
Transformed Pseudo-Random Patterns for BIST

Nur A. Touba and Edward J. McCluskey

CRC Technical Report No. 94-10

(CSL TR No. 94-640)

October 1994

CENTER FOR RELIABLE COMPUTING

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University, Stanford, California 94305-4055

ABSTRACT

This paper presents a new approach for on-chip test pattern generation. The set of test patterns

generated by a pseudo-random pattern generator (e.g., an LFSR) is transformed into a new set of

patterns that provides the desired fault coverage. The transformation is performed by a small

amount of mapping logic that decodes sets of patterns that don’t detect any new faults and maps

them into patterns that detect the hard-to-detect faults. The mapping logic is purely combinational

and is placed between the pseudo-random pattern generator and the circuit under test (CUT). A

procedure for designing the mapping logic so that it satisfies test length and fault coverage

requirements is described. Results are shown for benchmark circuits which indicate that an LFSR

plus a small amount of mapping logic reduces the test length required for a particular fault coverage

by orders of magnitude compared with using an LFSR alone. These results are compared with

previously published results for other methods, and it is shown that the proposed method requires

much less overhead to achieve the same fault coverage for the same test length.

i

TABLE OF CONTENTS

1. INTRODUCTION ... 1

2. CUBE MAPPING ... 3

3. PROCEDURE FOR SELECTING CUBE MAPPINGS.................................. 5

3.1 Overview of Procedure .. 5

3.2 Selecting a Source Cube .. 6

3.3 Selecting an Image Cube.. 7

4. HARDWARE IMPLEMENTATION OF MAPPING LOGIC ... 11

5. EXPERIMENTAL RESULTS ... 12

5.1 Comparison with LFSR Alone... 12

5.2 Execution Time for Generating Mapping Logic.................................. 14

5.3 Comparison with Prior Methods... 14

6. CONCLUSIONS ... 17

ACKNOWLEDGMENTS.. 17

REFERENCES... 18

LIST OF FIGURES

Figure 1. Block Diagram for Generating Transformed Patterns .. 2

Figure 2. Cube Mapping with Source Cube a1¢a2 (0,1,X) and Image Cube a2¢a3

(X, 0, 1) . 3

Figure 3. Original Pattern Set and Fault Coverage for C17 Example .. 5

Figure 4. Source Cube Selection for C17 Example .. 7

Figure 5. Image Cube Selection for C17 Example .. 10

Figure 6. Gate Implementation of Cube Mapping Logic for C17 Example: Mbe¢® a¢de and

Ma¢e¢® ab¢c¢ . 11

LIST OF TABLES

Table 1. Description of LFSR Used to Test Each Circuit . 13

Table 2. Comparison of Testing with an LFSR Alone versus an LFSR plus Cube Mapping

Logic .. 13

Table 3. Execution Time for Fault Simulation, ATPG, and Map Selection on

SPARCStation 20... 13

Table 4. Comparison of Test Length and Required Hardware.. 16

1

1. INTRODUCTION

One of the requirements for built-in self-test (BIST) is on-chip test pattern generation. Some

circuit, called a test pattern generator, is needed to generate test patterns for the circuit under test

(CUT). For a given test length, the test pattern generator must be able to generate test patterns that

provide a high fault coverage. A linear feedback shift register (LFSR) is commonly used as a test

pattern generator because it provides two advantages: (1) it has a simple structure requiring small

area overhead, (2) it can also be used as an output response analyzer thereby serving a dual

purpose. BIST techniques such as circular BIST [Krasniewski 89] and BILBO registers

[Konemann 79] make use of these advantages to reduce overhead. Unfortunately, the

pseudo-random test patterns that are generated do not always give high enough fault coverage for a

reasonable test length. There are two ways to solve this problem. One is to increase the fault

detection probabilities in the CUT by inserting test points [Eichelberger 83] or by redesigning it

[Touba 94], and the other is to augment the LFSR with additional logic to improve the patterns that

are generated. This paper presents a new approach for the latter.

Given an LFSR that doesn't provide high enough fault coverage when used as a test pattern

generator, one possible solution is to simply try a different seed or different characteristic

polynomial. Lempel et al. [Lempel 94] presented an analytical method for finding a good seed for

an LFSR with a given characteristic polynomial. Results in [Lempel 94] indicate, however, that

seed selection can reduce the test length by less than a factor of 10. If a solution can be found this

way, then no additional logic needs to be added to the LFSR. Otherwise, the LFSR must be

augmented by additional logic. Three general approaches that have been proposed for doing this

are as follows:

1. Mixed-Mode: Logic is added to generate deterministic patterns to detect faults that the

pseudo-random patterns miss. Many methods have been proposed for generating deterministic

patterns on-chip [Agarwal 81], [Daehn 81], [Dandapani 84], [Akers 89], [Edirisooriya 92]. In

general, however, substantial overhead is required.

2. Multiple Seeds/Reconfigurable LFSR: Logic is added to periodically reseed the LFSR or

change its characteristic polynomial. Techniques have been developed for finding seeds and

characteristic polynomials that will generate tests for the hard-to-detect faults [Konemann 91],

[Dufaza 91], [Hellebrand 92], [Venkataraman 93]. The seeds and characteristic polynomials need

to be stored on-chip.

3. Weighted Patterns: Logic is added to bias the pseudo-random patterns towards those that

detect the hard-to-detect faults [Schnurmann 75], [Wunderlich 87], [Bardell 87], [Pomeranz 92],

[Hartmann 93]. Multiple weight sets are usually required for an acceptable test length

[Wunderlich 88]. The weight sets need to be stored on-chip.

