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ABSTRACT. A transformed primal-dual (TPD) flow is developed for a class of nonlinear
smooth saddle point system. The flow for the dual variable contains a Schur complement
which is strongly convex. Exponential stability of the saddle point is obtained by show-
ing the strong Lyapunov property. Several TPD iterations are derived by implicit Euler,
explicit Euler, implicit-explicit and Gauss-Seidel methods with accelerated overrelaxation
of the TPD flow. Generalized to the symmetric TPD iterations, linear convergence rate is
preserved for convex-concave saddle point systems under assumptions that the regularized
functions are strongly convex. The effectiveness of augmented Lagrangian methods can
be explained as a regularization of the non-strongly convexity and a preconditioning for
the Schur complement. The algorithm and convergence analysis depends crucially on ap-
propriate inner products of the spaces for the primal variable and dual variable. A clear
convergence analysis with nonlinear inexact inner solvers is also developed.
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2 TRANSFORMED PRIMAL-DUAL METHODS

1. INTRODUCTION

1.1. Problem setting. Consider a class of nonlinear smooth saddle point systems:

(1) min
u∈Rm

max
p∈Rn

L(u, p) = f(u)− g(p) + (Bu, p)

where B is an n × m matrix, n ≤ m, with full row rank, f(u), g(p) are smooth con-
vex functions with convexity constant µf , µg , and∇f(u),∇g(p) are Lipschitz continuous
with Lipschitz constants Lf , Lg , respectively. The point (u∗, p∗) solves the min-max prob-
lem (1) is said to be a saddle point of L(u, p), that is

L(u∗, p) ≤ L(u∗, p∗) ≤ L(u, p∗) ∀ (u, p) ∈ Rm × Rn.
Convex optimization problems with affine equality constraints can be rewritten into a sad-
dle point system (1):

(2)
min
u∈Rm

f(u)

subject to Bu = b.

Then p is the Lagrange multiplier to impose the constraint Bu = b and L(u, p) = f(u)−
(b, p)+(Bu, p). Note that µg = 0 since g(p) = (b, p) is linear and not strongly convex.

The saddle point (u∗, p∗) satisfies the first order necessary condition for the critical
point of L(u, p):

(3)
∇f(u∗) +B>p = 0,

Bu∗ −∇g(p∗) = 0.

If ∇f(u) = Au and ∇g(p) = Cp, where A,C are symmetric positive semidefinite matri-
ces, one can recover the linear saddle point system:

(4)
(
A B>

B −C

)(
u∗

p∗

)
=

(
f
g

)
,

which arises in computational fluid dynamics [8], mixed finite element approximation of
PDEs [17, 18, 34], optimal control problems [53], etc (see [5] and references therein).

For solving (3), the Arrow–Hurwicz and Uzawa methods proposed in [1] is one of the
earliest and most fundamental method. The pioneer work inspired influential algorithms
such as the extragradient algorithm [36], the Popov’s modified method [44] (also known
as optimistic gradient descent-ascent methods). For strongly convex-strongly concave sys-
tems, i.e., µf > 0 and µg > 0, linear convergence of the extragradient algorithm was
established in [36]. For general convex-concave systems only sub-linear rates are achieved
in [26, 40, 50, 52].

One may ask a question immediately: can we retain linear convergence rate only with
partially strong convexity, i.e., µf > 0 but µg = 0, which covers the most important
constrained optimization problem (2)? The answer is yes. When f is strongly convex, its
convex conjugate exists, i.e., f∗(ξ) = maxu∈Rm (ξ, u)− f(u) is well defined and convex.
Then (1) is equivalent to the composite optimization problem without constraints:

(5) min
p∈Rn

f∗(−B>p) + g(p).

Notice f∗ is strongly convex since∇f is Lipschitz continuous andB is full row rank, (5) is
a strongly convex optimization problem with respect to the dual variable p. If f∗ and∇f∗
is computationally available, convex optimization methods can be applied to solve (5) and
obtain linear convergence with strong convexity of f∗. Inexact Uzawa methods (IUM) for
linear saddle point systems [2, 3, 4, 10, 22, 25, 43, 48] and nonlinear saddle point systems
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[18, 19, 20, 21, 32] can be thought of as an inexact evaluation of ∇f∗ for solving (5) and
achieving linear convergence rate. Usually a nonlinear inner iteration terminated with a
certain accuracy for computing ∇f∗ is required [2, 3, 20, 22, 31, 32, 43, 49].

1.2. Flows. We shall study the iterative methods from the ODE solvers point of view.
Namely we treat (u(t), p(t)) as continuous functions of t and design ODE systems so that
the saddle point (u∗, p∗) is an equilibrium point of the corresponding dynamic system.
Then we apply ODE solvers to obtain various iterative methods. By doing this way, we
can borrow the analysis tools for dynamic systems to prove the stability and convergence
theory of ODE solvers.

The main stream in this direction is the primal-dual gradient dynamics, which treat u as
the primal variable and p as the dual variable and follows the primal-dual (PD) flow [1]:

(6)

{
u′ = −∂uL(u, p) = −∇f(u)−B>p
p′ = ∂pL(u, p) = Bu−∇g(p)

,

where u′, p′ are taking the derivative of t. The exponential stability of the equilibrium
point (u∗, p∗) is shown in [47] for problem (2) and asymptotic convergence for general
convex-concave systems can be found in [23] and references therein. Then ODE solvers
for (6) will lead to several iterative methods and the linear convergence may be obtained
using the exponential stability in the continuous level.

For linear saddle point problems, we have the following factorization:

(7)
(
A B>

B −C

)
=

(
I 0

BA−1 I

)(
A 0
0 −S

)(
I A−1B>

0 I

)
,

where A ∈ Rm×m is symmetric positive definite (SPD), B ∈ Rn×m is surjective, C ∈
Rn×n is symmetric and semi-positive definite, and S = BA−1B> + C is the Schur com-
plement of A. The triangular matrix in (7) can be viewed as a change of coordinate. By
changing to the correct ‘coordinate’, the primal and dual variables are decoupled and the
Schur complement S defines a strongly convex function of the dual variable; see (5).

Generalized to nonlinear systems, we consider a change of variable v = u + I−1V B>p
where IV is an SPD matrix. Based on this transformation, we propose the following trans-
formed primal-dual (TPD) flow
(8){

u′ = −I−1V ∂uL(u, p) = −I−1V (∇f(u) +B>p)

p′ = I−1Q
(
∂pL(u, p)−BI−1V ∂uL(u, p)

)
= −I−1Q

[
∇gB(p)−Bu+BI−1V ∇f(u)

]
,

where IQ is another SPD matrix and gB(p) := g(p)+ 1
2p
>BI−1V B>p. Here following [11]

and [56], the TPD flow is posed in appropriate inner products induced by SPD matrices IV
and IQ on Rm and Rn, respectively. After the transformation, the gradient of the Schur
complement BI−1V B>p is added to∇g(p). Even µg = 0, the function gB is strongly con-
vex and thus the exponential stability for the TPD flow can be established. More precisely,
if (u(t), p(t)) solves the TPD flow (8), we shall prove the exponential decay

(9) E(u(t), p(t)) ≤ e−µtE(u(0), p(0)), t > 0,

where the Lyapunov function

(10) E(u, p) = 1

2
‖u− u∗‖2IV +

1

2
‖p− p∗‖2IQ ,

and µ = min{µf,IV , (2 − Lf,IV )µgB ,IQ)} with assumption Lf,IV < 2 which can be
satisfied by rescaling.
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In Fig. 1, we present numerical results for the example L(u, p) = 1
2u

2 − up with
u, p ∈ R. It is evident that the TPD flow is asymptotically stable and the Lyapunov function
(10) converges without oscillations.

(A) Trajectory of PD and TPD flows in the
(u, p) coordinate.

(B) Decay of Lyapunov function (10).

FIGURE 1. Comparison of PD flow
(
u′

p′

)
=

(
−1 −1
1 0

)(
u
p

)
and

TPD flow
(
u′

p′

)
=

(
−1 −1
0 −1

)(
u
p

)
for L(u, p) = 1

2u
2 − up. The

ODE systems are solved by ode45 in MATLAB.

On convergence analysis, for linear saddle point systems, it suffices to bound the spec-
trum of a matrix operator for the error; see [42, 55] and reference therein. For nonlinear
problems, if the spectrum analysis is applied to the linearization problem, then it is lim-
ited to the local convergence, i.e., (uk, pk) should be sufficiently close to (u∗, p∗); see,
e.g. [32].

To overcome the limitation of the spectrum analysis, we shall follow the framework
in [15] to verify the strong Lyapunov property in Theorem 3.2

−∇E(u, p) · G(u, p) ≥ µ E(u, p),
where G(u, p) is the vector field defined on the right hand side of (8). Then the exponen-
tial decay (9) follows. Convergence analysis relies crucially on the assumption that the
Lipschitz constant Lf,IV < 2 which can be always satisfied by a rescaling.

One can further ask the question: can we still have the linear convergence rate if not only
µg = 0 but also µf = 0? Recall that, the strong convexity of the dual variable is recovered
by the transformation on the dual variable flow. We can apply the transformation to the
primal variable as well. If f is not strongly convex, but fB(u) = f(u)+ 1

2 (B
>T−1P Bu, u)

is strongly convex, we show the exponential stability can be obtained by the symmetric
transformed primal-dual (STPD) flow:

(11)

{
u′ = −I−1V (∂uL(u, p) +B>T−1P ∂pL(u, p))
p′ = I−1Q

(
∂pL(u, p)−BT−1U ∂uL(u, p)

) .

Here we further introduce SPD matrices TU , TP for the transformation and treat IV and
IQ as preconditioners.

With appropriate scaling of TU and TP , we can assume Lipschitz constants Lf,TU < 2
and Lg,TP < 2. Then define the effective convexity constant µ = min{µV , µQ} with

µV = min{1, 2− Lf,TU }µfB ,IV , µQ = min{1, 2− Lg,TP}µgB ,IQ ,
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in Theorem 5.3, we show the exponential decay

E(u(t), p(t)) ≤ e−µtE(u(0), p(0)), ∀t > 0,

for (u(t), p(t)) solves the STPD flow (11).
Consider the convex optimization problems with affine equality constraints (2), the

well-known augmented Lagrangian method (ALM) [30, 45] for solving

(12) min
u∈Rm

max
p∈Rn

Lβ(u, p) = f(u) +
β

2
‖Bu− b‖2 + (p,Bu− b)

can be derived from STPD flow (11) by choosing T−1P = βI . From this point of view, the
effectivness of ALM can be interpreted by the STPD flows in the continuous level. Notice
we can also consider TPD flow for the augmented Lagrangian (12) which is more or less
equivalent to STPD (11) for the original Lagrangian. We show careful analysis to explain
the connection between TPD flows and ALM in Section 6.

To illustrate different flows for constrained optimization problems (2), we present nu-
merical results in Fig. 2 for the example

(13)
min

(u1,u2)∈R2
f(u1, u2) =

1

2
u21 − u2

subject to u1 − u2 = 0.

with u = (u1, u2) ∈ R2, p ∈ R. The convex function f is not strongly convex but
restricted to kerB = {(u1, u2) ∈ R2 : u1 = u2} is or equivalently fB(u1, u2) = 1

2u
2
1 +

1
2 (u1 − u2)

2 − u2 is strongly convex. Compared with applying the PD flow to Lagrangian
(PD flow) or augmented Lagrangian (AL-PD flow), the STPD flow approached the saddle
point with no oscillation and dramatic decay of the Lyapunov function (10).

(A) Trajectories of PD, AL-PD and STPD
flows in (u1, p) coordinate.

(B) Decay of the Lyapunov function (10).

FIGURE 2. Comparison of PD flow, AL-PD flow and STPD flow for the
example (13). In STPD, TU = IV = I and T−1P = I−1Q = βI with
β = 10. The ODE systems are solved by ode45 in MATLAB.

