Pacific Journal of Mathematics

TRANSFORMATIONS ON TENSOR PRODUCT SPACES Marvin David Marcus and Benjamin Nelson Moyls

TRANSFORMATIONS ON TENSOR PRODUCT SPACES

Marvin Marcus and B. N. Moyls

1. Introduction. Let U and V be m - and n-dimensional vector spaces over an algebraically closed field F of characteristic 0 . Then $U \otimes V$, the tensor product of U and V, is the dual space of the space of all bilinear functionals mapping the cartesian product of U and V into F. If $x \in U, y \in V$ and w is a bilinear functional, then $x \otimes y$ is defined by: $x \otimes y(w)=w(x, y)$. If e_{1}, \cdots, e_{m} and f_{1}, \cdots, f_{n} are bases for U and V, respectively, then the $e_{i} \otimes f_{j}, i=1, \cdots, m, j=1, \cdots, n$, form a basis for $U \otimes V$.

Let $M_{m, n}$ denote the vector space of $m \times n$ matrices over F. Then $U \otimes V$ is isomorphic to $M_{m, n}$ under the mapping ψ where $\psi\left(e_{i} \otimes f_{j}\right)=$ $E_{i j}$, and $E_{i j}$ is the matrix with 1 in the (i, j) position and 0 elsewhere. An element $z \in U \otimes V$ is said to be of rank k if $z=\sum_{i=1}^{k} x_{i} \otimes y_{i}$, where x_{1}, \cdots, x_{k} are linearly independent and so are y_{1}, \cdots, y_{k}. If $R_{k}=$ $\{z \in U \otimes V \mid \operatorname{rank}(z)=k\}$, then $\psi\left(R_{k}\right)$ is the set of matrices of rank k, in $M_{m, n}$. In view of the isomorphism any linear map T of $U \otimes V$ into itself can be considered as a linear map of $M_{m, n}$ into itself.

In [2] and [3], Hua and Jacob obtained the structure of any mapping T that preserves the rank of every matrix in $M_{m, n}$ and whose inverse exists and has this property (coherence invariance). (In [3] F is replaced by a division ring, and T is shown to be semi-linear by appealing to the fundamental theorem of projective geometry.) In [4] we obtained the structure of T when $m=n, T$ is linear and T preserves rank 1, 2 and n. Specifically, there exist non-singular matrices M and N such that $T(A)=M A N$ for all $A \in M_{n n}$, or $T(A)=M A^{\prime} N$ for all A, where A^{\prime} designates the transpose of A. Frobenius (cf. [1], p. 249) obtained this result when T is a a linear map which preserves the determinant of every A. In [5] it was shown that this result can be obtained by requiring only that T be linear and preserve rank n. In the present paper we show that rank 1 suffices (Theorem 1), or rank 2 with the side condition that T maps no matrix of rank 4 or less into 0 (Theorem 2). Thus our hypothesis will be that T is linear and $T\left(R_{1}\right) \subseteq R_{1}$. We remark that T may be singular and still its kernel may have a zero intersection with R_{1}; e.g., take $U=V$ and $T(x \otimes y)=$ $x \otimes y+y \otimes x$.
2. Rank one preservers. Throughout this section T will be a linear transformation (l.t.) of $U \otimes V$ into $U \otimes V$ such that $T\left(R_{1}\right) \subseteq R_{1}$. Here

[^0]U and V are m - and n-dimensional vector spaces over F. Let e_{1}, \cdots, e_{m} aud $f_{1} \cdots, f_{n}$ be fixed bases for U and V, and set
\[

$$
\begin{equation*}
T\left(e_{i} \otimes f_{j}\right)=u_{i j} \otimes v_{i j}, \quad i=1, \cdots, m ; j=1, \cdots, n . \tag{1}
\end{equation*}
$$

\]

Note that no $u_{i j}$ or $v_{i j}$ can be zero. We shall show, in case $m \neq n$ that there exist vectors u_{i} and v_{j} such that $T\left(e_{i} \otimes f_{j}\right)=u_{i} \otimes v_{j}$, and hence that the l.t. T is a tensor product of transformations on U and V separately. In case $m=n$ it will be shown that a slight modification of T is a tensor product.

Denote by $L\left(x_{1}, \cdots, x_{t}\right)$ the subspace spanned by the vectors x_{1}, \cdots, x_{t}, and let $\rho\left(x_{1}, \cdots, x_{t}\right)$ be the dimension of $L\left(x_{1}, \cdots, x_{t}\right)$.

