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ABSTRACT Traditional shallow machine learning algorithms cannot effectively explore the relationship
between the fault data of oil-immersed transformers, resulting in low fault diagnosis accuracy. This paper
proposes a transformer fault diagnosis method based on Multi-class AdaBoost Algorithms in response
to this problem. First, the AdaBoost algorithm is combined with Support Vector Machines (SVM), The
SVM is enhanced through the AdaBoost algorithm, and the transformer fault data is deeply explored.
Then the dynamic weight is introduced into the Particle Swarm Optimization (PSO); through the real-
time update of the particle inertia weight, the search accuracy and optimization speed of the particle swarm
optimization algorithm is improved, and the improved particle swarm optimization algorithm (IPSO) is used
to optimize the parameters of the SVM. Finally, by analyzing the relationship between the dissolved gas
in the transformer oil and the fault type, the uncoded ratio method forms a new gas group cooperation.
The improved ratio method is constructed as the input feature vector. Simulations based on 117 sets of
IECTC10 standard data and 419 sets of transformer fault data collected in China show that the diagnosis
method proposed in this paper has strong search ability and fast convergence speed and has a significant
improvement in diagnostic accuracy compared with traditional methods.

INDEX TERMS Power transformers, fault diagnosis, support vector machine, improved particle swarm
optimization, DGA feature, multi-class AdaBoost algorithm.

I. INTRODUCTION
The oil-immersed transformer is a vital component of the
power grid, and they are responsible for the essential func-
tions of power transmission and conversion. Once the fault
occurs, it will cause substantial economic losses. Therefore,
transformer fault diagnosis is carried out to find hidden faults
in time and perform maintenance according to the type of
fault. It is of great significance to reduce the loss and harm
caused by transformer failure and improve the stable and reli-
able operation of the power grid [1]. The oil-immersed trans-
former in normal operation produces a minimal amount of
gas due to the ageing and cracking of the insulation and is dis-
solved in the transformer oil. The main components of these
gases are hydrogen (H2), methane (CH4), ethane (C2H4), and
ethylene. (C2H2), acetylene (C2H6), carbon monoxide (CO)
and carbon dioxide (CO2), etc. [2]. When transformers have
different faults, specific gas components will increase rapidly.
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For example, when insulating oil is overheated, the ratio
of CH4 and C2H4 will increase rapidly; during high-energy
discharge, the contents of H2 and C2H2 will increase. This
shows the type and type of transformer faults. The change of
gas composition shows a strong correlation. Dissolved Gas
Analysis (DGA) technology uses non-electrical quantities as
diagnostic indicators, is not affected by electromagnetics, has
good versatility, and is widely used in the online diagnosis of
oil-immersed transformers.

Some experts proposed that The three-ratio [3], Rogers
ratio method [4], Duval triangle method [5], [6], and other
rules formed based on DGA are simple and have played a sig-
nificant role. Still, they all have incomplete state coding and
over-absolute coding limits. Such problems have certain lim-
itations in practical applications [7]. In recent years, with the
continuous development of artificial intelligence technology,
diagnostic methods have also developed from the traditional
IEC three-ratio method and improved three-ratio method to
machine learning and other artificial intelligence methods,
such as neural networks, Support Vector Machines (SVM),
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Fuzzy Algorithms, Bayesian theory, Normal cloud model
[8]–[13], etc. Although these methods have achieved specific
diagnostic effects, they have also solved some of the problems
of traditional algorithm boundaries that are too absolute and
easy to overfit. However, due to transformer failure, The
complex characteristics of the gas production mechanism, the
small amount of sample data, and the low dimensionality
of the sample data. The above-mentioned single machine
learning method cannot fully dig out the connection between
the transformer fault gas data, resulting in its mediocre effect
in transformer fault diagnosis.

