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Abstract

Magnetic resonance imaging (MRI) can present multi-
contrast images of the same anatomical structures, enabling
multi-contrast super-resolution (SR) techniques. Com-
pared with SR reconstruction using a single-contrast, multi-
contrast SR reconstruction is promising to yield SR images
with higher quality by leveraging diverse yet complemen-
tary information embedded in different imaging modali-
ties. However, existing methods still have two shortcom-
ings: (1) they neglect that the multi-contrast features at dif-
ferent scales contain different anatomical details and hence
lack effective mechanisms to match and fuse these features
for better reconstruction; and (2) they are still deficient in
capturing long-range dependencies, which are essential for
the regions with complicated anatomical structures. We
propose a novel network to comprehensively address these
problems by developing a set of innovative Transformer-
empowered multi-scale contextual matching and aggrega-
tion techniques; we call it McMRSR. Firstly, we tame trans-
formers to model long-range dependencies in both refer-
ence and target images. Then, a new multi-scale contex-
tual matching method is proposed to capture corresponding
contexts from reference features at different scales. Further-
more, we introduce a multi-scale aggregation mechanism to
gradually and interactively aggregate multi-scale matched
features for reconstructing the target SR MR image. Ex-
tensive experiments demonstrate that our network outper-
forms state-of-the-art approaches and has great potential
to be applied in clinical practice. Codes are available at
https://github.com/XAIMI-Lab/McMRSR.

*Corresponding author.

(a) Crop area (b) Bicubic (c) MCSR [20]

(d) MINet [8] (e) McMRSR (Ours) (f) HR

Figure 1. Compared with state-of-the-art multi-constrast MRI
SR reconstruction methods: MCSR and MINet; the reconstructed
MRI image by our McMRSR network contains sharper edges,
more visual details, and fewer blurring artifacts.

1. Introduction

Magnetic resonance imaging (MRI) is an essential med-
ical imaging technique in clinical application that provides
clear information on tissue structure and function without
causing ionizing radiation. However, due to the essential
drawbacks of imaging systems [27, 36] and crepitations in
some parts of the body, e.g., the abdomen, it is challenging
to acquire high-resolution (HR) MR images in clinics [9].
In addition, prolonged acquisition procedure may cause dis-
comforts to patients, introduce motion artifacts, and hence
affect image quality [15]. Super-resolution (SR) reconstruc-
tion is a promising way to improve the quality of MR im-
ages without upgrading hardware facilities [11].

MRI can present multi-contrast images with the same
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anatomical structures at different settings, e.g., T1-weighted
images (T1) and T2-weighted images (T2), as well as pro-
ton density weighted images (PD) and fat-suppressed pro-
ton density weighted images (FS-PD), which can provide
complementary information to each other [3, 8]. In clinical
applications, as the repetition time and echo time of T1 are
shorter than those of T2 and the scanning process of PD is
usually shorter than that of FS-PD, T1 can be used to guide
LR T2 for SR reconstruction and PD can help to reconstruct
FS-PD [38]. In this regard, it is promising to leverage an HR
reference image with shorter acquisition time to reconstruct
the modality with longer scanning time from an LR image.

While some effort has been dedicated to multi-contrast
MRI SR reconstruction [8, 20, 31, 43, 46, 47], we still face
challenges in two key steps: (1) how to effectively extract
the features in the reference and target images, and (2) how
to transfer the features of the reference image to the features
of the target image. In recent studies, Zeng et al. [43] em-
ployed CNN to simultaneously perform single- and multi-
contrast SR reconstruction. Lyu et al. [20] applied a GAN-
based progressive network to multi-contrast SR reconstruc-
tion. Feng et al. [8] used multi-stage integration network to
perform multi-contrast MRI SR reconstruction. However,
these methods are still incapable of sufficiently and com-
prehensively address the challenges in the two steps.

There are two main shortcomings. First, most existing
methods harness deep convolutional layers for feature ex-
traction. However, the convolution kernel usually has a
limited receptive field and hence cannot adequately cap-
ture long-range/non-local features, which are important for
MRI SR reconstruction as, for some regions with compli-
cated anatomical structures, faithful reconstruction depends
on not only local relationships but also long-range depen-
dencies. Second, many of existing methods [8, 20] directly
upsample the low-scale image into a high-scale image, and
then perform the extraction and fusion of multi-contrast fea-
tures. However, these methods neglect that multi-contrast
features at different scales contain different anatomical de-
tails and hence can provide broad yet diverse guidance for
target MRI SR reconstruction.

