are equal to zero, resulting in 13 independent coeffi-

cients.

5. Examples

5.1. Transformation of Euler angles

Assume that we have an orientation g00 = gB
0 A = {�0 = 0�,

�0 = 0�, � 0 = 0�} in the first setting, i.e. a single crystal with KB
0 ||

KA, and for the lattice parameters we assume a0 = 10, b0 = 20,

c0 = 30 Å, a0 = 90, b 0 = 90, c0 = 70� in the first setting. Then the

polar angles �0 and azimuths ’0 inKB
0 of the normals n0(h0k0l0) =

n0(�0, ’0) of the following (h0k0l0)0 planes are, respectively,

(100)0 ! (90�, 160�)0; (010)0 ! (90�, 90�)0; (001)0 ! (0�, 0�)0;
(101)0 ! (72.60�, 160�)0.

According to g00 = {0, 0, 0}, poles will be seen in the corre-

sponding (h0k0l0)0 pole figures of the first setting at the above

(�0, ’0) positions since y = (�A, ’A) = yA = nA(h0k0l0)0 = gA B0 �
n0(h0k0l0) = (gB

0 A)�1 � n0(h0k0l0) = (g00)
�1 � n0(h0k0l0) = {0, 0, 0}�1 �

n0(h0k0l0) = {0, 0, 0} � n0(�0, ’0) = n0(�0, ’0) = (�0, ’0).
In the second setting the same orientation is described by

g000 = gB
0 0 A = g00 0gB

0 A = g00 0g00 = {0, �/2, �/2}{0, 0, 0} = {0�,
90�, 90�}. Using the lattice parameters in the second setting [cf.

equation (1a)] a00 = 20, b00 = 30, c00 = 10 Å, a00 = 90, b 00 = 70, c00 =
90�, and (h00k0 0l00)00, following from equation (2a), we will

obtain the corresponding spherical angles of the normal

directions n00(h00k00l00) = n00(�00, ’00) in KB
00: (001)00 ! (20�,

180�)00; (100)00 ! (90�, 0�)00; (010)00 ! (90�, 90�)00; (011)00 !
(26.27�, 137.52�)00.

Transforming these directions into KA (|| K0B for the given

orientation), using the relation y = (�A, ’A) = yA =

nA(h00k00l00) = gA B0 0 � n00(h00k00l00) = (gB
0 0 A)�1 � n00(h00k00l00) =

{0�, 90�, 90�}�1 � n00(h00k00l00) = {90�, 90�, 180�} � n00(h00k00l00) =
{90�, 90�, 180�} � n00(�00, ’00), the same values (�A = �0, ’A = ’0)
will appear for the spherical angles (�A, ’A) as if working with
the first setting and naming the pole figures (h0k0l0) according
to the relation (2a), (h0k0l0)$ (h00k00l00).

Therefore the pole figures themselves (describing in the

sample coordinate system KA the directions and the frequency

of the normals of a specific set of lattice planes in the given

sample) do not change for different descriptions (name) of the

crystal planes that follow from the choice of a certain variant

(setting) of the (a, b, c) triplet.

Fig. 4 shows the (100)0, (010)0 (001)0 and (101)0 pole figures

of the considered monocrystal with the orientation g00 = {0�, 0�,
0�}0 in the first setting, corresponding to the (001)00, (100)00,
(010)0 0 and (011)00 pole figures for the orientation g000 = {0�, 90�,
90�)00 in the second setting. Because in the first setting the Z0B
axis (directed along the C2 rotation axis, cf. Fig. 1) of the
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monocrystal is parallel to the ZA axis of the sample, a C2

sample symmetry results in this case in two maxima in some

pole figures [e.g. (101)0].
To demonstrate the monoclinic transformations in the

orientation space we use two spherical Gaussian texture

components (cf.Matthies et al., 1987) at

gI00 = {40�, 50�, 75�}0 and gII00 = {10�, 70�,
25�}0 with half-widths (FWHM) b = 20�

and intensities 0.125. The lattice para-

meters are a0 = 3, b0 = 5, c0 = 10 Å, a0 =
90, b 0 = 90, c0 = 65�.

