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ABSTRACT

Motivation: The growth of next-generation sequencing means that
more effective and efficient archiving methods are needed to store
the generated data for public dissemination and in anticipation of
more mature analytical methods later. This article examines methods
for compressing the quality score component of the data to partly
address this problem.
Results: We compare several compression policies for quality
scores, in terms of both compression effectiveness and overall
efficiency. The policies employ lossy and lossless transformations
with one of several coding schemes. Experiments show that both
lossy and lossless transformations are useful, and that simple coding
methods, which consume less computing resources, are highly
competitive, especially when random access to reads is needed.
Availability and implementation: Our C++ implementation,
released under the Lesser General Public License, is available for
download at http://www.cb.k.u-tokyo.ac.jp/asailab/members/rwan.
Contact: rwan@cuhk.edu.hk
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Next-generation sequencing (NGS) offers new directions in genome
science by allowing entire genomes to be sequenced at lower costs.
Given its rapid growth, the problem of economically storing and
quickly restoring sequencing data is becoming a concern for both
researchers and operators of data centers.

The most notable examples of data repositories is the Sequence
Read Archives (SRA) by the International Nucleotide Sequence
Database Collaboration (INSDC) at NCBI, EBI and DDBJ, which
helps in disseminating publicly funded data (Leinonen et al., 2011).
While the storing of raw data is infeasible, their hope is to be able
to store at least the bases and their corresponding quality scores.

On the other hand, as the amount of data continues to rise, it
is conceivable that the burden of storing such data will gradually
shift to research laboratories, hospitals or even individuals. Effective
means of storing sequencing data will be needed in these cases as
well, even though the resources available will differ greatly.

∗To whom correspondence should be addressed.

The above trends suggest that economical representation of
sequencing data is important. In response, compression of DNA
sequences has been an active research topic for many years. In
contrast, relatively little attention has been devoted to quality scores.
The set of quality scores is far larger than the four DNA nucleotides;
this has the potential to make the problem more difficult than
sequence compression. Whenever the economical representation of
quality scores was taken into account, the scores were considered
together with all other components. Hence, it is not clear how well
the quality scores component can be compressed.

Note that the little attention given to quality scores does not mean
that they are useless. In fact, they are slowly becoming a necessary
part of many data analyses. They can be used to trim reads at either
end [see the Galaxy tool (Blankenberg et al., 2010) for an example]
or be used for read mapping, as demonstrated by the MAQ software
(Li et al., 2008). Other future applications may also be possible.

In this article, we address the issue of economical representation
of quality scores as a stand-alone component. This separation
allows us to focus on the topic at hand, and does not limit us
from combining our results with other works that are devoted to
compressing DNA sequences alone. To have a clear understanding,
and to supply different levels of economy trade-off, we break the
process of economical representation into three independent and
optional components: lossy transformation, lossless transformation
and coding (or compression). Rather than advocating a single
method for each component, we will explore various options.

2 BACKGROUND
NGS generates raw data as images from which the sequence
bases are obtained. In practice, each read consists of a sequence
of DNA bases, the estimated probabilities P that the respective
bases was called incorrectly, plus other supporting information. The
probabilities, or error probabilities, are stored as quantized integers
that are the object of our study.

Standard representation: public repositories such as the SRA
normally store reads in a human-readable format called FASTQ,
as illustrated in Figure 1. In this format, an error probability P
is first transformed to its respective PHRED quality score Q in a
logarithmic manner so as to give more attention to the higher quality
bases (Ewing and Green, 1998):

Q=−10×log10P.
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Fig. 1. Sample NGS data in FASTQ format (SRA’s SRR032209), with
parts being shortened and numbered: (1) read identifiers; (2) sequence of
bases; (3) ‘+’ followed by optional comments; and (4) Q-scores.

Then, Q is truncated and limited to only integers from 0 to 93
(hence the maximum 93 includes all the values P of 5×10−10 or
less). Lastly, each integer is offsetted by 33 to make it in the range
from 33 to 126 which are ASCII codes of printable characters. This
final format is referred to as the Sanger-FASTQ format, which is
the de facto standard (Cock et al., 2010) for representing the error
probabilities. For the clarity of presentation, we use the special term
Q-scores to refer to the scores in this format, and note that all of
our input error probabilities are in this format.