In order to address these two shortcomings, in this pa-
per, we propose a novel and effective network for multi-
contrast MRI SR by taming transformers to extract long-
range dependencies to facilitate more comprehensive con-
textual matching and exploiting multi-contrast multi-scale
features to guide the reconstruction at different scales with
anatomical information extracted from different modalities;
we call the network as McMRSR network. Our contribu-
tions can be summarized as follows.

1. We propose a novel network equipped with
transformer-empowered multi-scale contextual
matching for multi-contrast MRI SR , where Swin
Transformer groups are exploited to extract deep

features at different scales and from different contrasts
to capture more long-range dependencies.

2. We propose multi-scale contextual matching and ag-
gregation schemes to transfer visual contexts from ref-
erence images to target LR MR images at different
scales, allowing the target LR images make full use
of the guidance information to achieve SR images full
of fine details.

3. Our McMRSR outperforms state-of-the-art approaches
on three benchmark datasets: clinical pelvic, clini-
cal brain, and fastMRI, demonstrating its effectiveness
and great potential to be used in clinical practice.

2. Related Work

2.1. Single-Contrast MRI SR

The commonly used interpolation methods [6] are bicu-
bic and b-spline, but they introduce edge blurring and block-
ing artifacts in SR images, making it impossible for clini-
cians to make accurate diagnosis. Traditional SR algorithms
exploit redundancy in the transform domain for MRI SR re-
construction, e.g., iterative deblurring algorithms [12, 33] ,
low rank [29] and dictionary learning [1]. However, when
upsampling factor (UF) becomes large, the quality of the
reconstructed SR images by these methods are not satisfac-
tory.

Following the research in deep learning-based natural
image SR methods [5, 14, 17, 23, 39, 44] and computed to-
mography SR method [40], some excellent MRI SR recon-
struction methods emerged [4,7,15,21,22,25,28,30,32,45].
Qui et al. [28] used a convolutional neural network (CNN)
for knee MRI SR reconstruction. Lyu et al. [21] used
ensemble learning for MRI SR reconstruction. Li et al.
[15] used attention mechanism and cyclic loss in GAN for
pelvic image SR reconstruction. Zhang et al. [45] proposed
squeezed and inspired inference attention network for MR
image SR, and the experimental results showed the effec-
tiveness of the method. However, the above-mentioned al-
gorithms all focus on reconstructing images by only using
one contrast MR images.

2.2. Multi-Contrast MRI SR

The key problem of the multi-contrast MRI SR is how to
get the reference image to better guide the target image in
SR reconstruction. Lyu et al. [20] showed that the fusion of
multi-contrast information in the high-level feature space
yields better results than the combination in the low-level
pixel space. Therefore, we consider multi-contrast feature
matching and aggregation from the deep feature space to
make full use of the information in the reference image.
Feng et al. [8] used a multi-stage feature fusion mecha-
nism for multi-contrast SR, i.e., the reference features of
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Figure 2. The overall architecture of the proposed McMRSR network. STG: Swin Transformer group; RSTB: residual Swin Transformer
block; STL: Swin Transformer layer; MAB: multi-scale aggregation block; SAB: spatial adaptation block; JRFAB: joint residual feature
aggregation block.

the previous stage were fused with the target features to ob-
tain the integrated features used to guide the learning of the
target features in the next stage. Inspired by [8, 19, 20], we
consider fusing features from reference images of different
scales in the upsampling process. Concretely, we perform
multi-scale context matching and aggregation in the deep
feature space and use multi-scale matched reference fea-
tures to guide the recovery of target HR features.

