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An wm-dimensional pseudo-Riemannian manifold (M, g) is by definition a
differentiable manifold M with a definite or indefinite Riemannian metric
tensor g of signature (r, s). If the signature of g is (m, 0), then we say that
{M, g) is a Riemannian manifold. The purpose of this note is to generalize
the results on transformations of Riemannian manifolds to those of pseudo-
Riemannian manifolds.

In section 1 we give the basic relations of connections or various tensors
satisfied by projective or conformal transformations. In section 2 we consider
affine transformations and, for example, we get

COROLLARY 2.5. If (M, g is a compact irreducible pseudo-Riemannian
manifold of signature (r,s) satisfying r+s, then any affine transformation of
M is an isometry.

In sections 3, 4, 5 and 6 we study projective and conformal transformations
leaving some tensors invariant, in a similar way as in K. Yano and
T. Nagano’s paper [10]. However, some statements of theorems in seem
to be imcomplete, and so we give here complete statements and prove them
in pseudo-Riemannian manifolds. For example we have

PrROPOSITION 5.1. Let (M, g) and (N, ’g) be pseudo-Riemannian manifolds
of dimension m=4. If there is a conformal transformation ¢ of M to N which
leaves the covariant derivatives of the Weyl conformal curvature tensors invari-
ant and if the set of points where ¢ is non-affine is dense in M, then M and
N are conformally flat.

As a consequence of this proposition we have

PrOPOSITION 5.3. Let M (m=4) be an irreducible locally symmetric pseudo-
Riemannian manifold of signature (r,s), v+ s. Then we have either

(i) M is of constant curvature, or

(ii) M does not admit any non-homothetic conformal transformation.

In the last section we give examples which support our statements of
IProposition 3.1] and Proposition 5.1l
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§1. Preliminaries.

(i) Let M and N be differentiable manifolds with linear connections J
and ‘F. If ¢ is a transformation (diffeomorphism) of M to N, then ¢ induces
a map of geometric objects ‘K on N to those on M denoted by *K. Especially
for '/F on N we have an induced connection ¢/ defined by

Ly TV =gVl

for any vector fields X and Y on M, where ¢ itself denotes the differential
of ¢. From now on by V, X, ¥ and Z we denote vector fields on M. Since
the difference of the connections ¢/ and F makes a tensor field of type (1, 2)
we denote it by W, and we define W; by

(1.2) T xY—VxY =W, X)=Wx(Y).
If K is a tensor field of type (1, 1), for example, then we have
CVxK—V yK)YY =W(KY)—K - Wx(Y).

In the last equation if we replace K by ?K, and notice the relation ¢f ,*K
=*(V ,x'K), then we get

LEMMA 1.1. Let ¢ be a transformation of (M, V) to (N,'F) and let 'K be
a tensor field of type (1, 1), for example, on N. Then we have

(L.3) OOV o' K)—V x*K)Y = Wx(FKY )—*K - Wx(Y).

(il Suppose that the linear connections F and ‘F are symmetric. A trans-
formation ¢ of M to N is projective if and only if we have a 1-form p on M
such that

(1.4) We(YY=W(Y, X)=p(Y)X+p(X)Y .

We say that ¢ is non-affine at x of M if p,-+0. The Riemannian curvature
tensors R and ?R, the Ricci curvature tensors R, and R, are, as is well known
(for example, see [1]), related by

(L.5) *R(X, Y)Z=R(X, )Z+WypYD)X—F x DX D)Y +p(D)p(X)Y
— PP XH(FypXX)—F x0)XY NZ,
(1.6) PR\(X, Y) = R\(X, Y)+m—D@(X)p(Y)—F ¢ p)(X))

+F 2 DXV )=Fyp)(X) .
Now we define a tensor P, of type (0, 2) by
%)) (m*—1P(X, Y)=—mR (X, Y)—R\(Y, X).

Then the Weyl projective curvature tensor P defined by
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(1.8) P(Z, X, Y)=R(X, Y)Z+P(Z, X)Y—P(Z, V)X
X, Y)-P(Y, X)Z

is invariant under any projective transformation, i.e. YP=P. For m=3 we
define a tensor @ of type (0, 3) by defining (m—2)Q(Z, X, Y) to be the trace
of the map V—(F,P)Z, X, Y). If the Ricci tensor is symmetric, then [1.8)
is written as

(L.8Y PZ, X, YV)Y=RX, Y)Y Z-(m—1)"(R(X, Z)Y—R,(Y, Z)X).