2

This paper presents a new approach for augmenting an LFSR, or any other pattern generating

circuit, to produce a desired fault coverage for a given test length. No storage of deterministic

patterns, seeds, characteristic polynomials, or weight sets is required. In fact, no additional

sequential logic needs to be added. As illustrated in Fig. 1, a purely combinational logic block is

added between the pattern generating circuit and the CUT to map the original set of patterns into a

new transformed set of patterns that provides the desired fault coverage. The original set of

patterns produced by the pattern generating circuit for a given test length will be referred to as the

original pattern set, and the set of patterns that is produced at the output of the mapping logic block

will be referred to as the transformed pattern set. The strategy is to identify patterns in the original

pattern set that don’t detect any new faults and then map them into patterns that detect the

hard-to-detect faults. The key is to design the mapping logic so that it uses only a small number of

gates. This is accomplished by using the special class of mappings described in Sec. 2. Given a

pattern generating circuit, a procedure is described for designing mapping logic to produce

transformed patterns that satisfy test length and fault coverage requirements. The goal of the

procedure is to minimize the number of gates required in the mapping logic.

The test pattern generator architecture in which a pseudo-random pattern generator is followed

by a transform network to produce “biased” patterns is not new. However, previous methods

have only considered using a transform network that either weights or correlates signal

probabilities. This paper suggests considering a broader class of transformations. Whereas the

transformations used in weighted pattern testing are uniformly applied to some number of patterns

per weight set, the transformations used here are applied to only selected sets of patterns.

This paper is organized as follows: In Sec. 2, a special class of mappings are defined, and it is

shown that these mappings can be implemented with a small number of gates. In Sec. 3, a

procedure for designing the mapping logic is presented. In Sec. 4, experimental results are shown

and a comparison is made between the proposed approach and the latest weighted random pattern

approaches. In Sec. 5, the implications of this work are discussed and conclusions are drawn.

Pattern Generator

Mapping Logic

Circuit Under Test
(CUT)

Original Test Patterns

Transformed Test Patterns

Figure 1. Block Diagram for Generating Transformed Patterns

3

2. CUBE MAPPING

In the method described in this paper, a special class of mappings, which will be called cube

mappings, are used to map the original pattern set into a transformed pattern set. Each cube

mapping is uniquely specified by a "source" cube and an "image" cube where each cube is a

product of literals in the input space of the CUT. Each original pattern that is contained in the

source cube is mapped into a new pattern that is contained in the image cube. In the following

definitions, a cube in an input space with n variables will be represented by a vector in { 0, 1, X }n

where a ‘0’ indicates that the variable appears complemented in the cube, a ‘1’ indicates that the

variable appears uncomplemented in the cube, and an ‘X’ indicates that the variable doesn’t appear

in the cube.

DEFINITION 1: For a circuit with n primary inputs, let A = (a1,..., an) Î {0,1}n be an input

pattern and let C = (c1,..., cn) Î { 0, 1, X }n be a cube, then A is contained in C

if " j [(aj = cj) or (cj = ‘X’)] .

DEFINITION 2: For a circuit with n primary inputs, let A = (a1,..., an) Î {0,1}n be an input

pattern, then a cube mapping, M: {0,1}n ® {0,1}n, with source cube S= (s1,..., sn) Î { 0, 1, X }n

and image cube I= (i1,..., in) Î { 0, 1, X }n is defined as follows:

MS®I (A) = B = (b1,...,bn) Î {0,1}n where

if A is contained in S then if ij = ‘X’ then bj = aj else bj = ij
else if A is not contained in S then bj = aj

An example of a cube mapping is shown in Fig. 2. The source cube a1¢a2 (0,1,X) contains

the patterns 0 1 0 and 0 1 1. These two patterns are mapped into new patterns that are contained

in the image cube a2¢a3 (X,0,1) by setting a2 = 0 and a3 = 1. Hence both patterns are mapped into

0 0 1 .

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

a1a2a3
0 0 0
0 0 1
0 0 1
0 0 1
1 0 0
1 0 1
1 1 0
1 1 1

®
®

Original Transformed

&

&

+

a1 a2 a3

test
mode

a1a2a3

Figure 2. Cube Mapping with Source Cube a1¢a2 (0,1,X) and Image Cube a2¢a3 (X,0,1)

4

The method described in this paper involves finding some set of cube mappings,
{MS1®I1 , ... ,MSn®In}, that can be used to map the original pattern set into a transformed pattern set

that provides the desired fault coverage. The advantage of using cube mappings is that they can be

implemented with a small amount of logic. In Fig. 2, the logic required to implement a cube

mapping is shown. One AND-gate is needed to decode the input patterns that are contained in the

source cube, and one two-input AND or two-input OR gate is needed for each literal in the image

cube to perform the mapping. The mapping can be disabled during normal operation by simply

adding an input to the decoding AND-gate (labeled “test mode” in Fig. 2).

5

3. PROCEDURE FOR SELECTING CUBE MAPPINGS

Given a pattern generating circuit, a test length, and a fault coverage requirement, a procedure

is described in this section for finding a set of cube mappings that will map the original pattern set

into a transformed pattern set that satisfies the fault coverage requirement. The procedure involves

generating a cube mappings one at a time until the resulting transformed pattern set gives a high

enough fault coverage.