The plot of the orientation distribu-

tion function in the first setting f 0(g0) is
shown in Fig. 5(a) by � 0 sections (� 0 =
15, 25, 35, 65, 75, 85�). From f 0(g0), the
transformation to f 00(g00) follows using
f 00(g00) � f 0(g0) = f 0(g0 00g00) and

equation (19). Fig. 5(b) shows regions

around the � 00 sections that contain the

two model components (� 00 = 30, 40, 50�). As it turns out, the

two components in two first setting � 0 sections (25 and 75�) are
‘far apart’ from each other, but both, I and II, lie in the second

setting in the same � 00 = 40� section. Explicitly it follows from
equation (21) that gI000 = {120�, 101�, 139�}00. Because of the C2
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Figure 5
Orientation distribution function of a texture of monoclinic crystals with two texture components, represented in � sections. gI00 = {40�, 50�, 75�}0 and gII00 =
{10�, 70�, 25�}0, gI000 = {120�, 101�, 139�}00 ! {300�, 79�, 41�}00 and gII000 = {64�, 148�, 139�}00 ! {244�, 32�, 41�}00. (a) First setting: � 0 = 15, 25, 35, 65, 75, 85�. (b)
Second setting: � 0 0 = 30, 40, 50�. Equal area projection, logarithmic pole density scale.

Figure 4
Pole figures (h0k0l0)0 of a monoclinic single crystal, with the orientation gB

0 A = g0
0 = {0�, 0�, 0�}0 in the

first setting. The same figures arise for (h00k00l00)00 following from equation (2a), i.e. (001)00, (100)00,
(010)00 and (011)00, respectively, and describe the orientation of the single crystal in the second setting:
gB
00 A = g000 = {0�, 90�, 90�}00. Equal area projection.
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symmetry axis parallel to Y 00B an

equivalent component exists at {� +

�00, � � �00, � � � 00}00 ! {300�, 79�,
41�}00 – the component seen in the

figure. The same orientation follows

directly from the C2 equivalent of

gI00 ({40
�, 50�, 75 + 180�}0) in the first

setting and applying equation (21).

Analogously we obtain gII000 = {64�,
148�, 139�}00 ! {244�, 32�, 41�}00.

In order to avoid misunderstand-

ings it has to be added that this

‘strange behavior’ of the positions of

the components follows from the

limited possibilities to represent the

orientation space with its complicated

metrics by plane sections (e.g. �
sections). In analogy to the pole

figures in Fig. 4, which are indepen-

dent of the setting (KB variant) used

to describe a given orientation, in G

space the ‘orientation distance’ !(g1,
g2) between two orientations g1 and

g2 also does not depend on the setting

chosen to describe g1 and g2. Explicitly ! is given by (cf.

Matthies et al., 1987)

cos! ¼ 2ðcos!=2Þ2 � 1; ð30Þ

cos!=2 ¼ cos½ð�1 � �2Þ=2� cos½ð�1 � �2Þ=2� cos½ð�1 � �2Þ=2�
� cos½ð�1 þ �2Þ=2� sin½ð�1 � �2Þ=2� sin½ð�1 � �2Þ=2�: ð31Þ

For g1 = gI00 = {40�, 50�, 75�}0 and g2 = gII00 = {10�, 70�, 25�}0 the
orientation distance is ! = 72�. The same distance results for

g1 = gI000 = {120�, 101�, 139�}00 and g2 = gII000 = {64�, 148�, 139�}0, or
for their equivalents {300�, 79�, 41�}00 and {244�, 32�, 41�}00.

5.2. Exporting the orientation distribution from the second

setting and processing in the first setting

Orientation distributions and corresponding pole figures

may be available in the second setting. This is the case for a

schist composed of monoclinic muscovite, triclinic chlorite,

trigonal quartz, triclinic albite and hexagonal graphite. Only

muscovite will be considered here. Muscovite is monoclinic in

space group C2/c and the structure is described in a unit cell of

the second setting (a00 = 5.18, b00 = 8.96, c00 = 20.1 Å, a00 = 90,

b 00 = 95.66, c00 = 90�.
First the pole figures in the second setting were plotted with

the Beartex (Wenk et al., 1998) routine PING (Fig. 6a). Then

lattice parameters and Miller indices were converted to the

first setting using a new Beartex routineMO21. With eight pole

figures theWIMV algorithm was used to obtain an orientation

distribution f 0(g0) (OD). Beartex uses the first setting. From

the OD several pole figures were calculated with POLF and

were compared with those from MAUD (Fig. 6b). As can be

clearly seen the agreement is excellent. Note that in the first

setting (h0k0l0)0 (Fig. 6b) the pole figure of the cleavage planes
of muscovite is (100)0.