2.3. MRI Transformer

Unlike CNNs, the transformer [37] uses a self-attentive
mechanism to obtain global information between contexts
and has achieved better results in dealing with visual prob-
lems [2, 18, 34]. In addition, there are several studies that
have shown the effectiveness of transformer in MRI re-
construction. Feng et al. [11] used task transformer net-
work to combine MRI reconstruction and SR reconstruc-
tion and proposed the use of multi-modal transformer for
multi-contrast MRI reconstruction [10]. However, the gen-
eral transformer is processed in the form of image patches,
which results in edge pixels not learning the information of
neighboring pixels outside the patches [16]. Swin Trans-
former [18] can be used to solve the above problem, which
combines the advantages of CNN and general transformer.
The method solves the problem of edge pixels in patch by
shifting the window scheme to establish long-range depen-
dencies [16]. Therefore, inspired by [16, 18], we use Swin
Transformer groups consisting of multiple residual Swin
Transformer blocks in McMRSR for deep feature extraction

and multi-contrast features fusion.

3. Methodology
3.1. Overll Architecture

The overall architecture of the proposed McMRSR net-
work is shown in Fig. 2. In order to obtain multi-scale fea-
ture maps for contextual matching, we carry out feature ex-
traction through three branches, i.e., target LR, reference
LR and reference branches. Then, the multi-scale feature
maps generated from the three branches are fed into the
contextual matching module to obtain matched reference
features at different scales. We then feed these matched
features into the multi-scale aggregation blocks (MAB) to
guide the upsampling of the target LR at multiple scales,
finally obtaining the reconstructed target SR image.

3.2. Transformer-empowered Feature Extraction

As mentioned above, the long-range dependencies em-
bedded in the feature maps are essential for efficient and
robust contextual matching. In this regard, we leverage
Swin Transformer group (STG) to extract the deep features
of each branch; it is capable of extracting deep hierarchi-
cal representations with rich long-range dependencies [18]
from both target and reference images, which facilitates the
proposed network to more efficiently and precisely perform
the matching. As shown in Fig. 2, the STG consists of mul-
tiple residual Swin Transformer blocks (RSTB), each em-
ploying multiple Swin Transformer layers (STL) for local
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Figure 3. The process of multi-scale context matching, (a) low-
scale feature context matching, (b) multi-scale feature mapping.

attention and cross-window interaction learning. The RSTB
adopts residual learning to ensure the stability of feature ex-
traction. A 3×3 convolution layer is used for feature en-
hancement after RSTBs and STLs. The feature extraction
process of RSTB can be expressed as:

FRSTB = Conv (FSTL) + Fin , (1)

where FSTL denotes the features generated from STL,
Conv denotes the 3×3 Conv2D, and Fin denotes the in-
put features of RSTB. As shown in Fig. 2, STL consists
of multi-head self-attention blocks and multi-layer percep-
tions. More details about STL can be found in [18]. In our
implementation, we set the number of RSTB and STL as 4
and 6, respectively.

We extract the multi-scale features from the reference
image in a pyramid form, as shown in Fig. 2. We retain the
output of each level of the pyramid and set different stride
in Conv2D to ensure that the output of each layer has a dif-
ferent scale, named as F i

ref . Afterwards, these features are
fed into the multi-scale context matching module for rele-
vant feature mapping. The deep features obtained from LR
branches are named as Ftar−lr and Fref−lr respectively.
Note that the features obtained in LR branches are on the
same scale as the features obtained at the top of the pyra-
mid in the reference branch.

3.3. Multi-Scale Contextual Matching
Efficient and accurate matching of features is at the core

of reference image based SR reconstruction. It is crucial
to leverage the details embedded in the SR reference im-
age to make sure the reconstructed SR can contain suffi-
cient anatomical information for clinical applications. Tra-
ditional matching schemes are incapable of achieving sat-
isfactory results in our task because (1) directly fusing the
features extracted from the multi-contrast images may bring

redundant yet unnecessary features to the target images and
thus reduce the quality of SR images and, (2) owing to the
characteristics of medical images, long-range dependencies
are quite important to offer more context-aware matching
pairs for meaningful SR reconstruction but they are largely
neglected in previous schemes.