3.1 Overview of Procedure

The steps in the procedure are as follows:

1. Simulate the pattern generating circuit for the given test length to generate the original pattern set.

2. Evaluate the fault coverage and identify the undetected faults.

3. If the fault coverage is high enough, then the procedure is complete.

4. Otherwise, add a cube mapping

5. Compute the resulting transformed pattern set and loop back to step 2.

In step 4, a cube mapping is added to improve the fault coverage. A method for selecting

which cube mapping to add during this step will be described in detail. The method involves first

selecting a source cube and then selecting the image cube. To illustrate the method, a simple

example of finding mapping logic for testing the 5-input ISCAS 85 benchmark circuit C17 will be

used. Assume that the C17 circuit is to be tested using a pseudo-random generator and 100% fault

coverage is required with a test length of 10. While the test length requirement in this example is

obviously not realistic, it will demonstrate the steps of the method which are the same for large

circuits with realistic test lengths. The first steps of the method are done for the example and the

results are shown in Fig. 3: the original pattern set is obtained, and fault simulation is done

revealing that 5 out of 18 faults are left undetected. The original pattern set was contrived for this

example, but in reality it would be obtained by simulating an LFSR or other pattern generating

circuit. Now the task is to select a cube mapping that will produce a transformed pattern set that

will detect the undetected faults; this is the subject of the next two subsections.

C17 EXAMPLE

Fault Coverage Requirement: 100%

Test Length Requirement: 10

Original Pattern Set: 00111, 11011, 10111, 10110, 11010, 00101, 11100, 01010, 10100, 00100

Fault Coverage = 13
18 = 72.2%

Figure 3. Original Pattern Set and Fault Coverage for C17 Example.

6

3.2 Selecting a Source Cube

Each pattern in the original pattern set that is contained in the source cube will be transformed

into a new pattern. In order to keep from reducing the fault coverage, it is important to choose a

source cube that does not contain all of the patterns in the original pattern set that detect some

fault f ; otherwise the transformed pattern set may not contain a test pattern for fault f. On the

other hand, in order to maximize the potential of the mapping for increasing fault coverage, it is

important for the source cube to contain as many patterns as possible in the original pattern set so

that the transformed pattern set will contain as many new patterns as possible. Thus the strategy

for selecting the source cube is to find a large cube that doesn’t contain all of the test patterns in the

original pattern set for some fault.

In order to avoid selecting a cube that contains all of the test patterns in the original pattern set

for some fault, it is necessary to know which patterns in the original pattern set detect each fault.

To find the whole set of patterns that detect each fault, fault simulation without fault dropping

would be required. Results in [Pan 93] indicate that fault simulation time can be increased by up to

a factor of 50 if fault dropping is not used. If fault dropping is used, then the fault detection

information is limited to one pattern for each fault (the first pattern that detected the fault).

However, this is enough information to choose the source cube. For each detected fault, there

must be at least one test pattern that is not contained in the source cube. This requirement can be

satisfied if the source cube is chosen such that it doesn’t contain any of the patterns that caused

faults to be dropped during fault simulation.

Let F be a Boolean function equal to the sum of the minterms corresponding to each pattern that

caused a fault to be dropped. Then finding a cube that doesn’t contain any pattern that caused a

fault to be dropped is equivalent to finding an implicant in F¢. Finding an implicant in F¢ that is as

large as possible can be solved using binate covering. A binate matrix is formed in which each

column corresponds to a literal and each row corresponds to a pattern that caused a fault to be

dropped. A minimum binate column covering for the resulting matrix is then computed and

expressed as a cube C with each literal corresponding to a binate column in the solution. The

source cube is then computed by complementing each literal in C. The source cube will then have

the property that it doesn't match any pattern that caused a fault to be dropped, and therefore it is

guaranteed to not contain all of the patterns in the original pattern set that detect some fault. Binate

covering is an NP-complete problem, however, there are good heuristic algorithms for it

(e.g., [Brayton 89]).

7

For the C17 example, the original test patterns that caused faults to be dropped are listed in

Fig. 4. These patterns are formed into a binate matrix and a minimum binate column cover is

found. The source cube is computed by complementing each literal in the minimum binate column

cover. The source cube has the property that it doesn’t contain any of the patterns that caused

faults to be dropped.

C17 EXAMPLE

Patterns that Drop Faults <a,b,c,d,e>: 00111, 11011, 10111, 10110, 00101

a¢ a b¢ b c¢ c d¢ d e¢ e

1 0 1 0 0 1 0 1 0 1 A Minimum Binate Column Cover: b¢ e
0 1 0 1 1 0 0 1 0 1

0 1 1 0 0 1 0 1 0 1 Selected Source Cube: b e¢
0 1 1 0 0 1 0 1 1 0
1 0 1 0 0 1 1 0 0 1

Figure 4. Source Cube Selection for C17 Example.

3.3 Selecting an Image Cube

Once the source cube has been selected, the remaining task is to select the image cube. The

goal in selecting the image cube is to transform the patterns that are contained in the source cube

into new patterns that detect as many of the undetected faults as possible. The patterns contained in

the source cube are mapped into patterns contained in the image cube. There is a tradeoff on the

size of the image cube. The smaller the image cube is, the larger the probability of mapping into

each pattern that it contains, however, this only helps for the undetected faults that can be detected

by patterns contained in the image cube. As the image cube becomes smaller, it contains test

patterns for fewer undetected faults hence the maximum number of undetected faults that can be

detected as a result of the transformation is reduced, but the probability of mapping into each of the

test patterns is increased. The strategy that is used for selecting the image cube is to find some

good candidate image cubes and compute how many undetected faults would be detected if each

was used. The candidate image cube that gives the highest fault coverage is then selected as the

image cube.

Deterministic test patterns for the undetected faults are used to guide the selection of candidate

image cubes. The unnecessary input assignments in the test patterns are left as don't cares (X's)

thereby forming test cubes for each fault. The test cubes are obtained using an automatic test

pattern generation (ATPG) tool to generate a test for each undetected fault and leave the unspecified

8

inputs as X's. If the intersection of the image cube and the test cube for fault f is non-empty, then

the image cube contains test patterns for fault f, and therefore fault f can be potentially detected in

the transformed pattern set. So it is important to try to choose candidate image cubes that have

non-empty intersections with as many test cubes as possible. This is done using rectangle

covering similar to what is done in multilevel logic optimization to find cube factors [Brayton 87].