Lemma 1. Let $x_{1}, \cdots, x_{r}, w_{1}, \cdots, w_{s}$ be vectors in U, and let y_{1}, $\cdots, y_{r}, z_{1}, \cdots, z_{s}$ be vectors in V. Let

$$
\begin{equation*}
\sum_{i=1}^{r}\left(x_{i} \otimes y_{i}\right)=\sum_{j=1}^{s}\left(w_{j} \otimes z_{j}\right) . \tag{2}
\end{equation*}
$$

If $\rho\left(x_{1}, \cdots, x_{r}\right)=r$, then $y_{i} \in L\left(z_{1}, \cdots, z_{s}\right), i=1, \cdots, r$; and similarly if $\rho\left(y_{1}, \cdots, y_{r}\right)=r$, then $x_{i} \in L\left(w_{1}, \cdots, w_{s}\right), i=1, \cdots, r$.

Proof. Suppose that $\rho\left(x_{1}, \cdots, x_{r}\right)=r$. Let θ be a linear functional on U such that $\theta\left(x_{1}\right)=1, \theta\left(x_{i}\right)=0, i \neq 1$, and let α be an arbitrary linear functional on V. For $x \in U, y \in V$, define

$$
\begin{equation*}
g(x, y)=\theta(x) \alpha(y) . \tag{3}
\end{equation*}
$$

Applying (2) to g, we get

$$
\alpha\left(y_{1}\right)=\sum_{i=1}^{s} \theta\left(w_{j}\right) \alpha\left(z_{j}\right)=\alpha\left(\sum_{j=1}^{s} \theta\left(w_{j}\right) z_{j}\right)
$$

where each $\theta\left(w_{j}\right)$ is a scalar. Since α is arbitrary, y_{1}, and similarly y_{2}, \cdots, y_{r}, are contained in $L\left(z_{1}, \cdots, z_{s}\right)$. The second part of the lemma is proved in the same way.

Lemma 2. If $T\left(R_{1}\right) \subseteq R_{1}$, and T satisfies (1), then for $i=1, \cdots$, m, either

$$
\begin{equation*}
\rho\left(u_{i 1}, \cdots, u_{i n}\right)=n \quad \text { and } \quad \rho\left(v_{i 1}, \cdots, v_{i n}\right)=1, \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\rho\left(u_{i 1}, \cdots, u_{i n}\right)=1 \quad \text { and } \quad \rho\left(v_{i 1}, \cdots, v_{i n}\right)=n . \tag{5}
\end{equation*}
$$

Similarly, for $j=1, \cdots, n$, either

$$
\begin{equation*}
\rho\left(u_{1 j}, \cdots, u_{m \jmath}\right)=m \quad \text { and } \quad \rho\left(v_{1 j}, \cdots, v_{m \jmath}\right)=1, \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\left(u_{\imath \jmath}, \cdots, u_{m j}\right)=1 \quad \text { and } \quad\left(v_{1 j}, \cdots, v_{m j}\right)=m . \tag{7}
\end{equation*}
$$

Proof. Suppose that $u_{i \alpha}$ and $u_{i \beta}$ are independent. Then

$$
T\left(e_{i} \otimes\left(f_{\alpha}+f_{\beta}\right)\right)=\left(u_{i \alpha} \otimes v_{i \alpha}\right)+\left(u_{i \beta} \otimes v_{i \beta}\right)
$$

must be a tensor product $u \otimes v$. By Lemma $1, v_{i \alpha}, v_{i \beta} \in L(v)$. Since all $v_{i \jmath} \neq 0, L\left(v_{i \alpha}\right)=L\left(v_{i \beta}\right)$. For $\gamma \neq \alpha, \beta, L\left(v_{i \gamma}\right)=L\left(v_{i \alpha}\right)$, since $u_{i \gamma}$ must be independent of at least one of $u_{i \alpha}, u_{i \beta}$. We have shown that if $\rho\left(u_{i 1}, \cdots, u_{i n}\right) \geq 2$, then $\rho\left(v_{i 1}, \cdots, v_{i n}\right)=1$.