1.3. Schemes. In the discrete level, we apply implicit Euler, explicit Euler, implicit-explicit
(IMEX) methods, and a Gauss-Seidel iteration with accelerated overrelaxation (AOR) [28]
to the TPD flow (8) to obtain several iterative methods.
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Implicit Euler method with growing step size and efficient Newton type inner itera-
tion [37] will yield super-linear convergence rate. On the explicit Euler method, an equiv-
alent algorithm is:

(14)

uk+1/2 = uk − I−1V (∇f(uk) +B>pk),

pk+1 = pk − αkI−1Q
(
∇g(pk)−Buk+1/2

)
,

uk+1 = (1− αk)uk + αkuk+1/2,

which can be viewed as a relaxation of the inexact Uzawa methods (IUM) and recovers
IUM when αk = 1. The term uk+1/2 is introduced for computing BI−1V ∂uL(uk, pk)
in (8). In other words, TPD flow can be viewed as a continuous version of IUM by dividing
αk and letting αk → 0 in (14).

When the step size αk is sufficiently small, in Theorem 4.2, we prove that

E(uk+1, pk+1) ≤ (1− 1

4κ2
)E(uk, pk),

with κ ≥ max{κV , κQ}, κV := LV/µV , κQ := LQ/µQ. We refer to Table 1 for the
precise definition of these constants and comment on the rate briefly here.

Roughly speaking, the rate of convergence is determined by κV(f) := Lf,IV/µf,IV
and κQ(S) = κ(I−1Q BI−1V B>) := λmax

(
I−1Q BI−1V B>

)
/λmin

(
I−1Q BI−1V B>

)
. Both

IV and IQ can be scalar, then (14) is an explicit first order method with linear convergence
rate. However, in this case, when either κ(f) or κ(BB>) is large, the convergence will be
very slow. When I−1V = 1/LfI , we can choose I−1Q = Lf (BB

>)−1 to improve κQ and
the rate becomes 1− c/κ2(f).

To further accelerate the linear rate 1 − c/κ2, we consider the IMEX scheme for TPD
flow (8). Equivalently we replace the third step in (14) by

(15) uk+1 = arg min
u∈Rm

f(u) +
1

2αk
‖u− uk + αkI−1V B>pk+1‖2IV .

When IV = LfI , (15) is one proximal iteration

uk+1 = proxf, αkLf
(uk −

αk
Lf

B>pk+1),

where recall that proxf,λ(w) = argminu f(u) +
1
2λ‖u − w‖

2. Namely IMEX for (8) is
equivalent to one inexact Uzawa iteration plus one proximal iteration. The linear conver-
gence rate can be improved to (Theorem 4.3),

(16) E(uk+1, pk+1) ≤
1

1 + c/κV
E(uk, pk),

provided we can choose IQ such that κQ(S) � κV . We can choose an inner product
IV so that κV(f) small. But in the above schemes a prior information on the spectrum
of the Schur complement BI−1V B> is required to design IQ in order to control κQ(S).
Noted that when I−1V = A−1 is a dense matrix, even the Schur complement BI−1V B>

is expensive to compute and store. When the proximal operator of f is available, we
recommend IV = LfI and I−1Q ≈ Lf (BB>)−1 so that (16) can be achieved. In particular,
IV = rI and IQ = 1

rBB
> + δI is the scheme discussed in [29] and a sub-linear rate of

1/k is given for (non-smooth) constrained problems there.
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When the proximal operator of f is not available, we propose a new Gauss-Seidel iter-
ation with accelerated overrelaxation (GS-AOR) for the TPD flow:

(17)

uk+1 − uk
α

= −I−1V (∇f(uk) +Bᵀpk)

pk+1 − pk
α

= −I−1Q
[
∇gB(pk)−B(2uk+1 − uk) +BI−1V ∇f(uk+1)

]
.

This is an explicit scheme due to the update of uk+1 before the update of pk+1. The term
Bu in (8) is approximated by B(2uk+1 − uk). With a modified Lyapunov function

E(xk) =
1

2
‖xk − x?‖2MX−2αB − αDf (u

∗, uk)− αDgB (p
∗, pk),

where x = (u, p),MX = diag{IV , IQ} and B =

(
0 B>

B 0

)
is a symmetric matrix, and

the Bregman divergence of f and gB are

Df (u, v) = f(u)− f(v)− 〈∇f(v), u− v〉,
DgB (p, q) = gB(p)− gB(q)− 〈∇gB(q), p− q〉,

we proved in Theorem 4.6 that

E(xk+1) ≤
1

1 + µα/2
E(xk) ≤

1

1 + cκ
E(xk),

where µ = min {µV , µQ} and a fixed step sizeαk = α < 1/max{4LS , 2Lf,IV , 2LgB ,IQ}
with the constants defined in Table 1. In particular, for the constrained optimization prob-
lem (2), with a large enough IQ such that LS ≤ 1, constant step size α = 1/8 is allowed.

We can combine the transformed primal-dual itertion with the augmented Lagrangian
methods. As we mentioned before, f may not be strongly convex but

fβ(u) = f(u) +
β

2
‖Bu− b‖2

is µfβ -strongly convex. That is, f is strongly convex restricted on kerB = {u ∈ Rm :
Bu = 0}. By choosing an appropriate SPD matrix A, the condition number of f can be
modified to κA(f) = Lf,A/µf,A. For IV = Aβ = A + βBB>, a simple I−1Q = βI
is allowed as preconditioning of the Schur complement. We propose the ALM-GS-AOR
scheme 

uk+1 − uk
α

=− I−1V (∇f(uk) + βB>(Buk − b) +B>pk)

pk+1 − pk
α

=− β
[
BI−1V B>pk + b−B(2uk+1 − uk)

+BI−1V
(
∇f(uk+1) + βB>(Buk+1 − b)

)]
.

We show in Proposition 6.2 that

κQ(S) = κ(I−1Q BI−1V B>) ≤ 1 +
1

βµS0

,

where µS0
= λmin(BA

−1B>). So for β large enough, e.g., β ≥ 1/µS0
, κQ(S) is bounded

by 2. Then with constant step size α = 1/8, we get the linear rate

E(xk+1) ≤
1

1 + µfβ ,Aβ/16
E(xk) ≤

1

1 + c κAβ (fβ)
E(xk).
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The choice I−1Q = βIn is simple but now I−1V ≈ (A + βBB>)−1 becomes harder to
approximate. General preconditioners IV and IQ can be chosen and analyzed under the
framework of transformed primal-dual methods, which extends the choice of augmented
term parameter is usually a scalar in ALM literatures [7, 46]. An optimal choice of pa-
rameter β and inner product IV and IQ will be problem dependent. We summarize some
typical choices of IV and IQ for explicit Euler, IMEX, and GS-AOR schemes with or
without ALM in Table 2.

1.4. Contribution. To summarize, our main contribution of this work includes:
• We propose a novel transformed primal-dual flow and prove the saddle point
(u∗, p∗) is exponentially stable by showing the exponential decay of a strong Lya-
punov function. We show the symmetrized version can recover the well-known
ALM.

• In the discrete level, we develop several transformed primal-dual iterations by ap-
plying implicit Euler, explicit Euler, implicit-explicit Euler, and GS-AOR methods
of the TPD flow. All the schemes achieve the linear convergence rates with mild
assumptions, even neither f nor g is strongly convex. In particular, GS-AOR is an
explicit scheme achieving the state-of-the-art linear convergence rate.

• Instead of solving a subproblem at each iteration accurately, we can relax to gen-
eral linear inexact solvers I−1V and I−1Q . We also derive convergence analysis
with nonlinear inexact inner solvers for sub-problem (15). Compared with exist-
ing works, our framework using the strong Lyapunov property provides flexibility
and much clear analysis to choose inexact inner solvers.

The rest of paper is organized as follows. In Section 2 we describe problem settings
and review Lyapunov analysis used as tools for convergence analysis. Our motivation to
use change of variable to recover strong convexity in dual variable is also highlighted in
this section. In Section 3, the transformed primal-dual flow on the continuous level is
developed and convergence analysis is given. Variants of discrete schemes as transformed
primal-dual iterations are discussed in Section 4 and we further generalize our framework
to inexact solvers. A symmetric transformed primal-dual flow for non-strongly convex f
and g is proposed and analyzed in Section 5. In Section 6, we showed our algorithms can
be adapted to augmented Lagrangian to solve constrained optimization problems.

2. PRELIMINARIES

In this section, we provide background on convex functions and Lyapunov analysis.
We also show the loss of exponential stability for the primal-dual flow and recover it by a
change of variable.

2.1. Convex Functions. Let V be a finite-dimensional Hilbert space with inner product
(·, ·) and norm ‖·‖. V ′ is the linear space of all linear and continuous mappings T : V → R,
which is called the dual space of V , and 〈·, ·〉 denotes the duality pair between V and V ′.
For any proper closed convex function f : V → R , we say f ∈ Sµ with µ > 0 if f is
differentiable and

f (v)− f (u)− 〈∇f(u), v − u〉 > µ

2
‖u− v‖2 , ∀u, v ∈ V.

In addition, denote f ∈ Sµ,L if f ∈ Sµ and there exists L > 0 such that

f (v)− f (u)− 〈∇f (u) , v − u〉 6 L

2
‖u− v‖2 , ∀u, v ∈ V.
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The Bregman divergence of f is defined as

Df (v, u) := f(v)− f(u)− 〈∇f(u), v − u〉.

For fixed u ∈ V, Df (·, u) is convex as f is convex. If f ∈ Sµ,L, we have

µ

2
‖u− v‖2 ≤ Df (v, u) ≤

L

2
‖u− v‖2.

Especially for f(u) = 1
2‖u‖

2, Bregman divergence reduces to the half of the squared
distance Df (v, u) = Df (u, v) = 1

2‖u − v‖
2. In general Df (v, u) is non-symmetric in

terms of u and v. A symmetrized Bregman divergence is defined as

〈∇f(u)−∇f(v), u− v〉 = Df (v, u) +Df (u, v).

By direct calculation, we have the following three-terms identity.

Lemma 2.1 (Bregman divergence identity [13]). If f : V → R is differentiable, then for
any u, v, w ∈ V , it holds that

(18) 〈∇f(u)−∇f(v), v − w〉 = Df (w, u)−Df (w, v)−Df (v, u).

When f(u) = 1
2‖u‖

2, identity (18) becomes

(u− v, v − w) = 1

2
‖w − u‖2 − 1

2
‖w − v‖2 − 1

2
‖v − u‖2.

2.2. Lyapunov analysis. In order to study the stability of an equilibrium x∗ of a dynami-
cal system defined by an autonomous system

(19) x′ = G(x(t)),

Lyapunov introduced the so-called Lyapunov function E(x) [35, 27], which is nonnegative
and the equilibrium point x∗ satisfies E (x∗) = 0 and the Lyapunov condition: −∇E(x) ·
G(x) is locally positive near the equilibrium point x∗. That is the flow G(x) may not be
in the perfect −∇E(x) direction but contains positive component in that direction. Then
the (local) decay property of E(x) along the trajectory x(t) of the autonomous system (19)
can be derived immediately

d

dt
E(x(t)) = ∇E(x) · x′(t) = ∇E(x) · G(x) < 0.

To further establish the convergence rate of E(x(t)), Chen and Luo [15] introduced the
strong Lyapunov condition: E(x) is a Lyapunov function and there exist constant q > 1,
strictly positive function c(x) and function p(x) such that

(20) −∇E(x) · G(x) ≥ c(x)Eq(x) + p2(x)

holds true near x∗. From this, one can derive the exponential decay E(x(t)) = O (e−ct)
for q = 1 and the algebraic decay E(x(t)) = O

(
t−1/(q−1)

)
for q > 1. Furthermore if

‖x−x∗‖2 ≤ CE(x), then we can derive the exponential stability of x∗ from the exponential
decay of Lyapunov function E(x).

Note that for an optimization problem, we have freedom to design the vector field G(x)
and choose Lyapunov function E(x). Throughout this paper, zeros denote zero numbers or
zero vectors that is clear from the context. For example, G(x∗) = 0 means a vector zero
and E(x∗) = 0 means a scalar zero for an equilibrium point x?.
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2.3. Primal-dual flow. One of the simplest Lyapunov function for the saddle point sys-
tem (1) is:

(21) E(u, p) =1

2
‖u− u∗‖2 + 1

2
‖p− p∗‖2.