Concise representations: representing each PHRED score in one
byte as dictated by the Sanger-FASTQ format is not the best method
in terms of storage economy. Data compression can be used to
obtain a more space-saving representation.

Compression has been an important component of computational
biology, as surveyed by Giancarlo et al. (2009). Generally, short
DNA sequences are compressed by encoding them with respect
to other data such as a larger genome through ‘edit operations’—
instructions that indicate the mismatches needed to map the short
sequences to the genome [see, for example, Daily et al. (2010)].

In recent years, NGS data in FASTQ format has attracted some
attention from the compression field. Tembe et al. (2010) encode
both the DNA sequences and the Q-scores together, treating
each distinct pair of DNA base and its respective Q-score as
a new symbol, and then applying Huffman coding (Huffman,
1952). Deorowicz and Grabowski (2011) encode all parts of the
FASTQ data through a combination of creating independent blocks,
LZ77 compression (Ziv and Lempel, 1977), run-length coding and
Huffman coding. These two compression schemes are classified as
lossless since the compressed data can be decoded to get back the
original data, without any change.

In addition to lossless, there exists lossy compression, for which
the data can be restored, not as the original, but with some
changes that can be regarded as acceptable for applications. Lossy
methods can be considered for quality scores—an option that has
been advocated by others (Leinonen et al., 2011). For example,
Kozanitis et al. (2011) encodes DNA sequences with respect to
a reference genome. The Q-scores are compressed using a
combination of taking the gaps between adjacent scores and lossy
compression. They noted that the gaps between adjacent scores in
a sample dataset were usually small (often zero). Because of this,
they randomly permuted Q-scores so that they were either just
above or just below the previous score. Amortized over the entire
dataset, the effect of such randomization balances out. Using SNP
calling as an example, they showed that such a lossy transformation
has a minimal effect on downstream applications. More recently,
Hsi-Yang Fritz et al. (2011) defined ‘quality budget’ as a filter to
determine what Q-scores are stored. Basically, only the scores
associated with sequence bases of interest are retained.

A common theme of the above described methods is that when
coding, they treat the Q-scores or the gaps between adjacent
Q-scores as plain symbols, without considering the integral
values of the symbols. For Huffman and LZ77 methods, symbols
(or sequence of symbols) are processed so that those with higher
frequencies will be assigned shorter code words. We refer to this
way of compression as by-symbol; we will also consider by-value
compression methods—methods that assign shorter code words to
lower integers, regardless of their frequencies.

3 DATA ANALYSIS
We first analyze some properties of Q-scores. Three datasets,
summarized in Table 1, were randomly selected from SRA for that
and the subsequent experimentation. The last two columns of the
table shows the size of the Q-scores and the entire FASTQ data
(with both the meta-information and sequences) in MiB. The values
in parentheses is their compression ratio as a percentage of the
original data when the standard tool gzip is used. The compression
ratio is defined as the ratio between the size of the compressed data
and the size of the original data, expressed in bits per quality score.

Following the lead of Kozanitis et al. (2011) on using score gaps,
in addition to statistics for the population of reads and the population
of individual Q-scores, we also gather additional statistics for
another form of Q-scores, produced through gap transformation.
We transform the sequence (q1,q2,q3,...qn−1,qn) of n Q-scores,
in the following manner. First, they are translated to the equivalent
form of score gaps (q1 −33,q2 −q1,q3 −q2,...qn −qn−1). These
gaps are in the range of [−(|�|−1)..(|�|−1)], with 2|�|−1
different values, where � is the set of all possible Q-scores
(hence |�|=94). However, we further transform each of the gaps
to a positive integer by using the bisection (0,1,−1,2,−2,...|�|−
1,−(|�|−1))−→ (1,2,3,...,2|�|−1). Each resulting value will be
further referred to as a T-gap.