LEMMA 1.2. For a projective transformation ¢ of a differentiable manifold
(M, IY(m = 3) with symmetric connection and symmetric Ricci tensor to another
such (N, V) we have

(1.9) RZ X Y)-QZ X, Y)=pPZ X, Y)).

Proor. If we apply (1.3) to the projective curvature tensor P, then, using
¥P=P, we get

(m—-2CQZ, X, Y)-QZ, X, Y)=trace[V—W,P(Z, X, Y)—P(W,Z, X, Y)
—P(Z, W X, Y)—P(Z, X, W,;Y)].
By applying (1.4), the right hand side is written as
trace [V —— p(P(Z, X, YWV—=2p(V)P(Z, X, V)—p(Z)P(V, X, ¥)
—p(XOPZ, V, Y)—p(Y)P(Z, X, V)].

By (1.8) we see that trace [V —-P(Z, X, V)]=0. Similarly we get trace[[V —
PV, X, Y)]=0 and trace[V—-P(Z, V, Y)]1=0. Then (1.9) follows from

trace [V —p(P(Z, X, YHDV—2p(VIP(Z, X, V)1=m—2p(P(Z, X, V).

(iiiy Let ¢ be a conformal transformation of a pseudo-Riemannian mani-
fold (M, g) to (I, ’g) such that ¢g=e¢**g for a function @« on M. With respect
to the Riemannian connections I/ and ‘/ on M and N we have
(1.10) WiV =Xa)Y+Y ) X—g(X, V) grad e,

where grad a is a vector field associated with da defined by the metric tensor
g. We say that ¢ is non-homothetic at x of M if (da), 0. The relation
between the Riemannian curvature tensors is

(1.1D *R(X, MZ=R(X, YNZ+F(Z, YYX—F(Z, X)Y

+g(Z, YYF(X)—g(Z, X)F(Y),
where

(1.12) F(Z, Y)Y=F zda)(Y)—(Za)(Y a)-+27"g(grad a, grad a)g(Z, Y')
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and F(X) is defined by g(F(X), ¥)=F(X, Y). We have also the relations be-
tween the Ricci curvature tensors, and scalar curvatures S and #S. The Weyl
conformal curvature tensor C defined for m =3 by

(1.13) CZ, X, Y)=R(X, Y)Z—(m—2)"(R,(Z, X)Y —R(Z, V)X
+g(Z, X)R\(Y)—gZ, YIR'(X))
F+(m—1)"1m—2)"1S(g(Z, X)Y —g(Z, YYX)

is invariant under any conformal transformation, where RYX) is defined by
g(RY(X), Y)=R(X,Y). If m=3, then we have C=0. For m=4, we define
(m—3)E(Z, X, Y) to be the trace of the map V-(F,C)Z, X, Y). Then E is
a tensor field of type (0, 3). Similarly to we have

LEMMA 1.3. For a conformal iransformation ¢ of a pseudo-Riemannian
manifold (M, @Yim =4) to another (N, ’g) we have

(1.14) EZ, X, Y)-EZ, X, Y)=da(C(Z, X, Y)).

ProoF. If we apply (1.3) to the conformal curvature tensor C, then, using
fC=C, we get

(m—3)YCEZ, X, Y)-EZ, X, Y))=trace [V — W, C(Z, X, V)
_C(WVZ’ X: Y)_C(Zr WVX) Y)_C(Zr X: WVY)] -
By (1.10) the right hand side is written as

trace [V —— da(C(Z, X, Y )V—-2Va)(C(Z, X, Y)
—g(V,C(Z, X, V) grad a—(Za)C(V, X, V)
—(Xa)C(Z, V, Y)—(Ya)C(Z, X, V)
+g(V, Z)C(grad a, X, Y)-+g(V, X)C(Z, grad a, Y)
+g(V, YC(Z, X, grad )] .
First we have
trace [V — da(C(Z, X, Y NDV-20Va)C(Z, X, V)= (m—2)da(C(Z, X, Y)),
trace [V — —g(V,C(Z, X, V) grad a]= —g(grad a, C(Z, X, Y))
=—da(C{Z, X, Y)).