Suppose next that $\rho\left(u_{i 1}, \cdots, u_{i n}\right)=1$, viz., $u_{i \alpha}=c_{\alpha} u_{i 1}, c_{\alpha} \neq 0, \alpha=$ $1, \cdots, n$. If

$$
\rho\left(v_{i 1}, \cdots, v_{i n}\right)<n, \text { let } \sum_{\alpha=1}^{n} a_{\alpha} v_{i \alpha}=0
$$

be a non-trivial dependence relation. Then

$$
T\left(e_{i} \otimes\left(\sum_{\alpha=1}^{n} \frac{a_{\alpha}}{c_{\alpha}} f_{\alpha}\right)\right)=\sum_{\alpha=1}^{n}\left(c_{\alpha} u_{i 1} \otimes \frac{a_{\alpha}}{c_{\alpha}} v_{i \alpha}\right)=u_{i 1} \otimes\left(\sum_{\alpha=1}^{n} a_{\alpha} v_{i \alpha}\right)=0,
$$

which is impossible by the nature of T. Hence $\rho\left(u_{i 1}, \cdots, u_{i n}\right)=1$ implies $\rho\left(v_{i 1}, \cdots, v_{i n}\right)=n$.

It follows by a similar argument that if $\rho\left(v_{i 1}, \cdots, v_{i n}\right)=1$, then $\rho\left(u_{i 1}, \cdots, u_{i n}\right)=n$. Hence either (4) or (5) must hold. The second part of the lemma is proved similarly.

We remark that if $m<n$ (or $n<m$), then (4) (or (7)) cannot hold.
Lemma 3. Either (4) and (7) hold for all i, j; or (5) and (6) hold for all i, j.

Proof. We show first that either (4) or (5) holds uniformly in i. Suppose that for some i and $k, 1 \leq i \leq k \leq m, \rho\left(u_{i 1}, \cdots, u_{i n}\right)=n$ while $\rho\left(u_{k 1}, \cdots, u_{k n}\right)=1$. Then for some $\alpha, 1 \leq \alpha \leq n, \rho\left(u_{i \alpha}, u_{k \alpha}\right)=2$. For $\beta \neq \alpha$ consider

$$
\begin{aligned}
\eta & =T\left[\left(e_{i}+e_{k}\right) \otimes\left(c f_{\alpha}+f_{\beta}\right)\right] \\
& =c\left(u_{i \alpha} \otimes v_{i \alpha}\right)+\left(u_{i \beta} \otimes v_{i \beta}\right)+c\left(u_{k \alpha} \otimes v_{k \alpha}\right)+\left(u_{k \beta} \otimes v_{k \beta}\right),
\end{aligned}
$$

where c is an arbitrary scalar.
By hypothesis and Lemma 2, $v_{i \alpha}=a v_{k \alpha}$ and $v_{i \beta}=b_{1} v_{i \alpha}=b v_{k \alpha}$ for suitable non-zero scalars a and b, while $\rho\left(v_{k \alpha}, v_{k \beta}\right)=2$. Thus $\eta=\left(a c u_{i \alpha}+\right.$ $\left.b u_{i \beta}+c u_{k \alpha}\right) \otimes v_{k \alpha}+\left(u_{k \beta} \otimes v_{k \beta}\right)$, and by Lemma 1, $\rho\left(a c u_{i \alpha}+b u_{i \beta}+\right.$ $\left.c u_{k \alpha}, u_{k \beta}\right)=1$ for all scalars c. Since $\rho\left(u_{k \alpha}, u_{k \beta}\right)=1$, this implies that $\rho\left(c u_{i \alpha}+u_{i \beta}, u_{k \beta}\right)=1$ for all c. This is impossible, since $\rho\left(u_{i \alpha}, u_{i \beta}\right)=2$. Thus either (4) is true for all i, or (5) is true for all i. A similar argument applies to (6) and (7).

If (4) and (6) hold for all i and j, then there exist non-zero scalars $c_{i j}$ such that $v_{i j}=c_{i j} v_{11}, i=1, \cdots, m, j=1 . \cdots, n$. For a_{j}, b scalars, consider

$$
T\left[\left(\sum_{i=1}^{m} a_{i} e_{i}\right) \otimes\left(f_{1}-b f_{2}\right)\right]=\left(\sum_{i=1}^{m} a_{i} c_{i 1} u_{i 1}-b \sum_{i=1}^{m} a_{i} c_{i 2} u_{i 2}\right) \otimes v_{11} .
$$