Some important statistics of Q-scores and T-gaps are
presented in Figure 2. From the figure, we underline the following
three properties, which will be explored in the next section:

Absolute Q-score bounds are rarely reached: according to
Figure 2a, a large number of reads have their own local minimal
Q-score different from the absolute minimum �min of �, and
in many cases, with a gap of at least 20—a considerable amount
if we consider that the number of possible distinct score values is

Table 1. Three SRA datasets employed in this article

Accession Species No. of
reads
(×106)

Read
length

Size (MiB)

Q-scores Total

SRR032209 M. musculus 18.8 36 662.8 3488.2
(40.9%) (21.6%)

SRR070788_1 H. sapiens 24.8 100 2393.2 8092.1
(33.3%) (24.9%)

SRR089526 H. sapiens 23.9 48 1115.7 4814.2
(33.7%) (22.4%)

The last two columns give the size of the Q-scores and the original FASTQ data in
MiB. Percentages in parentheses indicate the compression ratio when gzip is applied
to them.
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(a) (b)

(c) (d)

Fig. 2. Some statistics for each of the three described datasets: distribution
of minimal and maximal Q-scores over the population of reads (a and b),
and distribution of Q-scores (c) and T-gaps (d).

just 94. On the other hand, Figure 2b shows that the majority of
reads have their own maximal scores being much lower than the
respective absolute value �max of �. In fact, for most of the reads,
the maximal score lies approximately in between 65 and 75. This
is far less than �max (126)—a consequence of the limitations of
current NGS technologies.

Non-uniform distribution of Q-scores: Figure 2c shows that
Q-scores are non-uniformly distributed, with a large number of
values having very low frequencies, and a few values that occur
with exceptionally high frequencies. There also appears to be a
bimodal distribution, with most values centered around either 33
or 75.

Near-geometric distribution of T-gaps, but not of Q-scores:
judging by the shapes of the distribution curves in Figure 2d,
we can speculate that the T-gaps for each dataset have a
distribution which is close to geometric, where the values of
T-gaps negatively correlate with their frequencies. Unfortunately,
that is not the case for the respective curves for Q-scores, as
can be seen from Figure 2c. In fact, there is neither a positive
nor a negative correlation between the Q-score values and their
frequencies.

4 TRANSFORMATION AND COMPRESSION
Our investigation follows the diagram in Figure 3. The FASTQ
data is first decomposed to separate the Q-scores data from the
rest. The Q-scores then can go through the lossy and lossless
transformation and finally the encoding processes to reach point
(A), where the compressed representation is attained, and hence

Fig. 3. Workflow of our investigation. Dashed arrows depict a representation
of Q-scores alone.

compression ratio can be measured. From this point, the reverse
process can take place. The decoding and lossless untransforming
processes are applied to the compressed data to reproduce the
Q-scores, which might or might not be the same as the
original Q-scores data, depending on whether or not any lossy
transformation has been selected. The ‘Composer’ will then recreate
the FASTQ-formatted data. After that, at point (B) in the diagram,
we can evaluate the effect of lossy transformations (if any) by
mapping these data to a reference genome using the MAQ software
(Li et al., 2008).

4.1 Blocking
Most of the compression schemes collect some information over the
input data before encoding. They normally segment the input stream
into non-overlapping blocks and process each block independently
in order to limit and optimize peak memory usage. To accommodate
that, we explicitly perform the blocking of Q-scores right after
they have been produced by the ‘Decomposer’ component, before
any of the lossy and lossless transformations. We define the block
size k as the number of reads instead of the number of elementary
Q-scores to ensure that no read spans across block boundaries,
which in turns guarantees that blocks could be compressed or
decompressed independently from each other.

In general, block creation incurs only a small cost in the form of
local block information at the beginning of each block—the block
header. However, as will be seen, some compression schemes might
add much more data to the block header, and the relative volume of
this data is higher with smaller k. To keep these schemes effective, it
is essential to set k large enough. On the other hand, smaller k means
more flexibility in decoding, and k =1 allows random access to each
block in the compressed data—a plus or even a critical feature for
some applications. Throughout our investigation, we will consider
both small and large block sizes in order to accommodate a potential
diversity of applications.

4.2 Lossy transformation
As stated earlier, Q-scores is an irreversible quantization of some
original (floating point) probabilities, and can have |�|=94 distinct
values. The quantization can be viewed as the process of partitioning
the probability interval [0,1] into |�| subintervals, or bins, so that
the lengths of the bins grow in a logarithmic manner (the closer
to the left of [0,1], the shorter the bins). Probabilities falling into
the same bin are deemed to share the same quantized Q-score.
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For clarity, we will refer to this method of quantizing the error
probabilities as Standard.