The asymptotic convergence properties of the PD flow is discussed in [23]. We state in the
following Lemma that E is a Lyapunov function but may not satisfy the strong Lyapunov
property when g is not strongly convex.

Lemma 2.2. Assume f(u) ∈ Sµf ,Lf and g(p) ∈ Sµg,Lg with µf > 0, µg ≥ 0. Then it
holds that

−∇E(u, p) ·
(
−∂uL(u, p)
∂pL(u, p)

)
≥ µf‖u− u∗‖2 + µg‖p− p∗‖2≥ 0,

for E(u, p) defined in (21).

Proof. As∇L(u∗, p∗) = 0, we can insert ∇L(u∗, p∗) and obtain

−∇E(u, p) ·
(
−∂uL(u, p)
∂pL(u, p)

)
= 〈∂uE(u, p), ∂uL(u, p)− ∂uL(u∗, p∗)〉

+ 〈∂pE(u, p),−∂pL(u, p) + ∂pL(u∗, p∗)〉
= 〈u− u∗,∇f(u)−∇f(u∗)〉+ 〈p− p∗,∇g(p)−∇g(p∗)〉
≥ µf‖u− u∗‖2 + µg‖p− p∗‖2.

�

By sign change of ∂uL(u, p) and ∂pL(u, p), the cross terms
〈
u− u∗, B>(p− p∗)

〉
and

〈p− p∗,−B(u− u∗)〉 are canceled. The symmetrized Bregman divergence of f can be
bounded below by ‖u − u∗‖2 by the strong convexity of f(u). However, that of g cannot
be controlled by ‖p− p∗‖2 if µg = 0, which is the loss of the strong convexity on the dual
variable. One cannot achieve the exponential decay for Lyapunov function (21) by using
the primal-dual flow, and this is the essential reason for the sub-linear convergence rate for
many numerical schemes; see the literature review in the introduction.

In the continuous level, a compensation is to introduce a rescaled primal-dual flow and
design a tailored Lyapunov function such that the exponential decay can be verified under
certain metric [15, 47]. In the discrete level, however, corresponding explicit schemes can
only converge sub-linearly [39]. The linear rate can be retained if the scheme is implicit
in p [38, 39] for which a linear saddle point system should be solved in each step. Recov-
ery the strong Lyapunov property through the time rescaling in the dual variable is thus
expensive.

2.4. Recovery of strong convexity through transformation. In view of (5), when f∗ is
known, the flow for the dual variable can be the gradient flow of the strong convex function
of the dual variable [33, 51]. In general, we consider a change of variable

(22) v = u+ I−1V B>p.

After transformation, the optimization problem can be formulated in terms of (v, p), i.e.,
L(v, p) := L(u(v, p), p). Such idea has been successfully applied to the linear saddle point
systems in [6, 16]. The primal-dual flow for (v, p) is

(23)

{
v′ = −∂vL(v, p) = −∂uL(u, p),
p′ = ∂pL(v, p) = ∂pL(u, p)−BI−1V ∂uL(u, p),
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which can be rewritten as the iteration of (u, p, v) variable{
v′ = −v + e(u),

p′ = −∇gB(p) +Be(u),

where e(u) = u − I−1V ∇f(u) and gB(p) = g(p) + 1
2 (BI

−1
V B>p, p). If f(u) = 1

2‖u‖
2
A

is quadratic and IV = A, the term e(u) vanishes, then v′ = −v and p′ = −∇gB(p) is
decoupled for which the exponential decay can be easily obtained.

In general, we can show if e(u) is a contraction, the strong Lyapunov property can be
established for the primal-dual flow (23) for variable (v, p). In Section 3, we shall present
a simplified flow for the original variable (u, p).

2.5. Inner products. When V = Rm,Q = Rn, the standard l2 dot product of Euclidean
space is usually chosen as the inner product and the norm induced is the Euclidean norm.
We now introduce inner product (·, ·)IV induced by a given SPD operator IV : V → V
defined as follows

(u, v)IV := (IVu, v) = (u, IVv), ∀u, v ∈ V

and associated norm ‖ · ‖IV , given by

‖u‖IV = (u, u)
1/2
IV .

The dual norm w.r.t the IV -norm is defined as: for ` ∈ V ′

‖`‖V′ = sup
0 6=u∈V

〈`, u〉
‖u‖IV

.

It is straightforward to verify that

‖`‖V′ = ‖`‖I−1
V

:= (`, `)
1/2

I−1
V

:=
(
I−1V `, `

)1/2
.

We shall generalize the convexity and Lipschitz continuity with respect to IV -norm: we
say f ∈ Sµf,IV with µf,IV > 0 if f is differentiable and

f (v)− f (u)− 〈∇f(u), v − u〉 > µf,IV
2
‖u− v‖2IV , ∀u, v ∈ V.

In addition, denote f ∈ Sµf,IV ,Lf,IV if f ∈ Sµf,IV and there exists Lf,IV > 0 such that

f (v)− f (u)− 〈∇f(u), v − u〉 ≤ Lf,IV
2
‖u− v‖2IV , ∀u, v ∈ V.

Under this definition, the default norm is a special case with IV = I for which the subscript
will be skipped, i.e., µf , Lf for ‖ · ‖.

Similarly we introduce inner product (·, ·)IQ induced by a given self-adjoint and pos-
itive definite operator IQ and the notation follows on Q. The convexity and Lipschitz
constant of g w.r.t to ‖ · ‖IQ will be denoted by µg,IQ and Lg,IQ .

2.6. Gradient descent step for the primary variable. For f ∈ Sµf,IVLf,IV , function

(24) e(u) = u− I−1V ∇f(u)

can be thought of as one gradient descent step at u in the metric IV . By the triangle
inequality, e(u) is always Lipschitz continuous with respect to IV -norm. Denote by Le,IV
the Lipschitz constant of e(u), i.e., Le,IV > 0 such that

‖e(u1)− e(u2)‖IV ≤ Le,IV‖u1 − u2‖IV , ∀u1, u2 ∈ V.
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When Le,IV < 1, e(u) is a contractive map. We derive a sufficient and necessary condition
for e(u) being contractive in the following lemma.

Lemma 2.3. Suppose f ∈ Sµf,IVLf,IV . Then Le,IV < 1 if and only if 0 < Lf,IV < 2.

Proof. Consider u1, u2 ∈ V ,

(25)

‖e(u1)− e(u2)‖2IV = ‖u1 − u2 − I−1V (∇f(u1)−∇f(u2))‖2IV
= ‖u1 − u2‖2IV + ‖∇f(u1)−∇f(u2)‖2I−1

V

− 2〈u1 − u2,∇f(u1)−∇f(u2)〉.

If Le,IV < 1, we have ‖e(u1)− e(u2)‖2IV < ‖u1 − u2‖
2
IV , and by (25)

‖∇f(u1)−∇f(u2)‖2I−1
V

< 2〈u1 − u2,∇f(u1)−∇f(u2)〉

≤ 2‖∇f(u1)−∇f(u2)‖I−1
V
‖u1 − u2‖IV ,

which implies Lf,IV < 2. If Lf,IV = 0, then ‖e(u1) − e(u2)‖2IV = ‖u1 − u2‖2IV
contradicts with Le,IV < 1.

We now show sufficiency. If 0 < Lf,IV < 2, then for u1, u2 ∈ V , we have the
inequality [41, Chapter 2]

‖∇f(u1)−∇f(u2)‖2I−1
V

< 2〈u1 − u2,∇f(u1)−∇f(u2)〉,

and, by (25),
‖e(u1)− e(u2)‖2IV < ‖u1 − u2‖

2,

which implies Le,IV < 1.
�

The condition Lf,IV > 0 is to eliminate the degenerate case f(u) is affine. The con-
dition Lf,IV < 2 can be achieved by either a rescaling of f or the inner product IV . For
example, for f ∈ Sµf ,Lf , we can choose I−1V = 1

Lf
Im < 2

Lf
Im , then

‖∇f(u1)−∇f(u2)‖2I−1
V

=
1

Lf
‖∇f(u1)−∇f(u2)‖2 ≤ Lf‖u1 − u2‖2 = ‖u1 − u2‖2IV ,

for all u1, u2 ∈ V which implies Lf,IV ≤ 1. For this example, the function e(u) is simply
a gradient descent step at u for function f with step size 1/Lf .

TABLE 1. Derived convexity constants and Lipschitz constants for
f ∈ Sµf,IV ,Lf,IV , gB ∈ SµgB,IQ ,LgB,IQ , with gB(p) = g(p) +
1
2 (BI

−1
V B>p, p), and e(u) = u − I−1V ∇f(u) is Lipschitz continuous

with constant Le,IV < 1.

µ L

µS = λmin

(
I−1Q BI−1V B>

)
L2
S = λmax

(
I−1Q BI−1V B>

)
µV = µf,IV L2

V = 2
(
L2
e,IV (1 + L2

S)
)

µQ = (2− Lf,IV )µgB ,IQ L2
Q = 2L2

gB ,IQ
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3. TRANSFORMED PRIMAL-DUAL FLOW

In this section, we propose a transformed primal-dual flow and verify the strong Lya-
punov property for a quadratic and convex Lyapunov function. Furthermore, we show the
Lipschitz continuity of the flow. We assume f is strongly convex but g may not. In view
of the dual problem (5), the saddle point (u∗, p∗) exists and is unique.

3.1. Transformed primal-dual flow. Given an SPD matrix IV for V and IQ for Q, we
consider a transformed primal-dual flow:

(26)

{
u′ = Gu(u, p)
p′ = Gp(u, p)

with

Gu(u, p) = −I−1V ∂uL(u, p) = −I−1V (∇f(u) +B>p)= e(u)− v,(27)

Gp(u, p) = I−1Q
(
∂pL(u, p)−BI−1V ∂uL(u, p)

)
= −I−1Q (∇gB(p)−Be(u)) ,(28)

where recall that e(u) = u − I−1V ∇f(u), v = u + I−1V B>p, and gB(p) = g(p) +
1
2 (BI

−1
V B>p, p). Namely for the primary variable u, we use a preconditioned gradient

flow and for the dual variable p, we use a preconditioned gradient flow associated to gB
but perturbed by Be(u). Since B is surjective, BI−1V B> is always SPD. The non-strongly
convex function g(p) is enhanced to a strongly convex function gB(p) ∈ SµgB,IQ ,LgB,IQ .

We denote G(u, p) = (Gu(u, p),Gp(u, p))>. The equilibrium point (u∗, p∗) of the flow
gives G(u∗, p∗) = 0, which satisfies the first order condition∇L(u∗, p∗) = 0.

3.2. Strong Lyapunov property. Define Lyapunov function

(29) E(u, p) = 1

2
‖u− u∗‖2IV +

1

2
‖p− p∗‖2IQ .

The transformed primal-dual flow (26) satisfies the error equation(
u− u∗
p− p∗

)′
=

(
Gu(u, p)− Gu(u∗, p∗)
Gp(u, p)− Gp(u∗, p∗)

)
.

We aim to verify the strong Lyapunov property to obtain the exponential decay. The key is
the following lower bound of the cross term.

Lemma 3.1. Suppose f ∈ Sµf,IV ,Lf,IV . For any u1, u2 ∈ V and p1, p2 ∈ Q, we have

〈∇f(u1)−∇f(u2), I−1V B>(p1 − p2)〉

≥ µf,IV
2
‖v1 − v2‖2IV −

Lf,IV
2
‖B>(p1 − p2)‖2I−1

V
− 1

2
〈∇f(u1)−∇f(u2), u1 − u2〉,

where recall that v = u+ I−1V B>p is the transformed variable.

Proof. To use the strong convexity of f , we switch between variables using relation v =
u+ I−1V B>p. Write

I−1V B>(p1 − p2) = v1 − v2 − (u1 − u2) = u2 − (u1 − v1 + v2).
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Using the Bregman divergence identity (18) and bounds on the Bregman divergence

(30)

〈∇f(u1)−∇f(u2), u2 − (u1 − v1 + v2)〉
= Df (u1 − v1 + v2, u1)−Df (u1 − v1 + v2, u2)−Df (u2, u1)

≥ µf,IV
2
‖v1 − v2‖2IV −

Lf,IV
2
‖u1 − u2 − (v1 − v2)‖2IV −Df (u2, u1)

=
µf,IV
2
‖v1 − v2‖2IV −

Lf,IV
2
‖B>(p1 − p2)‖2I−1

V
−Df (u2, u1).