Next by we get trace[V—C(V, X, Y)]=0, trace[V—C(Z, V, Y)]=0
and trace[V—C(Z, X, V)]=0. If we write C(Z, X, Y)=C(X, Y)Z, then it is
known that C satisfies the same algebraic equations as those satisfied by the
Riemannian curvature tensor R, and so we have
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trace [V — g(V, Z2)C(grad a, X, V)] =g(Z, C(grad «, X, Y))
=—g(grada, C(Z, X, V)
=—da(C(Z, X, Y)),
trace [V — g(V, X)C(Z, grad a, Y)+g(V, Y)C(Z, X, grad a)]
=g(X, C(Z, grad o, Y))+g(¥, C(Z, X, grad a))
=—g(Z, C(X, grad a, Y)+C(Y, X, grad a))
=g(Z,C(grada, Y, X))
=g(grada, C(Z, X, 1))
=da(C(Z, X, Y)).

Therefore, adding these results together we have [(1.14)

By A(M), HM) and I(M) we denote the group of affine (W = (), homothetic
(da =0) and isometric (a =0) transformations of A, respectively.

If a transformation ¢ of (M, g) to (X, 'g) satisfies ¢g= —e¢*g we say that
¢ is an anti-conformal transformation, an anti-homothety, or an anti-isometry.

§2. Affine transformations.

In the previous paper [6] generalizing [2] we obtained the following

ProrosiTION 2.1. Let (M, g) and (N, ’g) be irreducible pseudo-Riemannian
manifolds and assume that the signature (v, s) of g satisfies r+s. If there is
an affine transformation ¢ of M to N, then the signature of ‘g is (r, s) or (s, r)
and ¢ is a homothety or an anti-homothely, respectively.

REMARK 2.2. Any 2-dimensional orientable pseudo-Riemannian manifold
(M, g) of signature (1, 1) is reducible. In fact for any point x of M each
1-dimensional subspace of the tangent space M, at x defined by null vectors
is invariant by the restricted homogeneous holonomy group.

REMARK 2.3. Since the distinction between g and —g in a pseudo-Rieman-
nian manifold M is not essential, in many cases we may assume that the
signature (r, s) of g satisfies r=s.

PROPOSITION 24. Any homothety (or anti-homothety) of a compact pseudo-
Riemannian manifold (M, g) is an isometry (or anti-isometry).

Proor. We assume that M is orientable. Then we have the volume ele-
ment (¢ det g)'2dx* A --- A dx™ defined by the determinant of g in each coordinate
neighborhood (the order (x%, ---, x™) being compatible with the orientation and
¢ being the sign of detg). Then the proof for a homothety is the same as in
the Riemannian case (cf. [5]). An anti-homothety can exist only when the
signature of g is (r,7). And for an anti-homothety ¢ of (M, g), we consider
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a homothety ¢ of (M, g) to (M, —2).

By Propositions .1 and we get

COROLLARY 25. If (M,g) is a compact irreducible pseudo-Riemannion
manifold of signature (r,s) satisfying v +s, then any affine transformation of
M is an isometry.

Similarly to [2], we have

COROLLARY 2.6. Let M be an irreducible pseudo-Riemannian manifold of
signature (v, s) satisfying r#s. Then we have:

(i) Any compact subgroup of AM) is a subgroup of I(M).

(i) The commutator subgroup [A(M), A(M)] is a subgroup of KM).

REMARK 2.7. Let M and N be pseudo-Riemannian manifolds. If an affine
transformation of M to N is isometric at some point of M, then it is an iso-
metry (see [9], p. 57).

§3. V P-preserving projective transformations.

PrROPOSITION 3.1. Let M(m = 3) and N be differentiable manifolds with sym-
metric connections V and 'V, and symmetric Ricci tensors R, and 'R,. If there
is a projective transformation ¢ of M to N which leaves the covariant deriva-
tives of the Weyl projective curvature tensors invariant and if the set of points
where ¢ is non-affine is dense in M, then M and N are projectively flat.

PrOOF. By ¢('F/P)=FP, we have #Q=(. Next by Lemma 1.2 we have
p(P(Z, X, Y)=0. If we apply (1.3) to P, using ¢('F/P)=FP and ¢P=P, we
get

0=W(PZ, X, Y)—PW,Z, X, Y)-P(Z W, X, Y)—-P(Z, X, W;;Y).
By (1.4), using p(P(Z, X, Y))=0, we get
3.1 0=2p(VYP(Z, X, Y)+p(DH)P(V, X, )
+p(XOPZ, V, Y)+p(Y)P(Z, X, V).

Take a point x of M such that p,0. Then we have a basis (e, ---, ¢,) of
M, and the dual basis (w?, ---, w™) such that w!= p,.