As our aim is space saving, it is natural then to think about
transformations that are more aggressive than Standard with
regard to reducing the number of partitioned bins. For that, we
introduce three lossy transformations that are each defined by a
unique way to partition the probability interval into bins. We abuse
our earlier terminology by unifying their parameters as |�|, which
represents the number of distinct bins. After partitioning, each bin is
associated with the lowest Q-scores that falls into the bin. Note
that since the mapping from bin order to the associated Q-score
is determined by the transformation, we can actually store the bin
orders instead of the associated Q-scores.

UniBinning: in this transformation, the interval [0,1] is
uniformly divided into |�| equal bins. For example, if |�|=5, the
leftmost bin would have the error probabilities from 0.8 to 1.0, and
all Q-scores in this bin will be transformed to 33.

Truncating: the Standard transformation is characterized by
the logarithmic partitioning of the error probability interval into 94
bins. Here, we apply the same partitioning scheme, with the only
exception that a number of rightmost bins is combined into one
single bin. That number is set to be 94−|�|+1 to accommodate
the parameter |�|. To put it simply, Truncating is the same as
Standard, except that all Q-scores higher than 94−|�| are
deemed to be |�|.
LogBinning: in this transformation, we apply the same
logarithmic partitioning as in Standard, but using |�| instead
of 94 bins. That is equivalent to grouping a fixed number of
Standard bins into a new bin. For example, with |�|=19, each
bin has five Q-scores. However, the rightmost bin has the four
last Q-scores (that is, from 123 to 126 inclusive), which is
assigned the Q-score of 123.

The three new lossy transformations aim to improve the space
savings at the cost of some loss in mapping accuracy when the
transformed values are used. To evaluate this loss, we employ the
MAQ tool (Li et al., 2008). This tool maps reads from a FASTQ
dataset to the corresponding genome. Besides being able to obtain
the overall percentage of reads that could be mapped, a mapping
quality score is returned for each successfully mapped read.

In our case, we use the number of unambiguously mapped reads
using the unaltered Q-scores as our baseline. We then repeat the
mapping process after substituting the standard Q-scores with
those that have been lossy transformed. We consider the mapping
of the read to be successful if the position, strand and chromosome
are identical to that of the baseline. Moreover, the read’s mapping
quality score may have decreased but it must be non-zero—this
indicates it was unambiguously mapped. We define the percentage
of reads mapped to the baseline as the relative mapping accuracy
for that transformation to indicate the quality of the transformation.

Figure 4 compares the relative accuracy of different lossy
transformations for one of our datasets. It can be seen that all three
lossy transformations can achieve nearly perfect relative accuracy
when |�| is about 30 or higher. However, as expected, the relative
accuracy decreases as |�| drops.

Of the three transformations, LogBinning seems to be the best
as it is the only one that retains high relative accuracy even with a
very low value of |�|. Indeed, with |�|=5, it achieves the relative

Fig. 4. Relative mapping accuracy of the three lossy transformations,
measured for the dataset SRR032209. The 100% baseline employs standard
Q-scores, resulting in 12.1 (out of a total of 18.8) million reads being
mapped successfully by MAQ. The horizontal dotted line shows where
relative mapping accuracy is 99%. The two vertical dotted lines indicate
the lowest values for |�| at which this accuracy is still attainable (|�|=19
for Truncating and UniBinning; |�|=5 for LogBinning).

accuracy of around 99% —the level that the other two can do
only at |�| of 20 or so. Of the three transformations, given that
LogBinning resembles Standard the most, its superiority is
understandable. In the rest of our investigation, LogBinning with
varying values of |�| will be chosen to represent various levels of
lossy transformation.

4.3 Lossless transformation
The lossy transformations benefit compression by means of
reducing the number of distinct quantized quality scores. On the
other hand, a lossless transformation is a reversible mathematical
mapping over the quantized scores so that the scores can be
untransformed back without any change. A transformation can
potentially improve compression ratio if it yields a distribution
of transformed values that is more suited for compression than
the untransformed ones. Judging by the analysis in Section 3, we
investigate the following three lossless transformations.

MinShifting: this method converts each Q-score q to
q−qmin, where qmin is the minimal score in the respective block.
This requires qmin to be stored in the block header.