5.3. Elastic properties

The next step was to calculate aggregate elastic properties

for muscovite by averaging, applying the ‘first setting’ OD and

supposing that the vector triplet (a, b, c) used for the stiffness

data was the same as the above given triplet. For the averaging

the published elastic properties for muscovite in the second

setting (Vaughan & Guggenheim, 1986) had to be converted

using equation (29) (Table 1). Fig. 7(a) shows contours of the

longitudinal acoustic velocity surface VP (in km s�1) for the
single crystal. It displays the C2 rotation axis parallel to c and

Z0B. The Cartesian crystal coordinate system KB is indicated.

Then the single-crystal tensor was averaged over the orien-

tation distribution using the geometric mean (Matthies et al.,

2001) (Beartex routine TENS; Table 1). Note that the poly-
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Figure 6
Pole figures for monoclinic muscovite from schist. (a) Second setting (h00k00l00)00. (b) First setting (h0k0l0)0.
The exported pole figures have been converted to the first setting, then processed with WIMV in
Beartex to obtain the OD, and then recalculated. Log scale, equal area projection.

Figure 7
VP velocity surface for (a) muscovite single crystal and (b) muscovite in
schist. The crystal coordinate system KB and sample coordinate system
KA are indicated. Equal area projection.
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crystal tensor is given in the sample coordinate system KA and

is independent of the monoclinic setting. Finally the poly-

crystal velocity surface was calculated in VELO and is plotted

in Fig. 7(b).

6. Conclusions

The discussion and the examples demonstrate that great care

must be applied for texture analysis of monoclinic crystals and

nontrivial transformations must be performed. Texture

analyses of monoclinic crystals are rare but in some earlier

work these complexities have not been properly taken into

account (e.g. Wenk et al., 2008). Fortunately errors were not

very large because the monoclinic lattice angle was close to

90�. This paper presents explicit procedures that need to be

followed for texture analysis of monoclinic crystals. Conver-

sions between the two settings have been implemented in both

Beartex (Wenk et al., 1998) and MAUD (Lutterotti et al.,

1997). InMAUD, structural data are generally imported in the

second setting (e.g. space group C2/c:b1). Choosing for the

space group the first setting (C2/m:c1) automatically converts

lattice parameters and atomic coordinates. The conclusions

about monoclinic crystal symmetry in this study highlight

again the critical importance of a clear and uniform definition

of crystal coordinate systems and crystallographic unit cell in

texture research such as ZB k c, YB k [c � a] and XB = [YB �
ZB], particularly in triclinic, monoclinic and trigonal systems.

We appreciate the support of this research through grants

from the NSF (grant No. EAR 0836402) and DOE (grant No.

DE-FG02-05ER15637) as well as CDAC, and also acknowl-

edge discussions on this subject with Daniel Chateigner, Luca

Lutterotti and Carlos Tomé.
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Table 1
Stiffness coefficients (GPa) for muscovite in the second setting (Vaughan
& Guggenheim, 1986) and the first setting using the transformation given
in equation (29) and for the polycrystal average in schist.

Muscovite single crystal, second setting.

181.0 48.8 25.6 0.0 �14.2 0.0
48.8 178.4 21.2 0.0 1.1 0.0
25.6 21.2 58.6 0.0 1.0 0.0
0.0 0.0 0.0 16.5 0.0 �5.2

�14.2 1.1 1.0 0.0 19.5 0.0
0.0 0.0 0.0 �5.2 0.0 72.0

Muscovite single crystal, first setting.

58.6 25.6 21.2 0.0 0.0 1.0
25.6 181.0 48.8 0.0 0.0 �14.2
21.2 48.8 178.4 0.0 0.0 1.1
0.0 0.0 0.0 72.0 �5.2 0.0
0.0 0.0 0.0 �5.2 16.5 0.0
1.0 �14.2 1.1 0.0 0.0 19.5

Polycrystal average for muscovite in schist.

146.8 39.3 32.5 �0.7 �0.5 �2.4
39.3 125.8 34.8 �3.9 0.2 �1.6
32.5 34.8 73.7 �1.2 �0.2 0.5
�0.7 �0.4 �1.2 26.6 4.8 6.8
�0.5 0.2 �0.2 4.8 26.7 �2.0
�2.4 �1.6 0.5 6.8 �2.0 46.8
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