A binate matrix B is formed in which each test cube is represented by a row. The complemented

and uncomplemented literals corresponding to each don’t care input in a test cube are both set equal

to 1 (this is different from finding cube factors where they are both set equal to 0). A rectangle in

B corresponds to a cube that has a non-empty intersection with the test cubes covered by the

rectangle (this is different from finding cube factors where a rectangle corresponds to a common

cube between the cubes covered by the rectangle).

One approach for selecting candidate image cubes would be to simply use each of the prime

rectangles in B (i.e., each rectangle not contained in another rectangle). However, for circuits with

large numbers of primary inputs, the number of prime rectangles becomes prohibitive. So the

strategy that is used instead is to begin with a prime rectangle that covers as many test cubes as

possible (i.e., is the same height or taller than all other prime rectangles). The cube corresponding

to this rectangle is used as the initial candidate image cube. Subsequent candidate image cubes are

then obtained by incrementally adding literals to the initial candidate image cube; this corresponds

to incrementally adding columns to the initial rectangle. The columns are selected based on

maximizing the number of test cubes covered by the resulting rectangle (i.e., maximizing its

height). The procedure is as follows:

1. The initial candidate image cube is set equal to a prime rectangle in B with maximum height.

The initial candidate image cube will then have the property that it has a non-empty

intersection with as many test cubes as possible. Thus, it will contain test patterns for as many

undetected faults as possible.

2. Compute the transformed pattern set based on the candidate image cube.

The transformed pattern set is computed for the cube mapping specified by the previously

selected source cube and the candidate image cube.

3. Determine how many undetected faults are now detected in the transformed pattern set.

This can be done by either doing fault simulation of the undetected faults, or by comparing

the newly transformed patterns with the test cubes (if a pattern is contained in a test cube, then

the undetected fault is detected). The test cubes contain only a subset of all the patterns that

detect each fault, so doing fault simulation provides a better measure of the number of faults

detected, but it takes longer.

9

4. If the number of faults detected is larger than that of the best candidate seen so far, then mark

this candidate as the best candidate.

The goal in choosing the image cube is to detect as many faults as possible, so only the best

candidate is kept.

5. Add a column to the current rectangle to form a new rectangle that is as tall as possible.

The goal of this step is to find a smaller candidate image cube that has the potential to detect

as many faults as possible. A literal is added to the current candidate image cube based on

maximizing the number of test cubes that the resulting candidate image cube has a non-empty

intersection with.

6. If the number of rows covered by the resulting rectangle is less than or equal to the number of

faults detected by the best candidate, then select the best candidate. Else, loop back to step 2.

The next candidate image cube will have a non-empty intersection only with the test cubes

covered by the rectangle and hence its potential for detecting faults is limited by the number of

rows. If it is not possible for the next candidate to detect more faults than the best candidate,

then the best candidate is selected as the image cube.

7. Expand the image cube as much as possible without reducing fault coverage.

This can be done by removing one literal at a time from the image cube and computing the

resulting fault coverage. If the fault coverage remains the same, then the literal is not needed.

The purpose of this step is to try to minimize the number of gates needed to implement the

mapping. A gate is needed for each literal in the image cube, so if some of the literals can be

removed without reducing the fault coverage, than this results in a hardware savings.

10

For the C17 example, the test cubes for the 5 undetected faults are listed in Fig. 5. These test

cubes are formed into a binate matrix, and the first candidate image cube is set equal to a¢ e which

corresponds to a rectangle with maximum height. The transformed pattern set is computed and

fault simulation of the undetected faults is done revealing that only one of them is detected. The d

column is then added to the rectangle because it maximizes the height of the resulting rectangle.

The second candidate image cube is then set equal to a¢ d e. The transformed pattern set is

computed and fault simulation of the undetected faults is done revealing that 3 of them are detected.

Since the number of rows in the next rectangle will be less than or equal to the number of faults

detected for the second candidate image cube, the selection procedure terminates and the selected

image cube is a¢ d e. Removing any of the literals from the image cube reduces the fault

coverage, so the image cube is not expanded.

C17 EXAMPLE

 Test Cube for Each Undetected Fault: XX00X, X111X, 010X1, 0111X, X001X

 B matrix:

 a¢ a b¢ b c¢ c d¢ d e¢ e
1 1 1 1 1 0 1 0 1 1 Transformed Patterns: Mbe¢® a¢e

1 1 0 1 0 1 0 1 1 1 First Candidate Image Cube: a¢ e 11010 ® 01011

1 0 0 1 0 1 1 1 0 1 01010 ® 01011

1 0 0 1 0 1 0 1 1 1 1 fault detected 11100 ® 01101
1 0 1 0 1 0 0 1 1 1

Transformed Patterns: Mbe¢® a¢de

Second Candidate Image Cube: a¢ d e 11011 ® 01011

01010 ® 01011

3 faults detected 11100 ® 01111

 Selected Image Cube: a¢ d e

Figure 5. Image Cube Selection for C17 Example.

11

4. HARDWARE IMPLEMENTATION OF MAPPING LOGIC

After a set of cube mappings has been selected such that the test length and fault coverage

requirements are satisfied, a gate implementation of the mapping logic can be easily constructed.