Let z_{1}, \cdots, z_{m} and w_{1}, \cdots, w_{m} be the m-column vectors which are respectively the representations of $u_{11}, \cdots, u_{m 1}$ and $u_{12}, \cdots, u_{m 2}$ with respect to the basis e_{1}, \cdots, e_{m}. Let C be the m-square matrix whose columns are $c_{11} z_{1}, \cdots, c_{m 1} z_{m}$ and let W be the m-square matrix whose columns are $c_{12} w_{1}, \cdots, c_{m 2} w_{m}$. Then with respect to the basis e_{1}, \cdots, e_{m} the vector $\sum_{i=1}^{m} a_{i} c_{i 1} u_{i 1}-b \sum_{i=1}^{m} a_{i} c_{i 2} u_{i 2}$ has the representation $(C-b W) a$ where a is the column m-tuple (a_{1}, \cdots, a_{m}). Now C and W are non-singular since $\rho\left(u_{11}, \cdots, u_{m 1}\right)=\rho\left(u_{12}, \cdots, u_{m 2}\right)=m$, so choose b to be an eigenvalue of $W^{-1} C$ and choose a to be the corresponding eigenvector. Then $(C-b W) a=0$ and hence there exist scalars a_{1}, \cdots, a_{m} not all 0 and b such that

$$
T\left(\sum_{i=1}^{m} a_{i} e_{i} \otimes\left(f_{1}-b f_{2}\right)\right)=0
$$

a contradiction since $T\left(R_{1}\right) \subseteq R_{1}$.
Hence (4) and (6) cannot hold for all i and j. Similarly both (5) and (7) cannot hold for all i and j. This completes the proof of the lemma.

In view of the remark preceding this lemma, (5) and (6) must hold when $m \neq n$.

Theorem 1. Let U and V be m - and n-dimensional vector spaces respectively. Let T be a linear transformation on $U \otimes V$ which maps elements of rank one into elements of rank one. Let T_{1} be the l.t. of $V \otimes U$ into $U \otimes V$ which maps $y \otimes x$ onto $x \otimes y$. If $m=n$, let φ be any non-singular l.t. of U onto V. Then if $m \neq n$, there exist nonsingular l.t.'s A and B on U and V, respectively, such that $T=$ $A \otimes B$. If $m=n$, there exist non-singular A and B such that either $T=A \otimes B$ or $T=T_{1}\left(\rho A \otimes \varphi^{-1} B\right)$.

Proof. By (1) and Lemma 3, $T\left(e_{i} \otimes f_{j}\right)=u_{i j} \otimes v_{i j}, i=1, \cdots, m$, $j=1, \cdots, n$, where either (5) and (6) hold or (4) and (7) hold. Suppose first that the former is the case; in particular, $\rho\left(u_{i 1}, \cdots, u_{i n}\right)=1$ for $i=1, \cdots, m$ and $\rho\left(v_{1 j}, \cdots, v_{m j}\right)=1$ for $j=1, \cdots, n$. Then there exist non-zero scalars $s_{i j}, t_{i j}$ such that $u_{i j}=s_{i j} u_{i 1}$ and $v_{i j}=t_{i j} v_{1 j}$. Thus

$$
\begin{equation*}
T\left(e_{i} \otimes f_{j}\right)=c_{i j} u_{i} \otimes v_{j} \tag{8}
\end{equation*}
$$

where $u_{i}=u_{i 1}, v_{j}=v_{1 j}$, and $c_{i j}=s_{i j} t_{i j}$. For $i=2, \cdots, n$,

$$
T\left[\left(e_{1}+e_{i}\right) \otimes\left(\sum_{j=1}^{n} f_{j}\right)\right]=u_{1} \otimes \sum_{j=1}^{n} c_{1 j} v_{j}+u_{i} \otimes \sum_{j=1}^{n} c_{i j} v_{j}
$$

must be a direct product $x \otimes w$. By (6) and Lemma $1, \sum_{j=1}^{n} c_{i j} v_{j}=$ $d_{i} \sum_{j=1}^{n} c_{1 j} v_{j}$ for some constant d_{i}. By (5), $c_{i j}=d_{i} c_{1 j}$. Hence

$$
\begin{equation*}
T\left(e_{i} \otimes f_{j}\right)=x_{i} \otimes y_{j}, \tag{9}
\end{equation*}
$$

where $x_{i}=d_{i} u_{i}$ and $y_{j}=c_{1 j} v_{j}$. Since the $\left\{x_{i}\right\}$ and $\left\{y_{j}\right\}$ are each linearly independent sets, there non-singular linear transformations A and B such that $x_{i}=A e_{i}$ and $y_{j}=B f_{j}$. Then $T=A \otimes B$.