In response to this problem, the ensemble learning
AdaBoost [14], [15] algorithm builds multiple weak classi-
fiers through multiple iterations, and affects the weight of
the next-generation classifier samples according to the clas-
sification results, and performs deep mining of the samples
by assigning different weights to the samples, and finally,
weights Voting to produce a strong classifier for transformer
fault diagnosis. Zhou and others [16]–[18] used cloud diagno-
sis model, decision tree algorithm, extreme learning machine,
etc., as weak classifiers, and then used AdaBoost algorithm
for transformer fault diagnosis. Although the AdaBoost algo-
rithm increases the diversity of samples, due to the small
amount of fault samples of large oil-immersed transform-
ers, the accuracy of cloud models, decision trees and other
algorithms is related to the number of training samples,
which restricts the further fault diagnosis performance. JI [19]
proposes a BP-PSO-AdaBoost algorithm, which can effec-
tively improve neural networks’ accuracy and convergence
speed. The SVM classifier is made up of a small number
of support vectors. Its complexity depends on the number
of support vectors rather than the dimension of the sample
space. Even if the sample size is small, it can have a good
classification effect, so it is widely used in transformer fault
data classification. Application [20]. However, the setting
of SVM hyperparameters requires prior empirical knowl-
edge, and the optimal hyperparameter selection is still an
open issue in related research fields. Zhang [8] used the
improved krill algorithm and genetic algorithm to set the
hyperparameters of SVM and achieved good results. Still,
the optimization efficiency and accuracy of hyperparameters
need to be improved. On this basis, this paper proposes an
Improved Particle Swarm Optimization (IPSO) to optimize
SVM core parameters and penalty factors. It combines the
AdaBoost algorithm with SVM to obtain multiple IPSO-
SVM weak classifiers through iteration, And other conduct
in-depth mining of transformer fault data to improve the
classification effect of SVM.

II. OIL-IMMERSED TRANSFORMER FAULT DIAGNOSIS
MODEL
AdaBoost and SVM algorithms are machine learning algo-
rithms suitable for classification. SVM is used as a weak clas-
sifier to pre-classify transformer fault data. However, it isn’t
easy to have a good effect due to transformer fault data’s
complex gas generation mechanism. We use the AdaBoost

algorithm to enhance SVM. The basic principle of the
AdaBoost algorithm is to train multiple weak classifiers and
assign a weight to each classifier. The classification results
of all classifiers are combined by weighting to form A strong
classifier. The key to this algorithm is how to train and assign
weights to each weak classifier fully.

A. ADABOOST ALGORITHM
AdaBoost trains the first weak classifier by assigning initial
weights to the training samples. According to the classifica-
tion results of the weak classifier samples after training, the
sample weights are dynamically updated to make misclassi-
fied samples receive more attention, and then based on the
overall weak classifier The test error is used to adjust the
weight of the weak classifier, so as to change the training
process of the latter classifier, and train all the classifiers
one by one, and obtain the strong classifier according to the
final weight of the weak classifier. For a binary classifica-
tion model with T weak classifiers, when the number of
training samples is n, the strong classifier obtained by the
integration is:

F (x) = sign (f (x)) = sign

(
T∑
t=1

αtht (x)

)
(1)

In the formula, αt is the weight of the weak classifier, and
ht (x) is the classification result of the weak classifier.

B. WEAK CLASSIFIER MODEL BASED ON SVM
ALGORITHM
The sample size of transformer fault data is small, the fault
gas collection is complex, and the complicated gas produc-
tion mechanism. Multi-layer machine learning algorithms
such as neural networks have achieved good results in many
fields. Still they require a large amount of sample data and
are unsuitable for transformers fault diagnosis, and SVM
has a good classification effect on small samples of multi-
dimensional data. The AdaBoost algorithm model based on
the SVM weak classifier is shown in Figure 1.

Standard SVM is a typical two-class classifier, and
transformer fault diagnosis is a linear and inseparable multi-
classification problem, so the nonlinear, multi-class trans-
formation of SVM is required. SVM hopes to find a
hyperplane that can maximize classification. While ensuring
the correct classification, it also ensures that each sample
point can be far enough away from the hyperplane. For
this reason, the objective function of the SVM nonlinear
model is:

minφ (ω, ξ) =
1
2
‖ω‖2 + c

l∑
i=1

ξi

s.t.