In this regard, inspired by [19, 20], we perform multi-
scale context matching before multi-contrast feature fusion,
attempting to obtain the most relevant parts of target and
reference features, i.e., Ftar−lr and Fref−lr. Then it is
mapped to the reference features at different scales, i.e.,
F i

ref . In addition, thanks to the Transformers equipped in
our network, we can implicitly harness the long-range de-
pendencies embedded in the extracted features to enhance
the matching quality. As shown in Fig. 3, our context
matching can be divided into two steps: 1) context matching
of low-scale features Ftar−lr and Fref−lr to obtain index
and similarity maps, and 2) mapping them into multi-scale
features F i

ref . The details are elaborated as follows.
1) Low-scale feature context matching. To reduce the

computational cost of the network, we compute the similar-
ity maps in the target and reference features on the low-scale
features. We first expand Ftar−lr into N non-overlapping
blocks to getRn

tar−lr (1 ≤ n ≤ N ); the patch size is w× h
(where UF=4, w=h=13). Then, we take eachRn

tar−lr patch
center region to calculate the cosine similarity value to find
the center region with the greatest similarity toFref−lr, and
get Rn

ref−lr patch. We crop F i
ref with this center region

to obtain multi-scale similar patches with size of wi × hi,
named as Ri,n

ref . Thus, for each Rn
tar−lr patch, there is a

corresponding most relevantRn
ref−lr andRi,n

ref patch. Note
that as all feature maps are generated from STGs, the long-
range dependencies embedded in them will implicitly af-
fect the matching, enhancing the similarity values among
patches with similar anatomical structures but located sep-
arately. Next, we perform region matching on Rn

tar−lr and
Rn

ref−lr to get index maps In and similarity maps Sn. For
example, we first compute the similarity value between z-th
region of Rn

tar−lr and g-th region of Rn
ref−lr to get snz,g .

Then, we compute the z-th elements of the index map In
and similarity map Sn, as follows:

Inz = argmax
g

snz,g Snz = max
g

snz,g. (2)

Please refer to [19] for details on how to calculate similarity
values.

2) Multi-scale feature mapping. After getting the in-
dex and similarity maps, we have to map them to the Ri,n

ref

patch at different scales to ensure that the reference features
at multiple scales all contain the most similar features to the
target LR, as shown in Fig. 3 (b). Specifically, according to
In, we extract related regionsRi,n

M fromRi,n
ref patch. Then,

we multiply Ri,n
M with the corresponding similarity map
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Sn, and get the weighted features block F i,n
M . Note that

i represents the reference features of different scale sizes.
As the similarity map Sn is obtained on the LR scale, when
i > 1, interpolation is required for Sn. The above process
is formulated as:

F i,n
M = multiply

(
Ri,n

M , up (Sn)
)
, (3)

where multiply and up denote multiplication and bilin-
ear interpolation. Finally, we merge N patches, and obtain
multi-scale matched reference features i.e., F i

M .

3.4. Multi-Scale Feature Aggregation

After obtaining multi-scale matched reference features,
how to fuse them into the target LR features is an important
yet challenging step. For the low-scale targeted LR features,
fusing the matched reference features at different scales in
the upsampling stage can make full use of the matched sim-
ilar information and recover the details in the image to the
maximum. Therefore, inspired by [19], we design MABi

(the number corresponds to Scalei) to help target LR ag-
gregate multi-scale matched reference features, i.e., F i

M .
As shown in Fig. 2, the low-scale target LR features ag-
gregate the features matched at the top of the pyramid, and
then sequentially aggregate the reference features at differ-
ent scales. This approach ensures that the matched features
are fully utilized for the target LR features at each scale dur-
ing upsampling. As shown in Fig. 4, this block consists of a
spatial adaptation block (SAB) and a joint residual feature
aggregation block (JRFAB).

Spatial Adaptation Block. We know that multi-contrast
MR images have different colors and brightnesses for dif-
ferent contrasts, although they mirror the same anatomi-
cal structures. The previous multi-contrast MRI SR meth-
ods [8,20] simply combine the reference and target features
together and then perform the next convolution operation,
which is not the optimal choice. To enhance the consistency
of the matched reference features with the target LR feature
distribution, inspired by [26], we use SAB to remap the dis-
tribution of matched reference features onto the distribution
of traget LR features.