When $m=n$, (4) and (7) may hold; in particular,

$$
\rho\left(v_{i 1}, \cdots, v_{i n}\right)=1 \text { and } \rho\left(u_{1 j}, \cdots, u_{n j}\right)=1 \quad \text { for } \quad i, j=1, \cdots, n .
$$

As in the preceding case, there exist linearly independent sets x_{1}, \cdots, x_{n} and y_{1}, \cdots, y_{n} such that

$$
\begin{equation*}
T\left(e_{i} \otimes f_{j}\right)=x_{j} \otimes y_{i} . \tag{10}
\end{equation*}
$$

There exist non-singular transformations A and B of U and V, respectively, such that $A e_{i}=\varphi^{-1} y_{i}$ and $B f_{j}=\varphi x_{j}, i, j=1, \cdots, n$. Thus $T_{1}^{-1} T\left(e_{i} \otimes f_{j}\right)=\varphi A e_{i} \otimes \varphi^{-1} B f_{j}$. Q.E.D.

In matrix language we have the following.
Corollary. Let T be a l.t. on the space $M_{n n}$ of n-square matrices. If the set of rank one matrices is invariant under T, then there exist non-singular matrices A and B such that either $T(X)=A X B$ for all $X \in M_{n n}$ or $T(X)=A X^{\prime} B$ for all $X \in M_{n n}$.
3. Rank two preservers. In this section T will be a l.t. of $U \otimes V$ such that $T\left(R_{2}\right) \subseteq R_{2}$. We shall show that under certain conditions $T\left(R_{1}\right) \subseteq R_{1}$.

Lemma 4. If W is a subspace of $U \otimes V$ such that, for some integer $r, 1 \leq r \leq \min (m, n)$,

$$
\begin{equation*}
\operatorname{dim} W \geq m n-r \max (m, n)+1 \tag{11}
\end{equation*}
$$

then $W \cap \bigcup_{j=1}^{r} R_{j} \neq \phi$.
Proof. Suppose that $m=\max (m, n)$. The products $e_{i} \otimes f_{j}, i=1$, $\cdots, m, j=1, \cdots, r$, are linearly independent and span a space W_{1} of dimension $m r$. Furthermore, $W_{1} \subseteq \bigcup_{j=1}^{r} R_{j}$. Then $\operatorname{dim}\left(W_{1} \cap W\right)=$ $\operatorname{dim} W_{1}+\operatorname{dim} W-\operatorname{dim}\left(W_{1} \cup W\right) \geq m r+(m n-r m+1)-m n=1$. The result follows, since $W_{1} \cap W \subseteq \bigcup_{j=1}^{r} R_{j} \cap W$.

Lemma 5. If $T\left(R_{2}\right) \subseteq T\left(R_{2}\right) \subseteq R_{2}$, then $T\left(R_{1}\right) \subseteq R_{1} \cup R_{2}$.

Proof. Suppose $x_{1} \otimes y_{1} \in R_{1}$, and choose $x_{2} \otimes y_{2} \in R_{1}$ such that $\rho\left(x_{1}, x_{2}\right)=\rho\left(y_{1}, y_{2}\right)=2$. Then $\alpha=s T\left(x_{1} \otimes y_{1}\right)+t T\left(x_{2} \otimes y_{2}\right) \in R_{2}$ for all non-zero scalars s, t. Now suppose that $T\left(x_{1} \otimes y_{1}\right)=\sum_{j=1}^{p} u_{j} \otimes v_{j}$, where $\rho\left(u_{1}, \cdots, u_{p}\right)=\rho\left(v_{1}, \cdots, v_{p}\right)=p$, and that $T\left(x_{2} \otimes y_{2}\right)=\sum_{j=1}^{q} z_{j} \otimes w_{j}$, where $\rho\left(z_{1}, \cdots, z_{q}\right)=\rho\left(w_{1}, \cdots, w_{q}\right)=q$. Let u_{p+1}, \cdots, u_{m} be a completion of u_{1}, \cdots, u_{p} to a basis for U. It follows that

$$
\sum_{j=1}^{q} z_{j} \otimes w_{j}=\sum_{j=1}^{m} u_{j} \otimes h_{j}
$$

for some vectors $h_{\jmath} \in V, j=1, \cdots, m$. Then

$$
\begin{aligned}
\alpha & =\sum_{j=1}^{p} u_{j} \otimes s v_{j}+\sum_{j=1}^{p} u_{j} \otimes t h_{j}+\sum_{j=p+1}^{m} u_{j} \otimes t h_{j} \\
& =\sum_{j=1}^{p} u_{j} \otimes\left(s v_{j}+t h_{j}\right)+\sum_{j=p+1}^{m} u_{j} \otimes t h_{j} .
\end{aligned}
$$