Similarly, we exchange u1 and u2 to obtain

(31)

〈∇f(u2)−∇f(u1), u1 − (u2 + v1 − v2)〉
= Df (u2 + v1 − v2, u2)−Df (u2 + v1 − v2, u1)−Df (u1, u2)

≥ µf,IV
2
‖v1 − v2‖2IV −

Lf,IV
2
‖B>(p1 − p2)‖2I−1

V
−Df (u1, u2).

Summing (30) and (31), we obtain the desired bound.
�

We next verify the strong Lyapunov property.

Theorem 3.2. Assume f(u) ∈ Sµf,IV ,Lf,IV with 0 < µf,IV ≤ Lf,IV < 2. Then for
the Lyapunov function (29) and the TPD field G (27)-(28), the following strong Lyapunov
property holds

(32) −∇E(u, p) · G(u, p) ≥ µ E(u, p) + µf,IV
2
‖v − v∗‖2IV ,

where 0 < µ = min {µV , µQ} with µV , µQ defined in Table 1. Consequently if (u(t), p(t))
solves the TPD flow (26), we have the exponential decay

E(u(t), p(t)) ≤ e−µtE(u(0), p(0)), t > 0.

Proof. To verify the strong Lyapunov property for E(u, p), we split it as

−∇E(u, p) · G(u, p) =−∇E(u, p) · (G(u, p)− G(u∗, p∗))
= 〈u− u∗, ∂uL(u, p)− ∂uL(u∗, p∗)〉

+ 〈p− p∗, BI−1V (∂uL(u, p)− ∂uL(u∗, p∗))〉
− 〈p− p∗, ∂pL(u, p)− ∂pL(u∗, p∗)〉

:= I1 + I2 − I3.

By Lemma 2.2 for the primal-dual flow

I1 − I3 = 〈∇f(u)−∇f(u∗), u− u∗〉+ 〈∇g(p)−∇g(p∗), p− p∗〉,

which are non-negative terms.
As IV and B are linear operators,

I2 = 〈I−1V B>(p− p∗), ∂uL(u, p)− ∂uL(u∗, p∗)〉

= 〈∇f(u)−∇f(u∗), I−1V B>(p− p∗)〉+ ‖B>(p− p∗)‖2I−1
V
.
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We apply Lemma 3.1 to the cross term 〈∇f(u)−∇f(u∗), I−1V B>(p− p∗)〉 to get

−∇E(u, p) · G(u, p)− µf,IV
2
‖v − v∗‖2IV

≥ 1

2
〈∇f(u)−∇f(u∗), u− u∗〉+ 〈∇g(p)−∇g(p∗), p− p∗〉

+

(
1− Lf,IV

2

)
‖B>(p− p∗)‖2I−1

V

≥ µV
2
‖u− u∗‖2IV +

µQ
2
‖p− p∗‖2IQ .

We then complete the proof by rearranging the terms. �

Remark 3.3. For the linear saddle point system, A ∈ Rm×m is SPD, C ∈ Rn×n is
positive semidefinite, f(u) = 1

2 (Au, u) + (a, u) and g(p) = 1
2 (Cp, p) + (c, p). An ideal

choice is I−1V = A−1 and I−1Q = S−1 = (BA−1B> + C)−1. Then we have Le,IV = 0,
µf,IV = Lf,IV = µgB ,IQ = LgB ,IQ = 1 and thus

−∇E(u, p) · G(u, p) ≥ E(u, p),

which yields the exponential decay

E(u(t), p(t)) ≤ e−tE(u(0), p(0)).

However, A−1 and S−1 are not computable in general. The inner product I−1V and I−1Q
can be thought of as inexact solvers approximating A−1 and S−1, respectively. �

To guarantee the exponential decay, we require 0 < Lf,IV < 2 which is equiva-
lent to e(u) is a contraction by Lemma 2.3. The requirement can be always satisfied
by a rescaling. Indeed in later analysis, we will choose IV so that Lf,IV ≤ 1. Then
µ = min{µf,IV , µgB ,IQ}. When min{µf,IV , µgB ,IQ} � max{µf,IV , µgB ,IQ}, further
scaling in IV or IQ can be introduced to balance the decay rate for the primal and dual
variables. For discrete schemes, the rate will be determined by the condition number which
is the ratio of Lipschitz constants and the convexity constants.

So next we show that the vector field G(u, p) is Lipschitz continuous and give bounds
on Lipschitz constants.

Lemma 3.4. Assume∇f and∇gB are Lipschitz continuous with Lipschitz constant Lf,IV
and LgB ,IQ , respectively. Let Le,IV be the Lipschitz constant of e(u), then we have

‖Gu(u1, p1)− Gu(u2, p2)‖IV ≤ Le,IV‖u1 − u2‖IV + ‖v1 − v2‖IV ,(33)

‖Gp(u1, p1)− Gp(u2, p2)‖IQ ≤ Le,IVLS‖u1 − u2‖IV + LgB ,IQ‖p1 − p2‖IQ ,(34)

for all u1, u2 ∈ V and p1, p2 ∈ Q.

Proof. By the formulation (27) we have

Gu(u, p) = e(u)− v.

Consequently

‖Gu(u1, p1)− Gu(u2, p2)‖IV ≤ Le,IV‖u1 − u2‖IV + ‖v1 − v2‖IV .

By the formulation (28),

‖Gp(u1, p1)− Gp(u2, p2)‖IQ ≤ ‖∇gB(p1)−∇gB(p2)‖I−1
Q

+ ‖B(e(u1)− e(u2))‖I−1
Q

≤ LgB ,IQ‖p1 − p2‖IQ + Le,IVLS‖u1 − u2‖IV
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where we have used

λmax

(
I−1V B>I−1Q B

)
= λmax

(
I−1Q BI−1V B>

)
= L2

S

to bound

‖B(e(u1)− e(u2))‖2I−1
Q
≤ L2

S‖e(u1)− e(u2)‖2IV ≤ L
2
SL

2
e,IV‖u1 − u2‖

2
IV .

�

Notice that on the right hand side of (33), ‖v1 − v2‖IV appears which can be further
bound by ‖u1 − u2‖IV and ‖p1 − p2‖IQ using the triangle inequality. Here we keep
‖v1 − v2‖IV with a neat Lipschitz constant 1 and match the extra quadratic term in the
strong Lyapunov property (32).

4. TRANSFORMED PRIMAL-DUAL ITERATIONS

In this section, we derive several transformed primal-dual iterations, which are the dis-
crete schemes for solving the TPD flow and obtain linear convergence rate based on the
strong Lyapunov property.

4.1. Implicit Euler methods. Given the initial guess (u0, p0), for k = 0, 1, . . . , consider
the implicit Euler method for the TPD flow (26):

(35)
{
uk+1 = uk + αkGu(uk+1, pk+1),

pk+1 = pk + αkGp(uk+1, pk+1).

We show by the next theorem that the implicit scheme (35) inherits the linear conver-
gence rate from the strong Lyapunov property in the continuous level.

Theorem 4.1. Suppose f(u) ∈ Sµf,IV ,Lf,IV with 0 < µf,IV ≤ Lf,IV < 2. Let (uk, pk)
follows the implicit scheme (35) for the TPD flow with initial value (u0, p0), it holds that,
for any αk > 0,

E(uk+1, pk+1) ≤
1

1 + αkµ
E(uk, pk), k ≥ 0,

for the Lyapunov function defined by (29) and µ = min {µV , µQ}.

Proof. Since E(u, p) is convex, we have

E(uk+1, pk+1)− E(uk, pk) ≤ 〈∇E(uk+1, pk+1), αkG(uk+1, pk+1)〉
≤ − αkµE(uk+1, pk+1).

The last inequality holds by the strong Lyapunov property (32) in the continuous level.
Then the linear convergence follows. �

For the implicit schemes, the larger the step size, the better the convergence rate. By
increasing αk, the outer iteration may even achieve super-linear convergence. However, the
iteration (35) is a nonlinear system with u and p coupled together. Consider the example
when IV = LfIm is a scaled identity and the proximal operator of f is available, then
we can solve uk+1 = proxf,αk/Lf (uk −

αk
Lf
B>pk+1) from the first equation of (35) and

substitute into the second to get a nonlinear equation of pk+1

pk+1 = pk−I−1Q
[
αk∇g(pk+1) +Buk − (1 + αk)B proxf, αkLf

(
uk −

αk
Lf

B>pk+1

)]
.

If furthermore ∇proxf,αk/Lf is known, Newton’s methods can be applied to solve this
nonlinear equation. This is in the same spirit of the semi-smooth Newton method devel-
oped in [37] for a non-smooth convex function f (LASSO problem).
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In general, solving (35) may be as difficult as solving ∇L(u, p) = 0 and thus may not
be practical. We shall explore more explicit schemes.

4.2. Explicit Euler methods. An explicit discretization for (26) is as follows:

(36)
{
uk+1 = uk + αkGu(uk, pk),
pk+1 = pk + αkGp(uk, pk).

We present an equivalent but computationally favorable form of Gp(u, p)

(37) Gp(u, p) = −I−1Q
[
∇g(p)−B(u− I−1V (∇f(u) +B>p))

]
.

Then (36) is equivalent to

(38)


uk+1/2 = uk − I−1V (∇f(uk) +B>pk),

pk+1 = pk − αkI−1Q
(
∇g(pk)−Buk+1/2

)
,

uk+1 = (1− αk)uk + αkuk+1/2.

The update of (uk+1/2, pk+1) is a variant of inexact Uzawa methods and uk+1 is obtained
by a weighted average of uk and uk+1/2. The convergence is clear in the formulation (36).

Theorem 4.2. Suppose f(u) ∈ Sµf,IV ,Lf,IV with 0 < µf,IV ≤ Lf,IV < 2. Let (uk, pk)
follows the explicit scheme (36) for the TPD flow with initial value (u0, p0). For the Lya-
punov function defined by (29), it holds that

E(uk+1, pk+1) ≤ (1− δk)E(uk, pk)
for 0 < αk < min

{
µV/L

2
V , µQ/L

2
Q, µf,IV/2

}
and

0 < δk = min
{
αk(µV − L2

Vαk), αk
(
µQ − L2

Qαk
)}

< 1.

In particular, for αk = 0.5min{µV , µQ}/max{L2
V , L

2
Q, 2}, we have the linear rate

E(uk+1, pk+1) ≤ (1− 1

4κ2
)E(uk, pk),

with κ ≥ max{κV , κQ}, κV := max{LV , 2}/µV , κQ := LQ/µQ.

Proof. Since E(u, p) is quadratic and convex, we have

(39)
E(uk+1, pk+1)− E(uk, pk) = 〈∂uE(uk, pk), uk+1 − uk〉+

1

2
‖uk+1 − uk‖2IV

+ 〈∂pE(uk, pk), pk+1 − pk〉+
1

2
‖pk+1 − pk‖2IQ .

By formulation (36) and the strong Lyapunov property established in Theorem 3.2,

(40)

〈∂vE(uk, pk), uk+1 − uk〉+ 〈∂pE(uk, pk), pk+1 − pk〉
= 〈∇E(uk, pk), αkG(uk, pk)〉

≤ − αkµV
2
‖uk − u∗‖2IV −

αkµQ
2
‖pk − p∗‖2IQ −

αkµf,IV
2

‖vk − v∗‖2IV .

By the Lipschitz continuity of the flow, cf. Lemma 3.4,

(41)

1

2
‖uk+1 − uk‖2IV +

1

2
‖pk+1 − pk‖2IQ

=
α2
k

2

(
‖Gu(uk, pk)− Gu(u∗, p∗)‖2IV + ‖Gp(uk, pk)− Gp(u∗, p∗)‖2IQ

)
≤ α2

kL
2
V

2
‖uk − u∗‖2IV +

α2
kL

2
Q

2
‖pk − p∗‖2IQ + α2

k‖vk − v∗‖2.
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Summing (40) and (41),

E(uk+1, pk+1)− E(uk, pk) ≤− αk
(
µV − αkL2

V
) 1
2
‖uk − u∗‖2IV

− αk
(
µQ − αkL2

Q
) 1
2
‖pk − p∗‖2IQ

− αk(µf,IV/2− αk)‖vk − v∗‖2.