As shown in Fig. 4 (a), the target LR features are upsam-
pled by 2×, and then connected with the matched reference
features F i−1

M . We use stride of 1, 3×3 Conv2D to get the
two parameters α and β. We then figure out the standard de-
viation and mean of the unsampled target LR features, and
calculate Star−lr andMtar−lr to update α and β. Next, we
perform instance normalization [35] on F i−1

M , and the op-
eration is performed with α and β to obtain the transferred
reference features F i−1

M̂
as:

F i−1
M̂

= multiply(F i−1
M , α) + β. (4)

Joint Residual Feature Aggregation Block. After
SAB, we obtain the transferred reference features. In or-
der to make the multi-scale features more fully aggregated,
we consider further refining the high-frequency details in
the transferred reference and target features so as to ensure
that the aggregated features assimilate more anatomical de-
tails. We adopt the JRFAB to divide the aggregation process
into two branches, i.e., transferred reference branch and tar-
get LR branch, as shown in Fig. 4 (b). Transferred refer-
ence branch is used to enhance the high-frequency details
in F i−1

M̂
, which can be formulated as:

F̃ i−1
M̂

= F i−1
M̂

+ConvT
(
Conv

(
F i−1

M̂

)
−Ftar −lr

)
, (5)

where Conv denotes 3×3 Conv2D with stride of 2, and
ConvT denotes 3×3 ConvTranspose2D with stride 2. Sim-
ilarly, the refinement of high-frequency information in the
target LR features can be expressed as:

F̃tar−lr = ConvT
(
Ftar−lr +

(
Ftar −lr − Conv

(
F i−1

M̂

)))
.

(6)
Finally, we concatenate the output of the two branches and
get the output ofMABi−1 after 3×3 Conv2D with stride 1.
Note that when F i

M has the same scale as Ftar−lr, upsam-
pling of LR features is not required in SAB, and Conv2D is
used in JRFAB instead of ConvT2D.
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3.5. Loss Functions

3.5.1 Reconstruction Loss

The L1 pixel loss is utilized as reconstruction loss to im-
prove the overall detail of SR images [24], named as Lrec:

Lrec = E(ISR,IHR) ‖ISR − IHR‖1 , (7)

where ISR denotes reconstructed MR images and IHR de-
notes original HR MR images.

3.5.2 k-space Data Consistency Loss

The reconstructed SR images may lose some frequency do-
main information in the original HR images. We introduce
the k-space data consistency [48] to militate this. Specifi-
cally, KSR and KHR denotes the fast Fourier transform of
ISR and IHR. Then, the sampling judgment is performed
using Rlr. If the coefficients in KSR have been sampled,

they are replaced with those in KHR, otherwise they re-
main unchanged. The final fidelity of the k-space image is
obtained, this process can be expressed as:

KDC [a, b] =

{
KSR[a, b] if (a, b) /∈ Rlr
KSR[a,b]+nKHR[a,b]

1+n if (a, b) ∈ Rlr

, (8)

where Rlr is defined as the LR mask, n ≥ 0 is the noise
level (here n is set to infinity), and [a, b] is the matrix index-
ing operation. We use mean squared error (MSE) to mea-
sure the error between KDC and KHR as:

Ldc = E(KDC ,KHR) ‖KDC −KHR‖2 . (9)

To the end, the full objective of the McMRSR network is
defined as:

Lfull = λrecLrec + λdcLdc. (10)

We set λrec = 1 and λdc = 0.0001 so that the magnitude
of different loss terms can be balanced into similar scales,
making their contributions reasonable.
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Figure 7. When UF=2, quantitative metrics results (mean and standard deviation) of different methods with three datasets. ∗ means
significant difference between the corresponding method and McMRSR method (p <0.01).

4. Experiments
4.1. Datasets and Baselines

Three datasets are utilized to evaluate the proposed
McMRSR network, including two in-house datasets of
pelvic and brain and one public fastMRI [42] dataset, as
shown in Tab. 1. All the complex-valued images are
reshaped into the matrix size of 256×256 by cropping
the k-space. We adopt a commonly used downsampling
treatment, which is implemented in the frequency domain
[20, 21]. Specifically, we first converted the original im-
age of size 256×256 into the k-space. Then, only data in
the central low-frequency region are kept, and all the pe-
ripheral data points are zeroed out. For the down-sampling
factors 2× and 4×, the central 25% and 6.25% data points
are kept. Finally, we used the inverse Fourier transform to
convert the modified data into the image domain to produce
the LR image.