Since $\alpha \in R_{2}$, it follows by Lemma 1 that

$$
\rho\left(s v_{1}+t h_{1}, \cdots, s v_{p}+t h_{p}\right) \leq 2 \text { for } \text { st } \neq 0 .
$$

The vectors $s v_{1}+t h_{1}, \cdots, s v_{p}+t h_{p}$ are linearly independent when $s=1$ and $t=0$. By continuity, they remain independent for small values of t. Hence $p \leq 2$ and $T\left(x_{1} \otimes y_{1}\right) \in R_{1} \cup R_{2}$.

Theorem 2. If $T\left(R_{2}\right) \subseteq R_{2}$ and $0 \notin T\left(\bigcup_{j=1}^{4} R_{j}\right)$, then $T\left(R_{1}\right) \subseteq R_{1}$.
Proof. Suppose $x_{1} \otimes y_{1} \in R_{1}$ and $T\left(x_{1} \otimes y_{1}\right) \notin R_{1}$. By Lemma 5, $T\left(x_{1} \otimes y_{1}\right) \in R_{2}$, since $0 \notin T\left(R_{1}\right)$. Thus $T\left(x_{1} \otimes y_{1}\right)=\left(u_{1} \otimes v_{1}\right)+\left(u_{2} \otimes v_{2}\right)$, where $\rho\left(u_{1}, u_{2}\right)=\rho\left(v_{1}, v_{2}\right)=2$. Let x_{1}, \cdots, x_{m} and y_{1}, \cdots, y_{n} be bases for U and V respectively. Then for st $\neq 0$

$$
\begin{align*}
s T\left(x_{1} \otimes y_{1}\right)+t T\left(x_{i} \otimes y_{j}\right) \in & R_{1} \cup R_{2} \tag{12}\\
& \quad \text { for } i=1, \cdots, m, j=1, \cdots, n .
\end{align*}
$$

At this point it seems simpler to regard the images $T\left(x_{i} \otimes y_{j}\right)$ as elements of $M_{m n}$. It is clear that there is no loss in generality in taking $T\left(x_{1} \otimes y_{1}\right)=E_{11}+E_{22}$.

Let i and j be fixed for this discussion, and let $A=T\left(x_{i} \otimes y_{j}\right)$. Let a_{1}, \cdots, a_{n} be the m-dimensional vectors which are the columns of A, and let ε_{k} be the unit vector with 1 in the k th position. It follows from (12) that

$$
\begin{equation*}
\rho\left(s \varepsilon_{1}+t a_{1}, s \varepsilon_{2}+t a_{2}, t a_{3}, \cdots, t a_{n}\right)=2 \tag{13}
\end{equation*}
$$

for $s t \neq 0$. The Grassmann products

$$
\begin{equation*}
\left(s \varepsilon_{1}+t a_{1}\right) \wedge\left(s \varepsilon_{2}+t a_{2}\right) \wedge t a_{k}, \quad 3 \leq k \leq n \tag{14}
\end{equation*}
$$

must be zero for $s t \neq 0$. In the expansion of (14) the coefficient of $s^{2} t$ is 0 ; that is, $\varepsilon_{1} \wedge \varepsilon_{2} \wedge a_{k}=0$.

Thus the matrix A has non-zero entries only in the first two rows and columns. It follows immediately that the dimension of the range of $T \leq 2(m+n)-4$. Hence the dimension of the kernel of $T \geq m n-$ $2(m+n)+4>m n-4 \max (m, n)+1$.

By Lemma 4, there exists an element of $\bigcup_{j=1}^{4}$ whose image is zero. This contradicts the hypothesis; hence $T\left(R_{1}\right) \subseteq R_{1}$.

We see then that the form of T satisfying Theorem 2 is given in the conclusions of Theorem 1.