If we put V=e, Z=1¢, X=¢;, Y=o¢,in (3.1), then we get P(e, ¢;, ¢)=0
for j, &, I£1. _

If we put V=~2Z=¢,, X=¢;, Y =g¢, in (3.1), then we have P(e, ¢,, ¢,)=0
for j, B+ 1.

If we put V=X=¢, Z=¢, Y =¢, in (3.1), then we get P(e, ¢, ¢,)=0
for k, | #1.

Finally if we put V=2Z=X=¢,, Y=¢, in (3.1), then we have P(e, ¢, ¢)
=0 for k1.
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Therefore we have P=0 at x. Since the set of points x such that p, =0
is dense in M, we have P=0 on M.

REMARK 3.2. In section 7, we give an example showing necessity of the
assumption that “the set of points where ¢ is non-affine is dense in M” in
the above Proposition.

A pseudo-Riemannian manifold M is said to be of constant curvature at
x, if the Riemannian curvature tensor satisfies

RX, Y)Z=F(gZ YV)X—g({Z, X)Y)

at x for some real number %, If %, is constant on M, M is said to be of
constant curvature. It is known that any projectively flat pseudo-Riemannian
manifold is of constant curvature. Thus we get

ProroOSITION 3.3. Let (M, g) and (N, 'g) be pseudo-Riemannian manifolds
(m=3). If there is a projective transformation ¢ of M to N which leaves the
covariant derivatives of the Weyl projective curvature tensors invartant and if
the set of points where ¢ is non-affine is dense in M, then M and N are of
constant curvature.

COROLLARY 34. Suppose that a pseudo-Riemannian manifold M(m=3) is
not of constant curvature on any open set in M. Then any projective trans-
formation of M to another N which leaves the covariant derivatives of the Weyl
projective curvalure tensors invariant is affine.

PROPOSITION 3.5. Let (M, gY(m = 3) be a locally symmetric pseudo-Riemann-
tan manifold. Then either

(i) M is of constant curvature, or

(i) M does not admit any non-affine projective transformation.

PROOF. Since M is locally symmetric we have FR=0 and hence FP=0.
Suppose that A is not of constant curvature. Then P does not vanish at some
point of M. Since P is a parallel tensor field, it does not vanish anywhere.
Thus any projective transformation of M is necessarily affine.

REMARK 3.6. When the metric is positive definite, Proposition 3.3 and
Corollary 3.4 for non-affine infinitesimal projective transformation were stated
by K. Yano and T. Nagano in [107] without the condition that the set of points
where ¢ is non-affine is dense in M.

Proposition 3.5 is a generalization of a result due to T. Sumitomo [5] on
Riemannian manifolds.

§4. Ricci-curvature-tensor-preserving projective transformations.

First we remark that a projective transformation leaves the Ricci curva-
ture tensor invariant if and only if it leaves the Riemannian curvature tensor
invariant. In fact, each condition is equivalent to (Fyp)(Y)= p(X)p(¥) in
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and [I5)

PRroPOSITION 4.1. Let M and N be irreducible pseudo-Riemannian mani-
folds and assume that the signature (r,s) of g satisjies r+s. Then any pro-
jective transformation of M to N which leaves the Ricci curvature tensors
tnvariant is a homothely, or anti-homothety.

Especially, further, if both Ricci curvature tensors of M and N vanish,
then any projective transformation is a homothety, or anti-homothety.

Proor. Since the restricted holonomy group of M is irreducible, it has
no invariant covector. By S. Ishihara’s result ([1], p. 209) any Ricci-curvature-
tensor-preserving projective transformation is affine. So if we apply Proposi-
tion 2.1, then the proof is completed.

§5. FC-preserving conformal transformations.

An analogous proposition to [Proposition 3.3 is as follows.

PROPOSITION 5.1. Let (M, g) and (N,’g) be pseudo-Riemannian manifolds
(mz4). If there is a conformal transformation ¢ of M to N which leaves the
covariant derivatives of the Weyl conformal curvature tensors invariant and if
the set of poinis where ¢ is non-homothetic is dense in M, then we have C=10
and, M and N are conformally flat.

Proor. By ?C=C and %('F’'C)=FC, we have ?YE-—=FE. Then by Lemma
1.3 we get da(C(Z, X, Y))=0, and this also implies C(grad a, X, Y)=0. If we
apply (1.3) to C, then we get

0= WACZ, X, Y)—-C(WyZ, X, VI~CZ, Wp X, Y)—C(Z, X, Wy¥).