This is best explained with an example. For the C17 example, the steps for selecting the first cube

mapping, Mbe¢® a¢de, were shown. This cube mapping causes 3 faults to be detected, but there are

still 2 undetected faults remaining. So the same steps were used to select a second cube mapping,

Ma¢e¢® ab¢c¢. This cube mapping causes both of the remaining 2 faults to be detected. So the set of

these two cube mappings satisfies the 100% fault coverage requirement. All that remains is to

construct a circuit to implement these mappings. One such circuit is shown in Fig. 6. One AND

gate is needed to decode each source cube. A “test mode” input is added to each decoding AND

gate so that it can be disabled during normal operation. The first cube mapping, Mbe¢® a¢de, is

implemented by adding an AND gate to a, and OR gates to d and e. The second cube mapping,

Ma¢e¢® ab¢c¢, is implemented by adding an OR gate to a, and AND gates to b and c. If a pattern is

contained in both sources cubes, then the output of both decoding AND gates will go high. The

latter cube mappings must override previous cube mappings, so in this case the OR gate on a must

be placed after the AND gate. Because the latter source cubes are always chosen so that they won’t

contain patterns that detect new faults, there is no concern that having the second cube mapping

override the first cube mapping will reduce fault coverage.

An obvious concern about constructing a circuit structure by cascading gates is that the delay

through the circuit will be a problem. However, the circuit can always be flattened and synthesized

with logic synthesis tools to control delay.

&

&

+

a b c

test
mode

&

+

+ & &

Pattern Generator

d e

C17 Circuit

Figure 6. Gate Implementation of Cube Mapping Logic for C17 Example: Mbe¢® a¢de and Ma¢e¢® ab¢c¢

12

5. EXPERIMENTAL RESULTS

The method described in this paper was used to generate mapping logic to reduce the

pseudo-random pattern test length for some of the ISCAS 85 [Brglez 85] and ISCAS 89

[Brglez 89] benchmark circuits that require over a million test patterns.

5.1 Comparison with LFSR Alone

Table 2 compares using only an LFSR and using an LFSR with cube mapping logic. It was

assumed that the flip-flops in the ISCAS 89 circuits were configured as part of the LFSR during

testing so that the circuits are tested like combinational circuits. The number of stages in the LFSR

for each circuit was equal to the number of primary inputs plus the number of flip-flops. Table 1

shows the number of stages, the characteristic polynomial (all are primitive polynomials), and the

initial seed that was used in the LFSR to generate pseudo-random patterns for each circuit.

Patterns were applied in parallel to the circuit, i.e., a pattern was applied each clock cycle. Only

detectable faults were considered in fault coverage calculations. Table 2 shows results for using an

LFSR alone to generate the patterns. The fault coverage after 1K patterns, 10K patterns, and 50K

patterns is shown, and the test length required for 100% fault coverage is shown (all circuits

required over a million patterns). The method described in this paper was used to generate

mapping logic to provide 100% fault coverage for test lengths of 1K, 10K, and 50K patterns using

the same LFSR (same characteristic polynomial and same initial seed). The mapping logic was

inserted between the LFSR and CUT. In Table 2, results are shown for the LFSR with the

mapping logic. For each of the three test lengths, four things are shown: the number of cube

mappings, the number of gates required to implement the mapping logic, the number of literals in

the mapping logic (gate inputs), and the fault coverage achieved. When more than one cube

mapping is required to achieve 100% fault coverage, results are shown for different numbers of

cube mappings to show the possible tradeoffs between area and fault coverage. These results

indicate that a small amount of mapping logic can dramatically reduce the random pattern test

length. If the number of gates in the mapping logic is divided by the number of inputs in the CUT,

then for all of the circuits, less than a gate per input is required to reduce the test length by 3 orders

of magnitude or more. Note that the number of literals per gate (i.e., average gate fan-in) is very

small as well. As the test length is increased, the amount of mapping logic required for 100% fault

coverage goes down. It is very easy to trade off between test length, fault coverage, and hardware

overhead.

13

Table 1. Description of LFSR Used to Test Each Circuit

Circuit Stages Polynomial Initial Seed

s420 35 x35+x2+1 3 3ad1 dab3
s641 54 x54+x37+x36+x+1 1a 9a83 c447 3c79
s713 54 x54+x37+x36+x+1 0a 128c b016 6b6d
s838 67 x67+x10+x9+x+1 3 df4e 0de8 4455 0811
s1196 32 x32+x22+x2+x+1 29fc 1f94
C2670 233 x233+x74+1 0f7 d383 7a11 1542 047a 70a1 36e8 d73f 7c5a 0882 feee ba86 a2a7 891b 2c05
C7552 207 x207+x43+1 2f25 0e9a 94fe 0fca 0a0a b826 3cc6 5fb4 0458 13c6 1b48 01e4 02c3

Table 2. Comparison of Testing with an LFSR Alone versus an LFSR plus Cube Mapping Logic

LFSR Alone LFSR plus Cube Mapping Logic

Circuit Fault Coverage Test Len 1K Test Length 10K Test Length 50K Test Length
Name at 1K at 10K at 50K for 100% map gate lits Cov map gate lits Cov map gate lits Cov

 s420 75.3% 80.0% 87.4% 1.1M 1
3
4

12
24
28

25
52
62

95.2%
99.1%
100%

1 10 21 100% 1 7 15 100%

 s641 94.5% 97.1% 97.6% 1.0M 1
2
3

17
31
38

36
64
82

98.1%
99.2%
100%

1 11 24 100% 1 8 18 100%

s713 94.5% 97.1% 98.2% 1.2M 1
2
3

13
25
34

28
54
74

98.4%
99.5%
100%

1 11 24 100% 1 7 16 100%

s838 78.1% 81.4% 82.7% >100M 3
4
7

60
80
93

124
166
198

97.1%
99.0%
100%

1
2
4

25
39
55

51
81
118

93.6%
99.1%
100%

1
2

21
39

43
80

96.2%
100%

s1196 88.8% 97.7% 99.6% 2.1M 4
15
24

34
132
195

80
317
479

95.0%
99.1%
100%

1
2
4

8
13
21

19
32
54

99.3%
99.7%
100%

1 5 13 100%

C2670 87.9% 88.2% 88.4% 4.6M 2
5
12

77
169
252

156
343
520

96.1%
99.2%
100%

1
2
4

28
67
112

59
136
228

94.4%
98.6%
100%

1
2
4

32
66
95

65
134
194

96.1%
99.1%
100%

C7552 92.7% 95.0% 96.7% >100M 5
12
21

201
416
548

421
879

1179

98.0%
99.0%
99.5%

2
3
6

107
163
211

215
329
428

98.8%
99.7%
100%

2
4
6

98
117
180

198
238
366

98.9%
99.9%
100%

Table 3. Execution Time for Fault Simulation, ATPG, and Map Selection on SPARCStation 20