FreqOrdering: this technique remaps the Q-scores that
appear in the block to the set of contiguous positive integers starting
from 1 in the order of decreasing frequency. The reverse mapping
needs to be stored in the header.

GapTranslating: for a block of n quantized scores, this
transformation is the combination of taking gaps between adjacent
scores and translating these gaps to positive integers, exactly as
described earlier in Section 3.

It is clear that all the three lossless transformations have a
common theme—to map the quantized scores to lower values.
Naturally, they will mainly benefit the by-value compression
schemes. However, as a special case, the GapTranslating
transformation can potentially affect the by-symbol schemes, since
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it dramatically changes the symbol set as well as the distribution
curves. Based on these definitions and the distribution curves of
Figure 2, it seems unnecessary to apply more than one lossless
transformation at any one time.

4.4 Compression
For clarity of presentation, we assume that the input block of
the coding process, that is, the encoding stream is X =x1x2 ...xn.
These integers, or symbols, do not necessarily have to be standard
Q-scores due to the lossy and lossless transformations. More
generally, they are drawn from a known set of � distinct
integers �=ω1,ω2,...,ω�, which can be easily computed for each
combination of lossy and lossless transformations.

Four groups of compression methods are considered, which
differ in the algorithmic complexity of the encoding process.
This complexity largely correlates with the amount of computing
resources needed to perform coding and, in many cases, decoding.
We select a few representatives for each group.

Static codes: a code of this group associates each positive number
with a distinguished and fixed code word. Hence, the code word
for a symbol ω∈� is fixed in advance, regardless of neighboring
symbols or the overall frequency of that symbol in the encoding
stream. Each static code is designed for a particular distribution
of the integer numbers, and is in fact a minimum-redundancy
code for that distribution. The simplest code is unary, which
encodes a value ω≥1 as a sequence of ω−1 one-bits followed
by a single zero-bit. Another code, gamma, which is more effective
than unary for large numbers, codes a value ω≥1 in two parts:
the value of υ=�log2ω� in unary, and υ-bit binary representation
of ω−2υ . For larger numbers, a reasonable code is delta, which
is similar to gamma, but with υ coded using gamma rather then
unary.

Parameterized codes: these codes are not context-free, as they each
employ a parameter which is derived from making a pass over the
encoding stream. The simplest code of this family is binary, that
employs the parameter b=max(x1,x2,...,xn). It uses the binary
representation of x−1, in either �log2b� or �log2b	 bits, as the
code word for x∈X.

One interesting code of this group is golomb (Golomb,
1966), which uses the parameter b, computed from n and N =∑

i=1..n xi. It codes a value x∈X as the pair (x/b, x mod b).
Gallager and van Voorhis (1975) show that golomb is a
minimum redundancy code when the distribution of the alphabet
� is geometric. That makes golomb attractive for compressing
T-gaps. A related coding scheme that we also considered is rice
(Rice, 1979), that differs from golomb only by forcing b to be a
power of 2.

When the input stream has some sort of clustering, interpolative
coding (interp) by Moffat and Stuiver (2000) is a good choice.
It first converts the input stream X to the equivalent sequence of
cumulative sums X ′, and separately codes the first and last elements
of the later. Then, it codes the middle element of X ′ using binary,
whose parameter is computed from the values of the first and last
elements. It continues recursively to the left and right halves of X ′.

Minimum redundancy codes: minimum redundancy coders employ
the minimum number of bits to encode the data stream based on

the actual distribution of the input symbols. More frequent symbols
are assigned shorter code words in an optimized manner. Huffman
code (huffman), invented by Huffman (1952), is an excellent
representative of this family due to its simplicity and efficiency.

Complex codes: under ‘complex codes’, we refer to compression
systems (as opposed to single codes) that do not generate code
words for single symbols, but for sequences of symbols instead.
They normally spend a considerable amount of time to build the
set of symbol sequences and then apply some form of minimum
redundancy coding as the final stage. Representatives include zlib
(http://www.zlib.net/)—the library version of the widely
available compression system gzip, and libbzip2—the library
version of bzip2 (http://www.bzip.org/).

It can be easily seen that the above four coding families were
presented in the increasing order of algorithmic complexity, at least
in terms of the encoding process. Moreover, the first two families
have the by-value nature, while the other two are by-symbol. It can
be expected that as we move down the above list of four families,
we can get better compression ratios, and get poorer encoding times.
And it is no doubt that the further we progress down this list, the
method will request more internal memory to perform their work.