Using (1.10) and above relations, we get
(GR)) 0=2Va)C(Z, X, Y)+g(V,C(Z, X, YV)) grad «
FZa)CV, X, Y H+-(Xa)CZ, V, Y)+(Ya)CZ, X, V).
Taking the inner product with 7 we get
(b.2) 0=2Va)gU, CZ, X, Y )+ Ua)g(V, C(Z, X, V)
+(Za)g(U, C(V, X, Y )+ Xa)gU, CZ, V, Y))
+Ya)gU,CZ, X, V).

If da+0 at x of M, then we can take a basis (¢, ---, ¢,) of M, and the
dual basis (w?, ---, w™) at x such that w' =da. In the following calculation we
read (Va)=da(V), etc.

If we put V=¢, X=¢;, Y=¢, Z=¢, U=¢; in (5.2), then we have
g(e;, Cley, e, e4))=0 for 4,4, b, {1,

If we put V=U=¢e, X=¢;,, Y=¢, Z=¢, in (5.2), we get g(e,, Cle,, ¢, €y))
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=0 for j, &, [+ 1.

If weput V=U=X=¢,, Y=¢, Z=¢, in[5.2), then we have g(e,, C(e, 2, €x))
=0 for k, 1.

Thus we have g(U,C(Z, X, Y)=0 at x for any U, Z, X, and Y, and we
get C=0 at x. Since the set of points x such that (da),+#0 is dense in M,
we have C=0 on M.

COROLLARY 5.2. Suppose that a pseudo-Riemannian manifold M(m=4) is
conformally non-flat on any open set in M. Then any conformal transforma-
tion of M to another N which preserves the covariant derivatives of the Weyl
conformal curvature tensors is a homothety.

PROPOSITION 5.3. Let M(m=4) be an irreducible locally symmetric pseudo-
Riemannian manifold of signature (r,s), r+s. Then we have either

(i) M is of constant curvature, or

(i) M does not admit any non-homothetic conformal transformation.

Proor. By local symmetry of M we have FR=0 and FC=0. If C is
not trivial at some point, then it is not trivial anywhere. So we have (ii).
Otherwise we have C=0 on M, and so if we show the next Lemma, we get (i).

LEMMA 5.4. If an irreducible pseudo-Riemannian manifold (M, g) has signa-
ture (v, s) satisfying r+s and has parallel Ricci curvature tensor, then it is an
Einstein space.

In fact, if we define a (1, })-tensor 4 by R,(X, Y)=g(X, AY), then by the
same argument as in we have A=al, where a is constant since g and R,
are parallel. Therefore M is an Einstein space.

REMARK 5.5. [Proposition 5.1 (as well as for 2 Riemannijan
manifold was first stated by K. Yano and T. Nagano for a non-homothetic
infinitesimal conformal transformation without specifying that the set of points
where ¢ is non-homothetic is dense in M. We give an example in the last
section which shows that this condition is necessary.

REMARK 5.6. [Proposition 5.3 is a generalization of T. Sumitomo’s result
[5] on Riemannian manifolds.

§6. Ricci-curvature-tensor-preserving conformal transformations.

As in the case of a projective transformation, a conformal transformation
leaves the Ricci curvature tensor invariant if and only if it leaves the Rie-
mannian curvature tensor invariant.

Now we prove

ProposITION 6.1. Let (M, gY(im = 3) be a pseudo-Riemannian manifold such
that the Riemannian connection is complete. Then any Ricci-curvature-tensor-
preserving conformal transformation of (M, g) to another (N,’g) is a homothety.
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Proor. By YR,=R,, we have YR—R and F=0:
(6.1) Fda—da®@da+-2tg(grad o, grad a)g==0.

If grade is a null vector field everywhere, then we have Fda=da&@da.
Since F is complete, we have da=0 by S. Ishihara’s Lemma ([1], p. 210). If
grad ¢ is not a null vector at some point x of M, then we apply the argument
of S. Ishihara’s Lemma ([1], p. 216). Transvecting (6.1) with grad a, we have

6.2) 2F grad « 8rad o == g(grad a, grad «) grad « .

This implies that each trajectory of grad « is a geodesic. So we take a tra-
jectory x(t) of grad a passing through x. Since grad « is not null at x, we
can assume that the parameter ¢ is the arc-length parameter. Consider a
function 2 defined by

At=eg(grad a, grad a)=|grad «|*

on x(t) such that 1>0 at x, ¢ being the sign of g(gradea, grada). Let
X=(grad a)/2 in the domain where 1>0. Then we have

22dA/dt = e y(g(grad «, grad «))
= 52(1/x)g(grad o, Vgrad @ grad C()
=e(l/A){(g(grad a, grad a))? by (6.2).