Remark. We feel that the hypothesis $0 \notin T\left(\mathbf{U}_{j=1}^{4} R_{j}\right)$ of Theorem 2 should not be necessary, but we have not been able to prove the theorem without it. More generally, we conjecture that $T\left(R_{k}\right) \subseteq R_{k}$ for some fixed $k, 1 \leq k \leq n$, should suffice to prove that T is essentially a tensor product.

References

1. E. B. Dynkin, Maximal subgroups of the classical groups, A.M.S. Translations, Series 2, 6 (1957), 245-378. (Original: Trudy Moskov. Mat. Obsc. 1 (1952), 39-166.)
2. L. K. Hua, A theorem on matrices and its application to Grassmann space, Science Reports of the National Tsing Hua University, Ser. A, 5 (1948), 150-181.
3. H. G. Jacob, Coherence invariant mappings on Kronecker products, Amer. J. Math. 77 (1955), 177-189.
4. Marvin Marcus and B. N. Moyls, Linear transformations on algebras of matrices, Can. J. Math. 11 (1959) 61-66.
5. Marvin Marcus and R. Purves, Linear transformations on algebras of matrices: The invariance of the elementary symmetric functions, Can. J. Math. 11 (1959), 383-396.

University of British Columbia

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

David Gilbarg
Stanford University
Stanford, California

A. L. Whiteman
University of Southern California
Los Angeles 7, California
L. J. Paige
University of California
Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH	V. GANAPATHY IYER	I. NIVEN	E. G. STRAUS
C. E. BURGESS	R. D. JAMES	T. G. OSTROM	G. SZEKERES
E. HEWITT	M. S. KNEBELMAN	H. L. ROYDEN	F. WOLF
A. HORN	L. NACHBIN	M. M. SCHIFFER	K. YOSIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA OREGON STATE COLLEGE UNIVERSITY OF OREGON OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

```
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE COLLEGE
UNIVERSITY OF WASHINGTON
    * * *
AMERICAN MATHEMATICAL SOCIETY
CALIFORNIA RESEARCH CORPORATION
HUGHES AIRCRAFT COMPANY
SPACE TECHNOLOGY LABORATORIES
```

[^1]The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is $\$ 12.00$; single issues, $\$ 3.50$. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $\$ 4.00$ per volume; single issues, \$1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2 -chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics
 Vol. 9, No. $4 \quad$ August, 1959

Frank Herbert Brownell, III, A note on Kato's uniqueness criterion for Schrödinger operator self-adjoint extensions 953
Edmond Darrell Cashwell and C. J. Everett, The ring of number-theoretic functions 975
Heinz Otto Cordes, On continuation of boundary values for partial differential operators 987
Philip C. Curtis, Jr., n-parameter families and best approximation 1013
Uri Fixman, Problems in spectral operators 1029
I. S. Gál, Uniformizable spaces with a unique structure 1053
John Mitchell Gary, Higher dimensional cyclic elements 1061
Richard P. Gosselin, On Diophantine approximation and trigonometric polynomials 1071
Gilbert Helmberg, Generating sets of elements in compact groups 1083
Daniel R. Hughes and John Griggs Thompson, The H-problem and the structure of H -groups 1097
James Patrick Jans, Projective injective modules 1103
Samuel Karlin and James L. McGregor, Coincidence properties of birth and death processes 1109
Samuel Karlin and James L. McGregor, Coincidence probabilities 1141
J. L. Kelley, Measures on Boolean algebras 1165
John G. Kemeny, Generalized random variables 1179
Donald G. Malm, Concerning the cohomology ring of a sphere bundle 1191
Marvin David Marcus and Benjamin Nelson Moyls, Transformations on tensor product spaces 1215
Charles Alan McCarthy, The nilpotent part of a spectral operator 1223
Kotaro Oikawa, On a criterion for the weakness of an ideal boundary component 1233
Barrett O'Neill, An algebraic criterion for immersion 1239
Murray Harold Protter, Vibration of a nonhomogeneous membrane 1249
Victor Lenard Shapiro, Intrinsic operators in three-space 1257
Morgan Ward, Tests for primality based on Sylvester's cyclotomic numbers 1269
L. E. Ward, A fixed point theorem for chained spaces 1273
Alfred B. Willcox, Šilov type C algebras over a connected locally compact abelian group 1279
Jacob Feldman, Correction to "Equivalence and perpendicularity of Gaussian processes" 1295

[^0]: Received March 2, 1959. The work of the first author was sponsored by U.S. National Science Foundation Grant G. 5416.

[^1]: Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

 50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50 .