5 RESULTS
This section reports the main experiment results for the dataset
SRR032209. Additional results, including those for the dataset
SRR070788_1 are provided in the Supplementary Material. All
experiments were conducted on a set of 2.53 GHz 8-Core Intel Xeon
E5540 with 12 GB of RAM and hyper-threading.

5.1 Space

Effects of lossless transformations: Figure 5 demonstrates the
compression effectiveness, as compression ratios, achieved by the
described lossless transformations with various block sizes.

The most noticeable feature in the figure is the near immobility
of the by-symbol curves, and the variability of the by-value
curves across the four graphs. As anticipated, in general, the
lossless transformations improve compression ratio for the by-value
methods, and have almost no effects on the by-symbol compression
schemes. Moreover, all the by-symbol compression schemes are not
effective when the block size k is small.

The effect of lossless transformation on the by-value compression
schemes is tremendous. In fact, these compression schemes are
unsuitable for the original Q-scores, as shown in Figure 5a.
It is understandable, as the minimal Q-scores of 33 is already
a large value for these methods which reserve short code words
to small values. While we can take off 33 from all Q-scores
before encoding to improve compression effectiveness, that simple
operation is not considered here because it cannot do better than
the MinShifting transformation.

Figure 5b and c clearly show the difference in performance
between MinShifting and FreqOrdering. The former has
a very low cost in terms of block headers, and performs well when
k =1, but gets worse when k grows since the impact of the minimal
value lessens. On the contrary, while FreqOrdering spends more
for the block headers, the absolute cost is stabilized when k is
large enough, making FreqOrdering the clear winner. It should
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(a) (b)

(c) (d)

Fig. 5. Compression effectiveness for SRR032209 using various block
sizes and different lossless transformations: (a) No transformation; (b)
MinShifting; (c) FreqOrdering; (d) GapTranslating. The x-
axis represents block size. As reference, the zero-order self-information is
indicated as solid black lines.

be noted, however, that the combination (k =1, MinShifting,
binary) is the simplest from Figure 5b and c, but achieves a
very impressive compression ratio. This combination can be a good
choice when random access is a need.

Finally, Figure 5d shows that GapTranslating is the best
overall lossless transformation for the by-value coding schemes,
with the only exception of binary. It is interesting to see that
the compression ratio is almost stable across different k. Moreover,
the compression ratio attained by interp is very close to that
achieved by the by-symbol compression schemes with large k. The
solid black lines indicate the zero-order self-information for each
transformed dataset—a limit that can be improved upon through
block creation or more complex models.

Based on Figure 5, we will further consider four representative
coding schemes: gamma, interp, huffman and libbzip2.

Effects of lossy transformations: compression ratio achieved
with different levels of granularity of the lossy transformation
LogBinning for the dataset SRR032209 is shown in Figure 6.
As one would expect, the more stringent the lossy transformation,
the better the compression ratio. With k =1, the combination of
(GapTranslating, interp) is the clear winner. With k =256
or 16 384, although libbzip2 with no lossless transformation
is the best, interp and gamma with GapTranslating can
achieve fairly close compression ratios.

In general, when a relative mapping accuracy of 99% is
acceptable, the lossy transformation LogBinning with |�|=5
can be applied. At this setting, various combinations of lossless
transformations and coding methods can achieve compression

Fig. 6. Compression effectiveness achieved with LogBinning for
SRR032209, with k and |�| varying on the horizontal, and lossless
transformations varying on the vertical dimensions. Black lines represent
the self-information, which is unaffected by block size.

(a) (b) (c) (d)

Fig. 7. Compression and decompression (including transformation) times
averaged over three trials for SRR032209. Lossless transformation
GapTranslating and no lossy transformation for (a) k =1 and (b)
k =256; and with no lossless transformation and lossy transformation
LogBinning at |�|=5 for (c) k =1 and (d) k =256.

ratios of around 1 bit per quality score—a dramatic progress in
comparison to the level of 2.5 bits per quality score achieved in the
absence of any lossy transformation.

5.2 Speed
When our main goal is space economy, processing (transformation
and coding) time is also important. Both compression and
decompression times are of concern—throughout the day,
compression is initiated by a data archiver many times, whereas
decompression is performed just a few times, but by many users.