Then the results follows by rearrangement of the inequality and bound of the quadratic
polynomial of αk. �

We can always rescale the function f or IV so thatLf,IV ≤ 1 and consequentlyLe,IV <
1. We can also rescale IQ so that λmax

(
I−1Q BI−1V B>

)
≤ 1. Consequently L2

V ≤ 4 and
L2
Q = O(L2

g,IQ + 1). Theorem 4.2 shows the convergence rate is determined by the
condition number κV = O(κf,IV ) and κQ = O(κ(I−1Q BI−1V B>)) which in turn depends
crucially on choices of IV and IQ.

Both IV and IQ can be scalars, then (37) is an explicit first order method with lin-
ear convergence rate. However, in this case, when either κ(f) or κ(BB>) is large, the
convergence will be very slow since the rate is degenerate like 1− c/κ2.

We can choose an SPD matrix IV to make f better conditioned. As g is convex only,
i.e., µg might be zero, the convexity µQ ≥ λmin

(
I−1Q BI−1V B>

)
. In the ideal case, we

choose I−1Q = (BI−1V B>)−1 and then µQ = 1 + µg but in practice (BI−1V B>)−1 may
not be able to be computed efficiently. When I−1V = A−1 is dense, even the Schur com-
plement BI−1V B> may not be formed explicitly. Without a priori information on the
Schur complement, it is hard to choose IQ to make κQ small. A scalar IQ will lead
to κQ = κ(BI−1V B>) which competes with κf,IV .

After choosing IV and IQ, the optimal step size is the αk that reaching the upper bound
of quadratic functions to determine δk. If the convexity constants µ’s and the Lipschitz
constants of gradients L’s are given (or can be estimated), then Theorem 4.2 gives ana-
lytical guidance for choosing the step size. In practice, one can start from αk = 1 and
decrease the step size with a fixed ratio, e.g. 1/2, until the residual is reduced.

4.3. Implicit-Explicit Methods. For the explicit scheme, the step size should be small
enough and the convergence rate is 1− c/κ2 which is very slow if either κV or κQ is large.
Can we enlarge the step size and accelerate this linear rate?

One way is to apply the Implicit-Explicit (IMEX) scheme for solving the TPD flow (26).
Given an initial (u0, p0), for k = 0, 1, . . . , update (uk+1, pk+1) as follows:

(42)
{

pk+1 = pk + αkGp(uk, pk),
uk+1 = uk + αkGu(uk+1, pk+1).

That is, we update p by the explicit Euler method and solve u by the implicit Euler method.
Again we can view (42) as a correction to the inexact Uzawa method

(43)


uk+1/2 = uk − I−1V (∇f(uk) +B>pk),

pk+1 = pk − αkI−1Q
(
∇g(pk)−Buk+1/2

)
,

uk+1 = argmin
u∈V

f(u) +
1

2αk
‖u− uk + αkI−1V B>pk+1‖2IV .



TRANSFORMED PRIMAL-DUAL METHODS 19

After one inexact Uzawa iteration, uk+1 is obtained by solving a strongly convex optimiza-
tion problem of u. When IV = LfIm, the last step is one proximal iteration

uk+1 = proxf, αkLf

(
uk −

αk
Lf

B>pk+1

)
.

We can also use IMEX schemes with updating u first with proximal iteration and p later
using uk+1 − uk. Specific IQ = 1

rBB
> + δI is discussed in [29] where IV = rI with

arbitrary r > 0 and step size αk = 1 is allowed. Our analysis is unified for general IV and
IQ using the Lyapunov function. Compared with the explicit scheme, the IMEX scheme
enjoys accelerated linear convergence rates.

Theorem 4.3. Suppose f(u) ∈ Sµf,IV ,Lf,IV with 0 < µf,IV ≤ Lf,IV < 2. Let (uk, pk)
follows the IMEX scheme (43) for the TPD flow with initial value (u0, p0). For the Lya-
punov function defined by (29), it holds that

E(uk+1, pk+1) ≤
1

1 + αkµk
E(uk, pk),

for 0 < αk < µQ/L
2
S,Q and µk = min

{
µV , µQ − αkL2

S,Q
}
. In particular, for αk =

0.5µQ/L
2
S,Q, we have

E(uk+1, pk+1) ≤
1

1 + 0.5µQmin{µV , µQ/2}/L2
S,Q
E(uk, pk).

Proof. Since E(u, p) is quadratic and convex, we have

(44)

E(uk+1, pk+1)− E(uk, pk)

= 〈∂uE(uk+1, pk+1), uk+1 − uk〉 −
1

2
‖uk+1 − uk‖2IV

+ 〈∂pE(uk+1, pk+1), pk+1 − pk〉 −
1

2
‖pk+1 − pk‖2IQ .

We will use the strong Lyapunov property at (uk+1, pk+1) but the component Gp(uk, pk)
is evaluated at (uk, pk). Compared with the implicit scheme, there are some mis-match
terms from the explicit step for p:

(45)

〈∂uE(uk+1, pk+1), uk+1 − uk〉+ 〈∂pE(uk+1, pk+1), pk+1 − pk〉
= 〈∇E(uk+1, pk+1), αkG(uk+1, pk+1)〉

+ αk〈pk+1 − p∗,∇gB(pk+1)−∇gB(pk) +B (e(uk)− e(uk+1)〉

≤ − αkµV
2
‖uk+1 − u∗‖2IV −

αkµQ
2
‖pk+1 − p∗‖2IQ

+ αk〈pk+1 − p∗,∇gB(pk+1)−∇gB(pk) +B (e(uk)− e(uk+1)〉.

We use Cauchy-Schwarz inequality to bound the mis-match terms in (45):

αk〈pk+1 − p∗,∇gB(pk+1)−∇gB(pk) +B (e(uk)− e(uk+1))〉

≤ α2
k

2

(
L2
e,IVL

2
S + L2

gB ,IQ
)
‖pk+1 − p∗‖2IQ +

1

2L2
gB ,IQ

‖∇gB(pk+1)−∇gB(pk)‖2I−1
Q

+
1

2L2
e,IVL

2
S

‖B (e(uk+1)− e(uk)) ‖2I−1
Q

≤ α2
k

2
L2
S,Q‖pk+1 − p∗‖2IQ +

1

2
‖pk+1 − pk‖2IQ +

1

2
‖uk+1 − uk‖2IV .
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Use the negative terms in (44), we obtain

E(uk+1, pk+1)− E(uk, pk)

≤− αkµV
2
‖uk+1 − u∗‖2IV −

1

2
αk
(
µQ − αkL2

S,Q
)
‖pk+1 − p∗‖2IQ .

Then the results follows by rearrangement of the inequality and bound of the quadratic
polynomial of αk.

�

Let us discuss the rate with assumption λmax

(
I−1Q BI−1V B>

)
≤ 1 and µV ≤ µQ/2.

Theorem 4.3 shows the convergence rate of the IMEX scheme is (1 + cµQµV)
−1. When

both µQ and µV are small, the linear rate is still in the quadratic dependence of condition
numbers. The improvement is that if we can choose IQ such that µQ � µV , then we
achieve the accelerated rate (1 + c/κV)

−1. While for the explicit scheme, even κQ is
small, the rate is still worse than 1− c/max2{κV , κQ} = 1− c/κ2V .

Augmented Lagrangian can be viewed as a preconditioning of the Schur complement
so that a simple I−1Q = βIn will lead to a well conditioned κQ; see Section 6 for details.

The largest step size αk is still in the order of µQ. As u is treat implicitly, there is no
restriction of the step size from µV . In Section 4.5 we shall propose an explicit method
with enlarged step size and accelerated convergence rate.

4.4. Inexact inner solvers. For those TPD iterations, the most time consuming part is the
inner solver for sub-problems. For the explicit scheme (36), that is the linear operators
I−1V and I−1Q . For example, when IV = LfI , if we treat Lf (BB>)−1 as the ideal exact
inner solve, then κQ = 1. A general I−1Q can be treated as an inexact inner solver and the
inexactness enters the estimate by λmin

(
I−1Q BI−1V B>

)
.

For the IMEX scheme, the sub-problem in the third step of (43) is a strongly convex
optimization problem. In this part, we derive the perturbation analysis for inexact inner
solvers for this sub-problem.

Define the modified objective function for this sub-problem

(46) f̃(u;uk, pk+1) = f(u) +
1

2αk
‖u− uk + αkI−1V B>pk+1‖2IV ,

the inexactness of the inner solve is measured by ‖∇f̃(u)‖2.

Theorem 4.4. Suppose f(u) ∈ Sµf,IV ,Lf,IV with 0 < µf,IV ≤ Lf,IV < 2. Suppose
(uk, pk) follows the inexact IMEX iteration (43) with initial value (u0, p0) and the inexact
inner solver returns uk+1 satisfying ‖∇f̃(uk+1)‖2I−1

V
≤ εk for k = 1, 2, · · · . Then for the

Lyapunov function defined by (29), it holds that

E(uk+1, pk+1) ≤
1

1 + αkµk
E(uk, pk) +

αk
(1 + αkµk)µV

εk,

for 0 < αk < µQ/L
2
S,Q and µk = min

{
µV/2, µQ − αkL2

S,Q
}

. In particular, for αk =

µQ/2L
2
S,Q, the accumulative perturbation error for the inexact solve is

E(un+1, pn+1) ≤ ρn+1E(u0, p0) +
µQ

2µVL2
S,Q

n∑
k=0

ρn−k+1εk,

where µ = min{µV , µQ} and ρ = 1/(1 + µQµ/4L
2
S,Q) ∈ (0, 1).
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Proof. By definition (46),

∇f̃(uk+1) = ∇f(uk+1) +
1

αk

(
IVuk+1 − IVuk + αkB

>pk+1

)
,

we can write

uk+1 − uk = αkI−1V
(
∇f̃(uk+1)−∇f(uk+1)−B>pk+1

)
= αk

(
I−1V ∇f̃(uk+1) + Gu(uk+1, pk+1)

)
.

We use the strong Lyapunov property at (uk+1, pk+1) but compared with (45) , we have
an additional gradient term due to the inexact inner solve:

E(uk+1, pk+1)− E(uk, pk)

= 〈∂uE(uk+1, pk+1), uk+1 − uk〉 −
1

2
‖uk+1 − uk‖2IV

+ 〈∂pE(uk+1, pk+1), pk+1 − pk〉 −
1

2
‖pk+1 − pk‖2IQ

≤ 〈∂uE(uk+1, pk+1), αkGu(uk+1, pk+1)〉+ 〈∂pE(uk+1, pk+1), αkGp(uk, pk)〉

− 1

2
‖uk+1 − uk‖2IV −

1

2
‖pk+1 − pk‖2IQ + 〈∂uE(uk+1, pk+1), αkI−1V ∇f̃(uk+1)〉

≤ − αkµV
4
‖uk+1 − u∗‖2IV −

1

2
αk
(
µQ − αkL2

S,Q
)
‖pk+1 − p∗‖2IV +

αk
µV
‖∇f̃(uk+1)‖2I−1

V
,

where the last inequality holds from Theorem 4.3 and by Cauchy-Schwarz inequality

〈∂uE(uk+1, pk+1), αkI−1V ∇f̃(uk+1)〉 = 〈IV (uk+1 − u∗) , αkI−1V ∇f̃(uk+1)〉

≤ αkµV
4
‖uk+1 − u∗‖2IV +

αk
µV
‖∇f̃(uk+1)‖2I−1

V
.

Since the inexact solver terminates until ‖∇f̃(uk+1)‖2I−1
V

< εk, we have

E(uk+1, pk+1)− E(uk, pk) ≤ −αkµkE(uk+1, pk+1) +
αkεk
µV

with µk = min
{
µV/2, µQ − αkL2

S,Q
}

and the accumulated error is straight forward. �

Forα = αk = µQ/2L
2
S,Q and εk ≤ µµVε for some ε > 0, the accumulated perturbation

error

µQ
2µVL2

S,Q

n∑
k=0

ρn−k+1εk ≤ αµε
n∑
k=0

(
1

1 + αµ

)k+1

≤ ε.