Table 1. Three datasets used to evaluate the proposed McMRSR.

Datasets Pelvic Brain fastMRI [42]
Reference T1 T1 PD
Target T2 T2-FLAIR FS-PD
Train\Valid\Test 1280\320\320 513\125\125 320\80\80

We compared our McMRSR with several recent state-
of-the-art methods, including a single-contrast SR method:
EDSR [17], three multi-contrast SR methods: MCSR [20],
MINet [8], MASA [19], and two transformer-based SR
methods: SwinIR [16], Restormer [41]. Note that we con-
catenate the reference contrast and the target contrast as in-
put for SwinIR and Restormer.

4.2. Implementation Details

Our proposed McMRSR is implemented in PyTorch with
NVIDIA Tesla V100 GPUs (4×16GB). The Adam [13] op-
timizer is adopted for model training with the learning rate
of 10−4 and epochs of 200. The performance of the SR
reconstruction is evaluated by peak-to-noise-ratio (PSNR),
structural similarity index (SSIM), and root mean squared

error (RMSE) metrics. In addition, we use ranksum to
calculate whether there is a significant difference between
McMRSR and other comparison methods (p <0.01). The
upsampling factors are set to 2× and 4×, respectively.

4.3. Qualitative Results

Fig. 5 provides the reconstruction results and the corre-
sponding error maps of pelvic images when the UF=4. The
predominant texture in the error map means worse recon-
struction quality. As can be observed, the reconstructed
SR images from the multi-contrast methods are signifi-
cantly better than those from the single-contrast EDSR ap-
proach, demonstrating the effectiveness of complementary
information embedded in multi-contrast images in the task
of MRSR. More importantly, the SR image reconstructed
by our McMRSR can better recover the uterine part and
eliminate blurring edges, thanks to the proposed contextual
matching and aggregation schemes.

In order to demonstrate the generalization capability and
robustness of our method, we further conducted experi-
ments on brain and fastMRI datasets, and the visual re-
sults are shown in Fig. 6. Similarly, we can see that our
method is able to restore more anatomical details in both
brain and knee datasets. Moreover, it can effectively handle
various noises or artifacts in the images, thanks to the long-
range contextual information captured by the transformers
equipped in our model.

4.4. Quantitative Results

Fig. 7 reports the metrics scores with different datasets
under 2× enlargement. As can be seen, our model yields
the best results in terms of all metrics. We further calculate
the results in terms of all metrics for each method under 4×
enlargement, as shown in Tab. 2. Although it is more chal-
lenging to restore SR images under 4× enlargement than
2×, our method consistently outperforms existing methods
with the best metrics scores.



Table 2. Quantitative metrics results (mean and standard deviation) on different datasets with 4× enlargement scale, in terms of PSNR,
SSIM, and RMSE (×10−2). Bold is the best results. All comparison methods have significant difference with our method (p <0.01).

Dataset Pelvic Brain fastMRI [42]
Metrics PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE

Bicubic 24.38(2.30) 0.76(0.03) 6.22(2.11) 22.30(2.78) 0.74(0.02) 8.08(2.53) 19.15(2.37) 0.64(0.03) 7.23(2.16)
EDSR (CVPR2017) [17] 27.39(1.55) 0.85(0.02) 4.32(1.75) 26.01(2.30) 0.84(0.02) 6.79(2.32) 24.26(1.62) 0.69(0.02) 6.42(2.13)
MCSR (TMI2020) [20] 32.12(1.01) 0.92(0.01) 2.61(1.00) 32.09(1.95) 0.93(0.01) 4.93(1.46) 28.09(1.25) 0.82(0.03) 3.25(1.03)
MINet (MICCAI2021) [8] 34.41(0.85) 0.94(0.01) 1.82(1.27) 34.32(1.08) 0.94(0.01) 3.05(1.75) 30.58(1.38) 0.86(0.02) 2.91(0.99)
MASA (CVPR2021) [19] 34.86(1.14) 0.94(0.02) 1.59(1.46) 34.79(1.06) 0.94(0.01) 2.57(1.62) 30.97(1.14) 0.86(0.03) 2.70(0.90)
SwinIR (ICCV2021) [16] 33.92(1.09) 0.93(0.01) 2.10(1.52) 34.08(1.78) 0.93(0.02) 3.37(1.66) 30.36(1.34) 0.85(0.02) 2.98(1.09)
Restormer (arXiv) [41] 34.91(1.18) 0.94(0.02) 1.48(1.49) 34.73(1.89) 0.94(0.03) 2.54(2.07) 31.09(1.05) 0.86(0.02) 2.59(1.48)
McMRSR (Ours) 36.23(1.07) 0.96(0.01) 1.09(0.89) 36.07(0.92) 0.95(0.01) 1.73(1.08) 33.28(0.97) 0.90(0.02) 1.82(0.85)