Circuit 1K Patterns 10K Patterns 50K Patterns
Name Fault Sim ATPG Map Sel Fault Sim ATPG Map Sel Fault Sim ATPG Map Sel

s420 1.0 sec 0.9 sec 10 sec 6.0 sec 0.7 sec 39 sec 24 sec 0.5 sec 120 sec
s610 1.1 sec 0.4 sec 13 sec 6.1 sec 0.2 sec 42 sec 25 sec 0.2 sec 160 sec
s713 1.2 sec 0.5 sec 15 sec 6.2 sec 0.2 sec 35 sec 25 sec 0.1 sec 150 sec
s838 3.6 sec 5.5 sec 190 sec 26 sec 4.5 sec 670 sec 110 sec 3.8 sec 2800 sec
s1196 4.2 sec 5.2 sec 20 sec 13 sec 0.9 sec 26 sec 26 sec 0.1 sec 82 sec
C2670 13 sec 21 sec 1200 sec 84 sec 21 sec 3900 sec 400 sec 19 sec 4500 sec
C7552 40 sec 170 sec 2500 sec 170 sec 140 sec 4300 sec 617 sec 91 sec 5400 sec

14

5.2 Execution Time for Generating Mapping Logic

Table 3 shows the execution times for the operations that were performed to generate the

mapping logic for each circuit. These execution times were measured on a Sun SPARCStation 20.

The method described in this paper involves 3 operations. The first is fault simulation for the

specified test length to evaluate the fault coverage, identify the undetected faults, and identify the

first pattern that detects each fault (causes the fault to be dropped). The fault simulation time is

shown for each test length in Table 3. As the test length increases, the fault simulation time

increases because there are more patterns to simulate. The second operation is to do ATPG for the

undetected faults to generate test cubes. The ATPG time is shown for each test length in Table 3.

As the test length increases, the ATPG time goes down because there are fewer undetected faults

remaining. The last operation is to select cube mappings. Each cube mapping requires selecting a

source cube and an image cube. Selecting the source cube involves solving a binate covering

problem for a binate matrix whose dimensions are Ndf x 2(Ni) where Ndf is the number of

detected faults and Ni is the number of inputs in the CUT. Selecting the image cube requires

generating and evaluating candidate image cubes. The number of candidate image cubes is

bounded by the number of inputs in the CUT since candidate image cubes are obtained by

incrementally adding literals. The time required for selecting the mappings is shown for each test

length in Table 3. As the test length increases, the map selection time increases as well because the

time to evaluate each candidate image cube becomes longer since there are more patterns that get

transformed.

5.3 Comparison with Prior Methods

There are three important factors in choosing a test pattern generator for BIST: test time, test

quality, and hardware area. To evaluate the test pattern generators that are designed by the method

in this paper, a comparison was made with other published results using three measures: test

length (for test time), fault coverage (for test quality), and gate equivalents plus flip-flop count (for

hardware area). Table 4 shows the comparison. The fault coverage is the same for all techniques:

100% of detectable single stuck-at faults. Parallel test pattern application (“a test per clock”) is

assumed for all techniques. The first column gives the circuit names, and the next column shows

the test length for pseudo-random pattern testing using an LFSR. Then results are given for 3

different methods plus the proposed method. The test length and hardware overhead is shown for

each method. In some cases, results are given for two different test lengths to show the tradeoff

between test time and hardware overhead. The hardware overhead is the hardware required in

15

addition to what is needed for pseudo-random pattern testing with an LFSR. Flip-flops and gates

are counted separately. The gates are measured by gate equivalents (GE’s) using the same method

suggested in [Hartmann 93] to reflect a static CMOS technology: (0.5)(n) GE’s for an n-input

NAND or NOR, (2.5)(n-1) GE’s for an n-input XOR, and 1.5 GE’s for a 2-to-1 MUX (realized

by transmission gates). The hardware overhead for each method is an estimate that is computed as

follows:

Multiple Weight Sets: The weight sets from [Bershteyn 93] are used. The number of weight sets

required is shown under the column WS. It is assumed that the best case occurs in which no

stages have to be added to the LFSR to avoid correlation that increases test length. Thus, extra

flip-flops are needed only to keep track of which weight set is being used. So the number of extra

flip-flops is log2(WS). The logic required for each input to the CUT is conservatively estimated to

be a total of 4 two-input NAND/NOR gates to generate the weighted signals and WS 2-to-1

MUXes to select the weighted signals based on which weight set is currently active. So the

hardware overhead is computed as follows:

Number of Flip-Flops = log2(number of weight sets)

Number of Gate Equivalents = [4 + (1.5) (number of weight sets)] (number of inputs in CUT)

3-Weight Method: This method was proposed by Pomeranz and Reddy in [Pomeranz 93]. 3-gate

modules are used to fix the value of certain inputs while random patterns are being applied thus

forming “expanded tests”. Extra flip-flops are needed to keep track of which expanded test is

being used. The logic required by the 3-gate modules depends on the fan-in. One of the gates is a

two-input gate, and the average fan-in for the other two is given in [Pomeranz 93] (results are not

available for the ISCAS 89 circuits). So the hardware overhead is computed as follows:

Number of Flip-Flops = log2(number of expanded tests)

Number of Gate Equivalents = (number of 3-gate modules) (1 + average fan-in)

Fixed-Biased Method: This method was proposed by AlShaibi and Kime in [AlShaibi 94]. It

generates patterns using a weighted bit stream and fixing the value of some bits. It requires a ROM

to store configuration sequences that are periodically loaded during testing, but for sake of

comparison, it is assumed that the configuration sequences are stored off-chip even though this

would impact test time. A 17-stage LFSR plus some weight logic is used to generate the weighted

bit stream. No data is given in [AlShaibi 94] regarding the amount of weight logic that is required,

so this logic is not included in the gate count. Each fixed bit requires one extra flip-flop, four

2-to-1 MUXes, and a two-input NAND gate; the number of fixed bits for each circuit is given in

[AlShaibi 94]. So the hardware overhead is computed as follows:

Number of Flip-Flops = 17 + (number of fixed bits)

Number of Gate Equivalents = [(4)(1.5) + 1] (number of fixed bits)

16

The proposed method requires no additional flip-flops, only combinational logic between the

LFSR and the CUT. Assuming that flip-flops require 4 gate equivalents or more, the proposed

method requires the least hardware overhead for a given test length compared with the other

methods. In many cases, the proposed method reduces the test length significantly more than the

other methods while using much less hardware.

Wunderlich proposed a generator of unequiprobable random tests (GURT) in [Wunderlich 87]

that requires very little hardware overhead but is limited to only one weight set. Hartmann and

Kemnitz proposed a method in [Hartmann 93] that uses a modified GURT structure to generate

equiprobable patterns and weighted patterns using a single weight set with 5 possible weights

{ 0, 2-k, 0.5, 2k, 1} (where k is an integer). Test pattern generators are described in

[Hartmann 93] for C2670 and C7552 which require very little hardware overhead. However,

these methods are not general methods because they use only one weight set and therefore are

limited in their ability to reduce test length. For some circuits these methods will not be able to

reduce the test length enough. The methods shown in the table are general methods in the sense

that they can be used to reduce the test length for any circuit by basically any amount. It should

also be pointed out that the order of the flip-flops in a GURT structure is greatly constrained and

therefore can add substantial routing overhead. The proposed method, on the other hand, places

no constraints on flip-flop ordering and allows the use of normal BILBO register cells.

Table 4. Comparison of Test Length and Required Hardware

Circuit Random
Multiple Weight Sets

[Bershteyn 93]
3-Weight

[Pomeranz 93]
Fix-Biased

[AlShaibi 94]
Proposed Method

Name TLen TLen WS FF GE TLen FF GE TLen FF GE TLen FF GE

 s420 1.1M 532
1.8K

4
2

³2
³1

350
245

NA NA NA 5K 18 >7 500
1K

0
0

48
31

 s641 1.0M 593 3 ³2 459 NA NA NA 19K 20 >21 500
10K

0
0

23
12

 s838 >100M 893
17K

5
2

³3
³1

770
469

NA NA NA 86K 19 >14 850
10K

0
0

99
59

 s9234 13M 3.3K
161K

11
4

³4
>2

5064
2470

NA NA NA 199K 69 >364 90K 0 450

 C2670 4.6M 1.3K
12K

9
3

³4
³2

4078
1981

19K
30K

5
5

1507
1316

19K 54 >259 1K
7K

0
0

260
114

 C7552 >100M 2K
69K

12
5

³4
³3

4554
2380

47K
72K

6
6

3003
2475

191K 111 >658 10K
50K

0
0

214
183

17

6. CONCLUSIONS

A new approach for reducing the pseudo-random pattern test length required to achieve high

fault coverage was presented. The approach involves adding combinational mapping logic

between a pattern generating circuit and the CUT. Experimental results indicate that a small

amount of mapping logic can dramatically increase fault coverage for a given test length. The

method described in this paper requires much less overhead than other general methods for the

same fault coverage and test length. In addition to minimizing hardware overhead, the proposed

approach has the following advantages:

1) Easy to insert into an existing design.

2) Fully compatible with BILBO registers.

3) Easy to trade off between test time, fault coverage, and hardware overhead.

4) No additional sequential logic is required.

5) Very simple control -- only one control line is needed (to indicate test mode).

Thus, the method described in this paper is very convenient to use in BIST designs to boost fault

coverage. Mapping logic can be generated and seamlessly inserted into a BIST architecture. One

drawback is that the mapping logic adds delay. This can be controlled to some extent by using a

logic synthesis tool to optimize the mapping logic. Most other approaches to reducing

pseudo-random pattern test length add delay as well.

In this paper, the problem of improving fault coverage during pseudo-random pattern testing

was conceptualized as one of transforming a pseudo-random pattern set into a better one. This led

to the use of a broader class of transformations than had been previously considered. Other

transformations besides cube mappings are currently being investigated. More complex

transformations hold promise for even greater improvement.

ACKNOWLEDGMENTS

The authors would like to thank Dr. LaNae Avra for her helpful comments and suggestions.

This work was supported in part by the Advanced Research Projects Agency under prime contract

No. DABT63-94-C-0045, and by the Innovative Science and Technology Office of the Strategic

Defense Initiative Organization administered through the Office of Naval Research under Contract

No. N00014-92-J-1782, and by the National Science Foundation under Grant No. MIP-9107760.

18

REFERENCES

[AlShaibi 94] AlShaibi, M.F., and C.R. Kime, “Fixed-Biased Pseudorandom Built-In Self-Test

for Random Pattern Resistant Circuits,” Proc. of International Test Conference, pp. 929-938,

1994.

[Agarwal 81] Agarwal, V.K., and E. Cerny, “Store and Generate Built-In Testing Approach,”

Proc. of FTCS-11, pp. 35-40, 1981.