Furthermore, in the product ρn−k+1εk, the weight ρn−k+1 is geometrically increasing, we
can choose relative large εk in the beginning and gradually decrease εk. On the other hand,
when the outer iteration converges, the initial guess uk for the sub-problem

∇f̃(uk) = ∇f(uk) +B>pk+1 = ∂uL(uk, pk) +B>(pk+1 − pk)→ 0

is already small. A smaller εk can be achieved for constant inner iteration steps. Therefore
the inexact IMEX scheme retains the accelerated linear convergence rates.
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4.5. A Gauss-Seidel iteration with accelerated overrelaxation. In this subsection, we
propose an explicit scheme for the transformed primal-dual flow: a Gauss-Seidel iteration
with accelerated overrelaxation (AOR) [28]:

(47)


uk+1 − uk

α
= −I−1V (∇f(uk) +B>pk)

pk+1 − pk
α

= −I−1Q
[
BI−1V ∇f(uk+1) +∇gB(pk)−B(2uk+1 − uk)

]
.

The formulation (47) is in Gauss-Seidel type as when updating pk+1, the updated uk+1 is
used. AOR is applied to the term Bu ≈ B(2uk+1 − uk) with an overrelaxation parameter
2. Such change is motivated by accelerated overrelaxtion methods [28] and the linear
convergence rate is indeed accelerated to (1 + c/κ)−1.

For a symmetric matrix M , we define

‖x‖2M := (x, x)M := x>Mx.

WhenM is SPD, it defines an inner product and the induced norm. For a general symmetric
matrix, ‖ · ‖M may not be a norm. However the following identity for squares still holds

(48) 2(a, b)M = ‖a‖2M + ‖b‖2M − ‖a− b‖2M .

LetMX = diag{IV , IQ} and x = (u, p). Then we have

1

2
‖x− x∗‖2MX =

1

2
‖u− u∗‖2IV +

1

2
‖p− p∗‖2IQ .

Now we are ready to prove the convergence rate. Consider the Lyapunov function

(49) E(x) = 1

2
‖x− x?‖2MX−αB − αDf (u

∗, u)− αDgB (p
∗, p).

where recall that B =

(
0 B>

B 0

)
is a symmetric matrix and Df and DgB are Bregman

divergence of f and gB , respectively.

Lemma 4.5. For α < 1/max{2LS , 2Lf,IV , 2LgB ,IQ} , for the Lyapunov function E
defined by (49), we have E(x) ≥ 0 and E(x) = 0 if and only if x = x∗.

Proof. Notice
(50)

MX − 2αB =

(
IV −2αB>
−2αB IQ

)
=

(
I 0

−2αBI−1V I

)(
IV 0
0 IQ − 4α2BI−1V B>

)(
I −2αI−1V B>

0 I

)
.

We have

(51)
1

2
‖x− x∗‖21

2MX−αB
=

1

4
‖x− x∗‖2MX−2αB =

1

4
‖y − y∗‖2MY ≥ 0

where the change of variable is y =

(
I −2αI−1V B>

0 I

)
x and

MY =

(
IV 0
0 IQ − 4α2BI−1V B>

)
is positive definite if α < 1/(2LS). In particular, the equality is obtained if and only if
y = y∗, which is equivalent to x = x∗ since the change of coordinate is invertible.
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For α < 1/max{2Lf,IV , 2LgB ,IQ}, we have

(52)

1

2
‖x− x∗‖21

2MX
=

1

4
‖u− u∗‖2IV +

1

4
‖p− p∗‖2IQ

≥ 1

2Lf,IV
Df (u

∗, u) +
1

2LgB ,IQ
DgB (p

∗, p)

≥ αDf (u
∗, u) + αDgB (p

∗, p).

The last inequality becomes equality if and only if Df (u
∗, u) = DgB (p

∗, p) = 0, which is
equivalent to u = u∗, p = p∗.

Sum (51) and (52) we get the desired inequality

E(x) = 1

2
‖x− x∗‖2MX−αB − αDf (u

∗, u)− αDgB (p
∗, p) ≥ 0

for α < 1/max{2LS , 2Lf,IV , 2LgB ,IQ} and the equality holds is and only if x = x∗. �

Then we show the accelerated linear convergence rate.

Theorem 4.6. Suppose f(u) ∈ Sµf,IV ,Lf,IV with 0 < µf,IV ≤ Lf,IV < 2. Let xk =

(uk, pk) be generated by GS-AOR iteration (47) with initial value x0 = (u0, p0) and α <
1/max{2LS , 2Lf,IV , 2LgB ,IQ}. Then for the discrete Lyapunov function (49), we have

(53) E(xk+1) ≤
1

1 + µα/2
E(xk).

where µ = min {µV , µQ}.

Proof. We use the identity for squares (48):
(54)
1

2
‖xk+1 − x∗‖2MX −

1

2
‖xk − x∗‖2MX = 〈xk+1 − x∗, xk+1 − xk〉MX −

1

2
‖xk+1 − xk‖2MX .

We write the scheme (47) as a correction of the implicit Euler scheme

uk+1 − uk = α(Gu(xk+1)− Gu(x∗)) + αI−1V B>(pk+1 − pk) + αI−1V (∇f(uk+1)−∇f(uk)),
pk+1 − pk = α(Gp(xk+1)− Gp(x∗)) + αI−1Q B(uk+1 − uk) + αI−1Q (∇gB(pk+1)−∇gB(pk)).

Recall that, for the TPD flow, we have proved in Theorem 3.2 that

〈MX (xk+1 − x∗),G(xk+1)− G(x∗)〉 ≤ −
µ

2
‖xk+1 − x∗‖2MX .

We merge the first cross terms and use the identity (48) to expand as

(uk+1 − u∗, B>(pk+1 − pk)) + (pk+1 − p∗, B(uk+1 − uk))
= (xk+1 − x∗, xk+1 − xk)B

=
1

2
(‖xk+1 − x∗‖2B + ‖xk+1 − xk‖2B − ‖xk − x∗‖2B).

The other cross terms with the Bregman divergence is expanded using the identity (18)

〈uk+1 − u∗,∇f(uk+1)−∇f(uk)〉 = Df (u
∗, uk+1) +Df (uk+1, uk)−Df (u

∗, uk),

〈pk+1 − p∗,∇gB(pk+1)−∇gB(pk)〉 = DgB (p
∗, pk+1) +DgB (pk+1, pk)−DgB (p

∗, pk).
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Substituting back to (54) we obtain the inequality

1

2
‖xk+1 − x∗‖2MX −

1

2
‖xk − x∗‖2MX

≤ − µα

2
‖xk+1 − x∗‖2MX −

1

2
‖xk+1 − xk‖2MX

+
α

2
‖xk+1 − x∗‖2B +

α

2
‖xk+1 − xk‖2B −

α

2
‖xk − x∗‖2B

+ αDf (u
∗, uk+1) + αDf (uk+1, uk)− αDf (u

∗, uk)

+ αDgB (p
∗, pk+1) + αDgB (pk+1, pk)− αDgB (p

∗, pk).

Rewrite the inequality with E by rearranging the terms, we obtain

E(xk+1)− E(xk) ≤ −
µα

2
‖xk+1 − x∗‖2MX

−
[
1

2
‖xk+1 − xk‖2MX−αB − αDf (uk+1;uk)− αDgB (pk+1; pk)

]
≤ − µα

2
‖xk+1 − x∗‖2MX

≤ − µα

2
E(xk+1)

where in the second inequality, by the proof of Lemma 4.5, the extra term is negative, and
in the third equality, we useMX ≥ 1

2 (MX − αB) by a factorization similar to (50). �

Theorem 4.6 showed the step size is inversely proportional to the Lipschitz constants.
Compared with the step size of the explicit schemes and IMEX schemes, which is also pro-
portional to the convexity constants, the Lipschitz constants are usually easier to estimate.

Remark 4.7. If we further choose a large enough IQ (or scale appropriately) such that
LS ≤ 2, then the upper bound of the step size can be enlarged toα < 1/max{4, 2LgB ,IQ}.
For α = 1/max {8, 4LgB ,IQ}, the convergence rate

1

1 + µα/2
=

(
1 +

min {µV , µQ}
8max{LgB,IQ , 2}

)−1
.

In particular, when g(p) = (b, p) is affine, LgB ,IQ = L2
S ≤ 1, we can choose constant step

size α = 1/8 and get the linear rate

1

1 + µα/2
=

1

1 +min {µV , µQ} /16
.

5. SYMMETRIC TRANSFORMED PRIMAL-DUAL ITERATIONS

In this section, we present symmetric transformed primal-dual iterations which retain
linear convergence when f is strongly convex in the subspace ker(B) and may not be in
the whole space.

5.1. Symmetric transformed primal-dual flow. To distinguish the role of transforma-
tion and preconditioners, we introduce SPD matrices TU , TP for the transformation and
treat IV and IQ as preconditioners. The change of variable associated with TU , TP is
given as

v = u+ T−1U B>p, q = p− T−1P Bu.
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Recall that the strong convexity of the dual variable p comes from the strong convexity of
gB(p) = g(p) + 1

2

(
BT−1U B>p, p

)
. Symmetrically, define

(55) fB(u) = f(u) +
1

2
(B>T−1P Bu, u).

With the spirit of transformation, if fB(u) is strongly convex while µf = 0, linear con-
vergence rates can be still obtained by applying transformation to both the primal and dual
variables. There are applications under this consideration, for example, see [17] for solving
Maxwell equations with divergence-free constraints.

We present the symmetric transformed primal-dual (STPD) flow with IV , IQ as pre-
conditioners:

(56)

{
u′ = Gu(u, p)
p′ = Gp(u, p)

with

(57)

Gu(u, p) = −I−1V (∂uL(u, p) +B>T−1P ∂pL(u, p))

= −I−1V
(
∇fB(u) +B>(p− T−1P ∇g(p))

)
,

Gp(u, p) = I−1Q
(
∂pL(u, p)−BT−1U ∂uL(u, p)

)
= −I−1Q

(
∇gB(p)−B(u− T−1U ∇f(u))

)
.

The following lower bound of the cross terms can be proved like Lemma 3.1. Here we
state results with operators TU , TP .

Lemma 5.1. Suppose f ∈ Sµf,TU ,Lf,TU . For any u1, u2 ∈ V and p1, p2 ∈ Q, we have

〈∇f(u1)−∇f(u2), T−1U B>(p1 − p2)〉

≥ µf,TU
2
‖v1 − v2‖2TU −

Lf,TU
2
‖B>(p1 − p2)‖2T−1

U
− 1

2
〈∇f(u1)−∇f(u2), u1 − u2〉,

where recall v = u+ T−1U B>p.

Lemma 5.2. Suppose g ∈ Sµg,TP ,Lg,TP . For any u1, u2 ∈ V and p1, p2 ∈ Q, we have

〈∇g(p1)−∇g(p2),−T−1P B(u1 − u2)〉

≥ µg,TP
2
‖q1 − q2‖2TP −

Lg,TP
2
‖B(u1 − u2)‖2T−1

P
− 1

2
〈∇g(p1)−∇g(p2), p1 − p2〉,

where recall q = p − T−1P Bu. In particular, when g(p) = (b, p) is affine, the equality
holds with all terms are 0.

The strong Lyapunov property and the Liptschitz continuity can be verified following
the lines of proof in Section 3. For completeness, we present the results and skipped the
proofs for brevity.

Theorem 5.3. Choose TP such that g(p) ∈ Sµg,TP ,Lg,TP with Lg,TP ≤ 1. Choose TU
such that f(u) ∈ Sµf,TU ,Lf,TU with Lf,TU ≤ 1 and assume fB is strongly convex, i.e,
µfB ,IV > 0. Then for the Lyapunov function (29) and the STPD field G (57), the following
strong Lyapunov property holds

(58) −∇E(u, p) · G(u, p) ≥ µ E(u, p) + µf,TU
2
‖v − v∗‖2TU +

µg,TP
2
‖q − q∗‖2TP ,



26 TRANSFORMED PRIMAL-DUAL METHODS

where 0 < µ = min {µfB ,IV , µgB ,IQ}. Consequently if (u(t), p(t)) solves the STPD
flow (56), we have the exponential decay

E(u(t), p(t)) ≤ e−µtE(u(0), p(0)), ∀t > 0.