Figure 7 samples the time for the four representative
cases across block sizes and coding methods, with either the
lossless transformation set at GapTranslating or the lossy
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transformation fixed at LogBinning. The figure shows that when
k =1 the order of both compression and decompression time reflect
well the algorithmic complexity of the coding methods. However,
while it takes less time to compress than to decompress with the
by-value methods, the order is reversed for the by-symbol methods.
In particular, the compression time of libbzip2 is dramatically
higher than that of all the other methods.

When k changes from 1 to 256, all running times improve with
the times for libbzip2 improving the most due to the higher
running times for k =1. With k =256 and the LogBinning lossy
transformation, the by-symbol methods clearly outperform the by-
value methods in terms of both compression and decompression
times. This is explained partly by the reduction of the alphabet
size. While this reduction has little meaning to the by-value methods
since they do not rely on either symbol frequencies or pattern of
symbols, it does help the by-symbol methods in reducing the size of
the frequency table and creating more and longer repeated patterns.

6 CONCLUSION
In this work, we have considered how to economically represent
quality scores in NGS data as a combination of three main
components: lossy transformation, lossless transformation and
coding. Of them, the first two are optional, but they can considerably
affect the whole process. By separating these components, we were
able to see the effects each of them can bring, and also to identify
the best settings in order to achieve good system performance.

In our study, we proposed three lossy transformations, introduced
or made use of three lossless transformations, investigated several
by-value coding schemes and considered more conventional by-
symbol methods. Moreover, we demonstrated how data blocking
can affect both compression ratios and running times. Finally, we
also proposed a method to assess the usability, or worthiness, of
any lossy transformation by employing the read mapping tool MAQ.

We found that while full-fledged compression systems such as
libbzip2 are widely accepted for economical representation
of NGS, they are not the best choice for quality scores. Here,
simple codes such as the static code gamma and parameterized
codes interp and golomb, when accompanied by the lossless
transformation GapTranslating, are highly competitive: they
can achieve similar levels of compression while using less time.

In particular, unlike their counterparts that are effective only with
large block sizes, the simple codes have the distinguished feature of
being unaffected by this factor. This is an important point because
it essentially removes the block size parameter from the process,
and allows simple codes to greatly outperform their counterparts
when small block sizes are in use. Note that small block sizes
offer a number of advantages which we have not explored. First,
peak memory usage is reduced. Second, since blocks are coded
independently, errors in the compressed data stream can be isolated
easily. Third, random access in compressed data can be supported
at the additional low cost of an index before each block. Finally,
independent blocks mean that our findings would apply to higher
coverage datasets.

As expected for the lossy transformations, compression ratios
positively correlate with the number of distinct quality scores.
Of the three proposed transformations, LogBinning is the most
effective—it achieves excellent relative mapping performance even
when employing only a few distinct quality scores. With this choice,

compression ratio is improved by around six times, while processing
time, when coupled with by-symbol coding schemes, is reduced
significantly—all suggesting that lossy transformations are useful.

Our results for SRR032209 are supported by those of
SRR070788_1, which appear in the Supplementary Material.
Even though the reads are longer, the relative performance of the
transformation and compression methods remain the same.

Our view is that as NGS data continues to grow, lossy and
lossless transformations can work in tandem. For example, NGS
data can be compressed losslessly and kept in off-line storage (such
as tape backup) while lossy versions of the data can be shared
between users and research laboratories for daily use. Employing
lossy transformations requires consideration since such changes are
more easily noticeable and difficult to assess compared with images
and video data (Witten et al., 1994)—our evaluation with MAQ is
meant to address this issue.

In the future, we plan to reorder the reads, as was done by
Wan and Asai (2010) for the sequence bases, so that each block
possesses reads that have similar quality score patterns. With respect
to running time, we intend to parallelize some of our methods across
blocks. Furthermore, the effect of lossy transformations on other
applications of NGS data, such as RNA-Seq and SNP calling, also
needs to be evaluated.

Our implementation, dubbed QScores-Archiver, is
available from http://www.cb.k.u-tokyo.ac.jp/asailab/members/
rwan under the Lesser General Public License version 3 or later to
allow users to combine it with their FASTQ compression systems.
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