Thus we have 2dA/di = ¢4® and 1= —2¢/{(t—¢) for some constant ¢. Now notice
that the arc-length parameter ¢ for a non-light-like geodesic is also an affine
parameter (in our case we have [ .. (grad a)/A)=0). By completeness of
the Riemannian connection, 4* must be defined for {1 =c¢. But this is impossible,
namely, we have 1=0 everywhere, and « must be constant on M.

§7. Examples.

EXAMPLE 7.1. There exist projectively non-flat differentiable manifolds (M, )
and (N, V) with symmetric connections and symmetric Ricci tensors, such that
they admit a non-affine projective transformation which maps FP into 'F’P.

Let M be a sphere with the natural metric g*. The Riemannian connec-
tion J* is symmetric and the Ricci tensor R¥ is also symmetric. Since g* is
of constant curvature, (M, F'*) is projectively flat. Take a small open set [/*
in M and define a non-constant positive C«~-function f* on M such that f*
takes value 1 outside [/*. Let ‘F be the Riemannian connection defined by
f*g* Then we have 'F =F* outside U* and there is a point x in U* where
'V is not projectively flat (because, as is known, any projectively flat Rieman-
nian manifold is of constant curvature, but f*g* is not of constant curvature
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in U*). Notice that ‘R, is symmetric. Take an open set J outside U* and
take a noa-trivial Ce=-function f on M which vanishes outside U. Then we
have a 1-form p defined by p—df on M vanishing outside /. Now define a
connection J by

VY ="FyY+pX)Y+p(¥Y)X.

Then F is symmetric and the Ricci curvature tensor R, is also symmetric by
KI.6), since ‘R, is symmetric and pis a derived form. By the way the identity
transformation ¢: (M, F)—(N=»M, V) is projective on M and affine on U*.
Therefore on U* we have ¢('/FP)=VFVP. Outside U* we have 'P= P=0 and
hence ?('F’P)=F P. Since f and p are not trivial, ¢ is not affine at some
point. Moreover, we have '‘P=P-+0 at x.

EXAMPLE 7.2. There exists a Riemannian manifold which is not conformally
flat and which admits a non-homothetic Gnfinitesimal) conformal transformation
which leaves the covariant derivative of the Weyl conformal curvature tensor
mvariant.

A simple example is constructed on an odd dimensional sphere M= §27t1,
Since M admits a Sasakian structure, namely, a normal contact metric struc-
ture, we denote the structure tensors by (@, &, n, g) where £ is a unit Killing
vector field with respect to the metric g induced from that in E**** (cf. [4]).
Let x be an arbitrary point of M and take two small neighborhoods UV and V
such that the closure of U is contained in V. Since & generates a 1-parameter
group of isometries exp £, we have a great circle (expt&-x;0=1t<2r) and
its tubular neighborhoods *U =(expt&-U; 0=t <2x) and *V=(exptf-V;
0<t<2x). We define a non-negative C»-function f on M such that

(@) [ is invariant by exp &,

Gy f=1 on *U,

(iii) f=0 outside *V.

Now we define a new metric *g on M for a constant o > 1 by

7.1 *g=gta—1)f(g+tanRmn).

Then *g on *U is agt+(a®—a)p@n, and this is an associated Riemannian
metric with respect to another Sasakian structure on *{J. But *g on *U is
not of constant curvature (cf. [8]). On the other hand, if the associated Rie-
mannian metric of a Sasakian structure is conformally flat, then it is of con-
stant curvature (3], [7]). Therefore *g is not conformally flat on *IJ. Since
& leaves » invariant too, by & is a Killing vector fleld also with respect
to *g. Next we take a small open set W outside *V and define a positive
C=-function 2 such that

(iv) there is a point y in W where h(y)#1, and

(v) for any z outside W we have A(z)=1.
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Then the metric ¢ defined by G = h*g is the one required. Namely, we have

(1]
£z]
£3]
(4]
£5]
£6]
L7]
£8]

£97]
(10]

(vi) G is not conformally flat (on *U).

(vii) M admits an infinitesimal conformal transformation £ which is a
Killing vector field with respect to G outside W and which is non-
homothetic on some open set in W, since L:G = (L)1 /R)G.

(viii) The covariant derivative 'C of the Weyl conformal curvature ten-
gsor may be non-vanishing only in *V. Since & is a Killing vector
field on *V we have LJ/C=FL:C=0 on *V and hence on M.

Tohoku University
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