Remark 5.4. The assumptions on Lipschitz constants can be relaxed to Lf,TU < 2 and
Lg,TP < 2, then the effective µ = min{µV , µQ} is defined as

µV = min{1, 2− Lf,TU }µfB ,IV , µQ = min{1, 2− Lg,TP}µgB ,IQ .
Therefore the algorithm is robust with perturbation on Lipschitz constants around 1. �

To guarantee the exponential decay of the STPD flow, we require both gB and fB are
strongly convex. In the linear saddle point system, this reduced to the necessary and suf-
ficient conditions in [56] for the well-posedness of a saddle point problem. Especially for
g(p) = (b, p), it corresponds to the inf-sup condition for saddle point systems [12].

Define

(59) eU = u− T−1U ∇f(u), eP = p− T−1P ∇g(p)
They are Lipschitz continuous as discussed in Section 2.6 and the constants will be denoted
by LeU ,TU and LeP ,TP .

Lemma 5.5. Assume ∇fB and ∇gB are Lipschitz continuous with Lipschitz constant
LfB ,IV and LgB ,IQ , respectively. Let LeU ,IV , LeP ,IQ be the Lipschitz constant of eU , eP ,
respectively, then we have

‖Gu(u1, p1)− Gu(u2, p2)‖IV ≤ LfB ,IV‖u1 − u2‖IV + LeP ,IQLS‖p1 − p2‖IQ ,
‖Gp(u1, p1)− Gp(u2, p2)‖IQ ≤ LgB ,IQ‖p1 − p2‖IQ + LeU ,IVLS‖u1 − u2‖IV ,

for all u1, u2 ∈ V and p1, p2 ∈ Q.

5.2. Explicit Euler method. An explicit discretization for (56) is as follows:

(60)
{
uk+1 = uk + αkGu(uk, pk),
pk+1 = pk + αkGp(uk, pk).

To compute the transformation, we introduce intermediate variables uk+1/2, pk+1/2 and
present an equivalent but computationally favorable form of (60):

(61)


uk+1/2 = uk − T−1U (∇f(uk) +B>pk),

pk+1/2 = pk − T−1P (∇g(pk)−Buk),
uk+1 = uk − αkI−1V

(
∇f(uk) +B>pk+1/2

)
,

pk+1 = pk − αkI−1Q
(
∇g(pk)−Buk+1/2

)
.

All four SPD operators can be scaled identities and scheme (61) can be interpreted as two
steps of primal-dual iterations with the same gradient ∇f(uk) and ∇g(pk). The conver-
gence analysis is more clear in the formulation (60). Follow the same proof of Theorem
4.2, we obtain the linear convergence of the scheme (61).

Theorem 5.6. Choose TP such that g(p) ∈ Sµg,TP ,Lg,TP with Lg,TP ≤ 1 and choose
TU such that f(u) ∈ Sµf,TU ,Lf,TU with Lf,TU ≤ 1. Assume fB is strongly convex, i.e,
µfB ,IV > 0 and gB is strongly convex with µgB ,IQ > 0. Let (uk, pk) follows the explicit
scheme (60) for the STPD flow with initial value (u0, p0). For the Lyapunov function
defined by (29), it holds that

E(uk+1, pk+1) ≤ (1− δk)E(uk, pk)
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for 0 < αk < min
{
µfB ,IV/L

2
V , µgB ,IQ/L

2
Q
}

and

0 < δk = min
{
αk(µfB ,IV − L2

Vαk), αk
(
µgB ,IQ − L2

Qαk
)}

< 1,

with
L2
V = 2

(
L2
fB ,IV + L2

eU ,IVL
2
S

)
, L2

Q = 2
(
L2
gB ,IQ + L2

eP ,IQL
2
S

)
.

Define
κV = LV/µfB ,IV , κQ = LQ/µgB ,IQ .

Theorem 5.6 shows the convergence rate is determined by κV and κQ. For f, g ∈ C2, a
guideline to choose IV , IQ would be

IV ≈ ∇2f +B>T−1P B, IQ ≈ ∇2g +BT−1U B>.

For affine g(p) = (b, p), it is straightforward to show Lg,TP = 0 and LeP ,IQ = 1 for
any TP , IQ. Let TP = IQ = I , we can choose TU = IV and Lf,TU ≤ 1 is satisfied by
proper scaling. Then we have κQ = O(κ(BI−1V B>)). In this case, the convergence rate
will be determined by κ(BI−1V B>) and κV . The computational cost is basically the effort
to compute I−1V .

5.3. Implicit-Explicit Methods. To get accelerated convergence rate, we can apply the
IMEX scheme:

(62)
{

pk+1 = pk + αkGp(uk, pk),
uk+1 = uk + αkGu(uk+1, pk+1).

That is we update p by the explicit Euler method and solve u by the implicit Euler method.
Again we can view (62) as a correction to the inexact Uzawa method

(63)


uk+1/2 = uk − T−1U (∇f(uk) +B>pk),

pk+1 = pk − αkI−1Q
(
∇g(pk)−Buk+1/2

)
,

uk+1 = argmin
u∈V

f̃B(u;uk, pk+1),

where

f̃B(u;uk, pk+1) = fB(u) +
1

2αk
‖u− uk + αkI−1V B>

(
pk+1 − T−1P ∇g(pk+1)

)
‖2IV .

Compare with (43), one more gradient descent step pk+1−T−1P ∇g(pk+1) is added. When
I−1V = 1

Lf
Im, the last step is one proximal iteration

uk+1 = proxfB ,
αk
Lf

(
uk −

αk
Lf

B>
(
pk+1 − T−1P ∇g(pk+1)

))
.

The IMEX scheme enjoys accelerated linear convergence rates. We skipped the proof
as it follows in line as Theorem 4.3.

Theorem 5.7. Choose TP such that g(p) ∈ Sµg,TP ,Lg,TP with Lg,TP ≤ 1 and choose
TU such that f(u) ∈ Sµf,TU ,Lf,TU with Lf,TU ≤ 1. Assume fB is strongly convex, i.e,
µfB ,IV > 0 and gB is strongly convex with µgB ,IQ > 0. Let (uk, pk) follows the IMEX
scheme (63) for the STPD flow with initial value (u0, p0). For the Lyapunov function
defined by (29), it holds that

E(uk+1, pk+1) ≤
1

1 + αkµk
E(uk, pk),
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for 0 < αk < µgB ,IQ/L
2
S,Q and µk = min

{
µfB ,IV , µgB ,IQ − αkL2

S,Q
}

, where L2
S,Q =

L2
gB ,IQ + L2

eU ,IVL
2
S . In particular, for αk = 0.5µgB ,IQ/L

2
S,Q, we have

E(uk+1, pk+1) ≤
1

1 + 0.5µgB ,IQ min{µfB ,IV , µgB ,IQ/2}/L2
S,Q
E(uk, pk).

The inner solve in (63) can be relaxed to an inexact solver. We state the result as a
corollary of Theorem 4.4.

Corollary 5.8. Choose TP such that g(p) ∈ Sµg,TP ,Lg,TP with Lg,TP ≤ 1 and choose
TU such that f(u) ∈ Sµf,TU ,Lf,TU with Lf,TU ≤ 1. Assume fB is strongly convex, i.e,
µfB ,IV > 0 and gB is strongly convex with µgB ,IQ > 0. Suppose (uk, pk) follows the
inexact IMEX iteration (63) with initial value (u0, p0) and the inexact inner solver returns
uk+1 satisfying ‖∇f̃B(uk+1)‖2I−1

V
≤ εk for k = 1, 2, · · · . Then for the Lyapunov function

defined by (29), it holds that

E(uk+1, pk+1) ≤
1

1 + αkµk
E(uk, pk) +

αk
(1 + αkµk)µV

εk,

for 0 < αk < µgB ,IQ/L
2
S,Q and µk = min

{
µfB ,IV/2, µgB ,IQ − αkL2

S,Q
}

, where
L2
S,Q = L2

gB ,IQ + L2
eU ,IVL

2
S . In particular, for αk = µgB ,IQ/2L

2
S,Q, the accumulative

perturbation error for the inexact solve is

E(un+1, pn+1) ≤ ρn+1E(u0, p0) +
µgB ,IQ

2µfB ,IVL
2
S,Q

n∑
k=0

ρn−k+1εk,

where µ = min{µfB ,IV , µgB ,IQ} and ρ = 1/(1 + µgB ,IQµ/4L
2
S,Q) ∈ (0, 1).

Due to the nonlinear coupling B>(p− T−1P ∇g(p)), we cannot apply GS-AOR scheme
to STPD in general. Only when g is affine, i.e., the constrained optimization problems,
∇g is constant, the Gauss-Seidel splitting can be adapted to STPD and achieve the accel-
erated linear convergence. For this case, it can be also retrieved by considering augmented
Lagrangian and apply TPD. We shall discuss this important case in the following section.

6. AUGMENTED LAGRANGIAN METHODS

In this section, we consider the augmented Lagrangian methods [30, 45] for solving the
constrained optimization problem (2). Consider the augmented Lagrangian

(64) min
u∈Rm

max
p∈Rn

Lβ(u, p) = f(u) +
β

2
‖Bu− b‖2 + (p,Bu− b),

where β ≥ 0. It is clear that the critical points of Lβ(u, p) are equivalent for all β, as the
constraintBu = b holds for critical points, and when β = 0, (64) returns to the Lagrangian
of the constrained optimization problem (2).

Notice (64) is still a nonlinear saddle point system with g(p) = (b, p) and fβ(u) =

f(u)+β
2 ‖Bu−b‖

2, the TPD flow and the corresponding transformed primal-dual iterations
can be adapted. In this section, we will show that simple choices of IQ = βIn in the TPD
flow is a good preconditioner for solving augmented Lagrangian when β is sufficiently
large. Particular discrete schemes will recover a class of augmented Lagrangian methods.

ALM can be also derived from STPD flow for the original Lagrangian by using TP =
βI and thus enhance the stability by the strong convexity of fB . We first show the strong
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convexity equivalence between a simplified fB and fβ , where

fB(u) = f(u) +
1

2
(B>Bu, u), fβ(u) = f(u) +

β

2
‖Bu− b‖2.

Lemma 6.1. For any β > 0, fB is strongly convex if and only if fβ is strongly convex. In
particular, µfβ ≥ µfB for β ≥ 1.

Proof. Suppose fB is µfB -strongly convex with µfB > 0, for all u1, u2 ∈ V ,

〈∇fβ(u1)−∇fβ(u2), u1 − u2〉 ≥ min{β, 1}〈∇fB(u1)−∇fB(u2), u1 − u2〉
≥min{β, 1}µfB‖u1 − u2‖2.

.

Hence fβ is µfβ -strongly convex with µfβ ≥ min{β, 1}µfB > 0. For β ≥ 1, µfβ ≥ µfB .
Suppose fβ is µfβ -strongly convex with µfβ > 0, for all u1, u2 ∈ V ,

〈∇fB(u1)−∇fB(u2), u1 − u2〉 ≥ min{β−1, 1}〈∇fβ(u1)−∇fβ(u2), u1 − u2〉
≥min{β−1, 1}µfB‖u1 − u2‖2.

.

Hence fB is µfB -strongly convex with µfB = min{β−1, 1}µfβ > 0. �

Therefore ALM can achieve linear convergence rate even f is not strongly convex but
fB is. Besides the enhanced stability, next we shall interpret the augmented Lagrangian
as a preconditioner of the Schur complement: for sufficiently large β, a simple choice
I−1Q = βI will lead to a well conditioned κQ. The condition number κV will be controlled
by using another SPD matrix A.

Proposition 6.2. LetA be an SPD matrix and defineAβ = A+βB>B for β > 0. Assume
fB(u) ∈ SµfB,A1

,LfB,A1
. Choose

I−1V = A−1β =
(
A+ βB>B

)−1
, I−1Q = βIn.