Table 3. Ablation study on different variant model under fastMRI dataset with 4× enlargement scale. The best quantitative metrics results
is marked in bold. There has a significant difference between variant models and McMRSR model (p <0.01). RMSE (×10−2).

Variant Modules Metrics
Reference-Based Multi-Scale CM MAB PSNR SSIM RMSE

w/o reference × X X X 29.05(1.24) 0.83(0.02) 3.23(0.97)
w/o multi-scale X × X X 30.24(1.12) 0.85(0.03) 3.04(0.93)
w/o CM X X × X 31.13(1.18) 0.86(0.02) 2.66(0.79)
w/o MAB X X X × 30.56(1.03) 0.85(0.03) 2.95(0.83)
McMRSR X X X X 33.28(0.97) 0.90(0.02) 1.82(0.85)

4.5. Ablation Study

In this section, we demonstrate the effectiveness of the
key components of McMRSR through ablation studies. The
ablation studies are performed using fastMRI dataset with
UF=4. In order to verify if Swin Transformer can effec-
tively extract the deep features of images and better recover
SR images, we design a single-contrast variant model using
Swin Transformer, named as w/o reference. This variant
model does not perform multi-scale context matching and
aggregation of reference features, but only perform upsam-
pling operation on features in target LR. To verify that con-
text matching and aggregation at multi-scale is superior to
single-scale, we design a single-scale variant model, named
as w/o multi-scale. To verify the contribution of context
matching and MAB in the model, we further designed vari-
ant networks without context matching (CM) for reference
features, named as w/o CM and without MAB for upsam-
pling, named as w/o MAB. The quantitative metrics results
of these variant models are shown in Tab. 3.

As can be seen, the results of w/o reference are still bet-
ter than the EDSR (in Tab. 2), indicating that transformers
are able to extract more representative features with rich
long-range dependencies for better reconstruction. More
importantly, quantitative metrics scores of McMRSR are
better than those of other multi-contrast variant models.
This indicates the proposed multi-scale context matching
and aggregation schemes are effective and capable of pro-
viding more reference features than previous approaches.
Our context matching scheme ensures that the reference
features at each scale contain the features most relevant to
the target LR. In addition, MAB drives the target LR to
maximize the use of multi-scale matched reference features
during the upsampling process.

4.6. Limitation and Future Work

Here, we discuss the limitations and potential future
works of this study. First, the LR-HR multi-contrast im-
age pairs need to be co-registered in advance, which is te-
dious and time-consuming. In the future, we shall work
on design a multi-task framework to simultaneously pre-
form registration and SR reconstruction. Second, although
our model achieves state-of-the-art performance, the recon-
structed MR images still contain some artifacts, which may
lead to incorrect diagnoses. In this regard, we shall further
explore the fundamental limits of learning techniques for
SR reconstruction and strive to design better approaches to
tackle these artifacts.

5. Conclusion

We present a novel transformer-empowered multi-scale
contextual matching and aggregation network for multi-
contrast MRI SR reconstruction. Our model can make full
use of information embedded in the reference image and
reconstruct the target image with close quality to the origi-
nal target HR on three representative datasets with both 2×
and 4× upsampling scales. Specifically, our method pro-
vides sufficient complementary information for target LR
features by harnessing contextual matching and aggregat-
ing the reference features at different scales. Experimen-
tal results show that our method is superior to the existing
multi-contrast MRI SR methods and has potential to be used
in clinical practice.
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