[Akers 89] Akers, S.B., and W. Jansz, “Test Set Embedding in a Built-In Self-Test

Environment,” Proc. of International Test Conference, pp. 257-263, 1989.

[Bardell 87] Bardell, P.H., W.H. McAnney, and J. Savir, Buit-In Test for VLSI: Pseudorandom

Techniques, New York: Wiley, 1987.

[Bershteyn 93] Bershteyn, M., “Calculation of Multiple Sets of Weights for Weighted Random

Testing,” Proc. of International Test Conference, pp. 1031-1040, 1993.

[Brayton 87] Brayton, R.K., R. Rudell, A. Sangiovanni-Vincentelli, A.R. Wang, “Multi-Level

Logic Optimization and The Rectangular Covering Problem,” Proc. of International Conference

on Computer-Aided Design (ICCAD), pp. 66-69, 1987.

[Brayton 89] Brayton, R.K., and F. Somenzi, “An Exact Minimizer for Boolean Relations,” Proc.

of International Conference on Computer-Aided Design (ICCAD), pp. 316-319, 1989.

[Brglez 85] Brglez, F., and H. Fujiwara, “A Neutral Netlist of 10 Combinational Benchmark

Circuits and a Target Translator in Fortan,” Proc. of International Symposium on Circuits and

Systems, pp. 663-698, 1985.

[Brglez 89] Brglez, F., D. Bryan, and K. Kozminski, “Combinational Profiles of Sequential

Benchmark Circuits,” Proc. of International Symposium on Circuits and Systems,

pp. 1929-1934, 1989.

[Daehn 81] Daehn, W., and J. Muncha, “Hardware Test Pattern Generation for Built-In Testing,”

Proc. of International Test Conference, pp. 110-113, 1981.

[Dandapani 84] Dandapani, R., J. Patel, and J. Abraham, “Design of Test Pattern Generators for

Built-In Test,” Proc. of International Test Conference, pp. 315-319, 1984.

[Dufanza 91] Dufanza, C., and G. Cambon, “LFSR based Deterministic and Pseudo-Random Test

Pattern Generator Structures,” Proc. of EuropeanTest Conference, pp. 27-34, 1991.

[Edirisooriya 92] Edirisooriya, G., and J.P. Robinson, “Design of Low Cost ROM Based Test

Generators,” Proc. of VLSI Test Symposium, pp. 61-66, 1992.

[Eichelberger 83] Eichelberger, E.B., and E. Lindbloom, “Random-Pattern Coverage

Enhancement and Diagnosis for LSSD Logic Self-Test,” IBM Journal of Research and

Development, Vol. 27, No. 3, pp. 265-272, May 1983.

19

[Hartmann 93] Hartmann, J., and G. Kemnitz, “How to Do Weighted Random Testing for BIST,”

Proc. of International Conference on Computer-Aided Design (ICCAD), pp. 568-571, 1993.

[Hellebrand 92] Hellebrand, S., S. Tarnick, and J. Rajski, “Generation of Vector Patterns

Through Reseeding of Multiple-Polynomial Linear Feedback Shift Registers,” Proc. of

International Test Conference, pp. 120-129, 1992.

[Konemann 79] Konemann, B., J. Mucha, and G. Zwiehoff, “Built-in Logic Block Observation

Technique,” Proc. of International Test Conference, pp. 140-150, 1979.

[Konemann 91] Konemann, B., “LFSR-Coded Test Patterns for Scan Designs,” Proc. of

EuropeanTest Conference, pp. 237-242, 1991.

[Krasniewski 89] Krasniewski, A., and S. Pilarski, “Circular Self-Test Path: A Low-Cost BIST

Technique for VLSI Circuits,” IEEE Transactions on Computer-Aided Design, Vol. 8, No. 1,

pp. 46-55, Jan. 1989.

[Lempel 94] Lempel, M., S.K. Gupta, and M.A. Breuer, “Test Embedding with Discrete

Logarithms,” Proc. of VLSI Test Symposium, pp. 74-80, 1994.

[Pan 93] Pan, R., N.A. Touba, and E.J. McCluskey, “The Effect of Fault Dropping on Fault

Simulation Time,” Technical Report 93-5, CRC, Stanford University, Stanford, CA,

Nov. 1993.

[Pomeranz 92] Pomeranz, I., and S.M. Reddy, “3-Weight Pseudo-Random Test Generation

Based on a Deterministic Test Set for Combinational and Sequential Circuits,” IEEE

Transactions on Computer-Aided Design, Vol. 12, No. 7, pp. 1050-1058, Jul. 1993.

[Schnurmann 75] Schnurmann, H.D., E. Lindbloom, and R.G. Carpenter, “The Weighted

Random Test-Pattern Generator,” IEEE Transactions on Computers , Vol. C-24, No. 7,

pp. 695-700, Jul. 1975.

[Touba 94] Touba, N.A., and E.J. McCluskey, “Automated Logic Synthesis of Random Pattern

Testable Circuits,” Proc. of International Test Conference, pp. 174-183, 1994.

[Venkataraman 93] Venkataramann, S., J. Rajski, S. Hellebrand, and S. Tarnick, “An Efficient

BIST Scheme Based on Reseeding of Multiple Polynomial Linear Feedback Shift Registers,”

Proc. of International Conference on Computer-Aided Design (ICCAD), pp. 572-577, 1993.

[Wunderlich 87] Wunderlich, H.-J., “Self-Test Using Unequiprobable Random Patterns,” Proc.

of FTCS-17, pp. 258-263, 1987.

[Wunderlich 88] Wunderlich, H.-J., “Multiple Distributions for Biased Random Test Patterns,”

Proc. of International Test Conference, pp. 236-244, 1988.