Then for β ≥ 1

(65) min{µfB ,A1
, 1} ≤ µfβ ,IV ≤ Lfβ ,IV ≤ max{LfB ,A1

, 1},
and

(66)
µS0

1 + βµS0

≤ λmin

(
BA−1β B>

)
≤ λmax

(
BA−1β B>

)
≤ 1

β
,

where µS0
= λmin(BA

−1B>). Consequently

κIV (fβ) ≤ κA1
(fB), κ(I−1Q BI−1V B>) ≤ 1 +

1

βµS0

.

Proof. Bound (65) is straight forward. Define Sβ = B
(
A+ βB>B

)−1
B>. By Wood-

bury matrix identity,

BA−1β B> = B
(
A+ βB>B

)−1
B>

= B
(
A−1 −A−1B>

(
β−1In +BA−1B>

)−1
BA−1

)
B>

= S0 − S0

(
β−1In + S0

)−1
S0.

Hence

σ
(
BA−1β B>

)
= σ(Sβ) =

{
λ

1 + βλ
, λ ∈ σ(S0)

}
.

Then (66) follows. �
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As an example, if we choose β ≥ 1/µS0
, then the condition number of the Schur

complement is bounded by 2. While the condition number of fβ keeps unchanged and
preconditioning of f can be achieved by appropriate choice of A. The condition number
for the primary variable is bounded by κA1

(fB).
In practice,

(
A+ βB>B

)−1
can be further relaxed to an inexact solver I−1V which

introduce a factor λmin(I−1V Aβ) in the convergence rate. In the sequel, we shall fix the
simple choice I−1Q = βIn and β � 1. We can either apply discretization of the TPD flow
to the augmented Lagrangian (64) or the STPD flow to the original Lagrangian L(u, p) =
f(u) − (b, p) + (Bu, p). The resulting schemes are slightly different but share similar
convergence rate. Here is an example.

The explicit scheme of the TPD flow for the augmented Lagrangian (ALM-Explicit) is:

(67)


uk+1/2 = uk − I−1V

(
∇f(uk) + βB>(Buk − b) +B>pk

)
,

pk+1 = pk − αkβ
(
b−Buk+1/2

)
,

uk+1 = uk − αkI−1V
(
∇f(uk) + βB>(Buk − b) +B>pk

)
.

Computationally the third step can be written as uk+1 = (1 − αk)uk + αkuk+1/2. The
explicit scheme of the STPD flow for the Lagrangian with T−1P = I−1Q = βI:

(68)


uk+1/2 = uk − T−1U (∇f(uk) +B>pk),

pk+1 = pk − αkβ
(
b−Buk+1/2

)
,

uk+1 = uk − αkI−1V
(
∇f(uk) + βB>(Buk − b) +B>pk

)
.

So (67) and (68) are only different in the first step of updating uk+1/2: (68) is the gra-
dient flow of u using ∂uL, and (67) is ∂uLβ . Discretization of the TPD or STPD flow
gives generalized variants of augmented Lagrangian-like methods and provide flexibility
of choosing transformation operators and preconditioners. Within our framework, one can
easily derive convergence analysis by verification of assumptions.

Next we present the convergence analysis. To save space, we only present the version
of TPD flow for Lβ . The STPD flow for L is similar.

Theorem 6.3. Let A be an SPD matrix and define Aβ = A + βB>B for β > 0. As-
sume fB(u) ∈ SµfB,A1

,LfB,A1
with 0 < µfB ,A1

≤ LfB ,A1
≤ 1. Choose I−1V such that

λmax(I−1V Aβ) ≤ 1. Let (uk, pk) follows iteration (67) with initial value (u0, p0), it holds
that

E(uk+1, pk+1) ≤ (1− δk)E(uk, pk)
for 0 < αk < µ/4 with µ := min {µV , µQ} and

δk = min {αk(µV − 4αk), αk (µQ − 4αk)} ,

where

µV = µfB ,A1λmin(I−1V Aβ), µQ =
βµS0

1 + βµS0

λmin(I−1V Aβ)

with µS0
= λmin(BA

−1B>).
In particular for αk = µ/8, we have

E(uk+1, pk+1) ≤
(
1− µ2

16

)
E(uk, pk).

Proof. By (65) and assumption LfB ,A1 ≤ 1, we have Lfβ ,IV ≤ 1. Consequently we can
apply Theorem 4.2.
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To estimate the constants, we introduce a partial ordering for symmetric matrices. For
two symmetric matrices X,Y , we say X � Y if Y −X is positive semidefinite. Then

(69) λmin(I−1V Aβ)IV � Aβ � λmax(I−1V Aβ)IV ,

(70) λmin(I−1V Aβ)BA
−1
β B> � BI−1V B> � λmax(I−1V Aβ)BA

−1
β B>.

By Proposition 6.2 and (70), since λmax(I−1V Aβ) ≤ 1,

LgB ,IQ = L2
S = λmax(I−1Q BI−1V B>) = βλmax(BI−1V B>)

≤ βλmax(I−1V Aβ)λmax

(
BA−1β B>

)
≤ 1.

Therefore,
L2
V = 2

(
L2
eβ ,IV (1 + L2

S)
)
≤ 4,

L2
Q = 2

(
L2
gB ,IQ + L2

S

)
≤ 4,

where eβ(u) = u− I−1V ∇fβ(u).
Similarly,

µgB ,IQ = λmin(I−1Q BI−1V B>) = βλmin(BI−1V B>)

≥ βλmin(I−1V Aβ)λmin

(
BA−1β B>

)
≥ λmin(I−1V Aβ)

βµS0

1 + βµS0

.

Thus we have

µV = µfB ,A1
λmin(I−1V Aβ), µQ =

βµS0

1 + βµS0

λmin(I−1V Aβ),

and desired estimate then follows. �

The assumptionLf,A ≤ 1 and λmax(I−1V Aβ) ≤ 1 can be easily satisfied by scaling. For
example, if Lf,A > 1, we can assign Lf,AA as a new A. Once Aβ is available, symmetric
Gauss-Seidel or V-cycle multigrid iteration will define an I−1V with λmax(I−1V Aβ) ≤ 1.
As the upper bound requirement is Lfβ ,IV < 2, the analysis and algorithm is robust to
small perturbation near Lfβ ,IV = 1.

In the following we present the GS-AOR for the augmented Lagrangian (64) (ALM-
GS-AOR):

(71)


uk+1 − uk

α
=− I−1V (∇f(uk) + βB>(Buk − b) +B>pk)

pk+1 − pk
α

=− β
[
BI−1V B>pk + b−B(2uk+1 − uk)

+BI−1V
(
∇f(uk+1) + βB>(Buk+1 − b)

)]
.

Theorem 6.4. Let A be an SPD matrix and define Aβ = A + βB>B for β > 0. As-
sume fB(u) ∈ SµfB,A1

,LfB,A1
with 0 < µfB ,A1

≤ LfB ,A1
≤ 1. Choose I−1V such that

λmax(I−1V Aβ) ≤ 1. Let (uk, pk) follows iteration (71) with initial value (u0, p0), it holds
that

E(uk+1, pk+1) ≤
1

1 + µα/2
E(uk, pk)

for 0 < α < 1/4 with µ := min {µV , µQ} where

µV = µfB ,A1λmin(I−1V Aβ), µQ = λmin(I−1V Aβ)
βµS0

1 + βµS0
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with µS0
= λmin(BA

−1B>). In particular for α = 1/8, we have

E(uk+1, pk+1) ≤
1

1 + µ/16
E(uk, pk).

Proof. By (65) and assumption LfB ,A1
≤ 1, we have Lfβ ,IV ≤ 1. Consequently we can

apply Theorem 4.6. The desired result follows from the constant bounds given in Theorem
6.3. �

In Table 2, we list out typical choices of I−1V and compare TPD and ALM schemes
for convex optimization problems with affine equality constraints (2). Explicit schemes
only require linear SPD solvers, but the convergence rate is O(1 − 1/κ2(f)) or O(1 −
1/κ2A(f)). If the proximal operator of f is available and (BB>)−1 can be efficiently
computed, we can apply the IMEX 1 to accelerate converge rate to O(1 − 1/κ(f)). If
some preconditioner A−1 of f is given, then the convergence rate can be accelerated to
O(1 − 1/κA(f)) using TPD-IMEX 2 scheme. However, an inner solver to a nonlinear
strongly convex optimization problem is required. Overall we recommend the GS-AOR
methods, which enjoy a convergence rate of (1 + c/κ)−1 and only require linear SPD
solvers. When f is not strongly convex, we recommend to use ALM-GS-AOR which can
enhance the convexity to fB .

Our analysis on ALM shows that the condition number of f and Schur complement can
be simultaneously improved with a modified linear solver (A + βB>B)−1 or a modified
inner problem for fβ . Compared with schemes without ALM, update of the dual variable
in ALM is simpler and more importantly the stability is enhanced from the symmetrized
transformed primal-dual flow point of view.

7. CONCLUSION AND FUTURE WORK

By revealing ‘Schur complement’ in the transformed primal-dual flow, we proposed
first-order algorithms, the Transformed Primal-Dual (TPD) iterations, and achieve linear
convergence rates without the strong convexity of function f or g. From a perspective
of change of variables, the convergence rate in our analysis is essentially determined by
choices of inner products on the primal and dual spaces. The augmented Lagrangian meth-
ods can enhance the stability and preconditioning the Schur complement so that the scaled
identity defines a suitable inner product in the dual space. We also derive an approach
to analyze the inexact inner solvers with perturbation on the gradient norm of a modified
objective function for the sub-problem. More importantly, we propose a Gauss-Seidel it-
eration with accelerated overrelaxation (GS-AOR) to the TPD flow to obtain accelerated
linear rate (1 + c/κ)−1.

For the strongly-convex-strongly-concave nonlinear saddle point system, the optimal
lower bound rate (1+c/

√
κ)−1 for first-order methods is recently proved in [54]. We shall

develop accelerated primal-dual methods to reach this rate and extend to convex-concave
saddle point problems by combing the TPD flow.

Multigrid methods have been developed for linear saddle point systems [2, 17] and
convex optimization problems [14], showing convergence independent of problem sizes.
One of our future work will be deriving multigrid-like methods for nonlinear saddle point
systems. The TPD iterations can be used as good smoothers. Furthermore, we will extend
this framework to tackle more general nonlinear saddle point systems, such as non-smooth
objective function f , variables (u, p) restricted in convex sets. For multi-block problems,
the TPD flow will connect to the alternating direction method of multipliers (ADMM) [9,
24] and there relation deserves further investigation.
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TABLE 2. Examples of I−1V and I−1Q for f ∈ Sµf ,Lf or f ∈ Sµf,A,Lf,A
and g(p) = (b, p). A is an SPD matrix induced inner product in V with
Lf,A ≤ 1.

Linear inner solvers Rate

I−1V I−1Q β � 1

Explicit 1 1
Lf
Im Lf (BB

>)−1 1− 1/κ2(f)

Explicit 2 A−1 (BA−1B>)−1 1− 1/κ2A(f)

IMEX 1 1
Lf
Im Lf (BB

>)−1 (1 + 1/κ(f))
−1

nonlinear solver proxf, αkLf
(uk − αk

Lf
B>pk+1)

IMEX 2 A−1 (BA−1B>)−1 (1 + 1/κA(f))
−1

nonlinear solver minu∈V f(u) +
1

2αk
‖u− uk + αkI−1V B>pk+1‖2A

GS-AOR 1 1
Lf
Im Lf (BB

>)−1 (1 + 1/κ(f))
−1

GS-AOR 2 A−1 (BA−1B>)−1 (1 + 1/κA(f))
−1

ALM-Explicit 1 (LfIm + βB>B)−1 βIn 1− 1/κ2(f)

ALM-Explicit 2 (A+ βB>B)−1 βIn 1− 1/κ2A(f)

ALM-GS-AOR 1 (LfIm + βB>B)−1 βIn (1 + 1/κ(fB))
−1

ALM-GS-AOR 2 (A+ βB>B)−1 βIn (1 + 1/κA(fB))
−1
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