{
yi
[
ωTϕ (xi)+ λ

]
≥ 1− ξi

ξi ≥ 0, i = 1, 2, . . . , l
(2)
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FIGURE 1. AdaBoost model.

where ξi is the relaxation vector and c is the penalty factor,
the Lagrange function is as follows:

L (ω, λ, ξ, α, β) = φ (ω, ξ)−
l∑
i=1

αi

×

{
yi
[
ωTϕ (xi)+ λ

]
− 1+ ξi

}
−

l∑
i=1

βiξi (3)

The decision function of SVM is as follows:

f (x) = sign

[
l∑
i=1

αiyiK (x, xi)+ λ

]
(4)

where K (x, xi) is the kernel function. The commonly used
kernel functions are radial basis function (RBF), polynomial
function and so on. TheRBF function only needs to determine
one parameter, which is conducive to optimising of param-
eters. Therefore, if RBF function is selected as the kernel
function of SVM, the following results can be obtained:

K (x, xi) = exp
(
−g ‖x − xi‖2

)
, g > 0 (5)

There are five types of transformer fault, and SVM is only
a two classification classifier, so it is necessary to extend
SVM to multi-classification. Considering the complexity and
diversity of transformer fault data, it is difficult to distin-
guish all faults by one classification. Multiple classifications
are needed to distinguish all kinds of faults accurately. The
expansion mode of multi-classification is shown in Figure 2.

C. FAULT DIAGNOSIS MODEL OF OIL IMMERSED
TRANSFORMER BASED ON BASIC ON
MULTI-CLASS ADABOOST
In the AdaBoost model, each sample is given the same
initial weight and iterated many times. According to the
error of each weak classifier, the weight coefficient of the
weak classifier and the weight of the test sample is dynami-
cally adjusted to increase the weight proportion of the clas-
sification error samples. The traditional AdaBoost model

FIGURE 2. Multi-class extension.

mainly gives weight to the two classification samples. Due to
the diversity of transformer faults, the traditional AdaBoost
model is improved, and a multi- classification AdaBoost
model is proposed to adapt to transformer faults.

Set the transformer fault type as k , after training the
t-th weak classifier SVMt , first verify the classifier to ensure
that the classification accuracy can meet the requirements of
AdaBoost, and judge whether the sum of the weights of all
samples with correct classification in each type of fault is
greater than the sum of the weights of other types of fault
samples.

η [SVMt (xi) = j] ≥ ∀η [SVMt (xi) 6= j] (6)

When RBF is selected as the kernel function, only two
parameters of SVM need to be determined at this time, the
penalty factor c in formula (3) and the kernel parameter g in
formula (6).

Where η is the sum of weights and η is:

η =

n∑
i=1

Dt (i) (7)

where Dt (i) is the weight of training samples in the
i-generation SVM. If formula (7) is not true, then retrain the
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weak classifier. If formula (7) is true, Calculate the classifi-
cation error rate of SVMt to training set St :

errt =
n∑
i=1

Dit I [SVMt (xi) 6= yi] (8)

where I [∗] is the logical value, and then update the weak
classifier weight αt according to the errt .

αt = ln
1− errt
errt

+ ln (K − 1) (9)

Then the next-generation training sample weightDt+1 (i) can
be updated as:

Dt+1 (i) =
Dt (i)
Zt
· exp (αt · I [SVMt (xi) 6= yi]) (10)

where Zt is the normalization factor, which can be calculated
as:

Zt =
n∑
i=1

Dt (i) · exp (αt · I [SVMt (xi) 6= yi]) (11)

According to formula 11, is adjusted by, so in the weak
classifier, the wrongly classified sample will have a higher
sample weight in the round of iterations. A weighted vote
is performed on the results of each weak classifier, and the
strong classifier is integrated according to the weight of the
weak classifier. The final classification result is:

F (x) = argmaxy∈Y
T∑
t=1

αt · [SVMt (xi) = y] (12)

The specific algorithm flow is shown in Figure 3:

III. PARAMETER OPTIMIZATION OF WEAK CLASSIFIER
BASED ON IMPROVED PARTICLE SWARM ALGORITHM
The parameter selection of SVM is related to its classifi-
cation accuracy. Selecting the appropriate super parameters
in an extensive range is the core of SVM model optimiza-
tion. In this paper, an Improved Particle Swarm Optimiza-
tion (IPSO) algorithm is proposed to optimize the parameters
of SVM to obtain the IPSO-SVM model.

In the traditional particle swarm optimization algorithm,
each particle searches the optimal solution individually in
the optimization space, recorded as the individual extremum
and shared with other particles in the whole particle swarm.
The individual extremum with the optimal value is regarded
as the current global optimal solution of the whole particle
swarm. In the process of optimization, the search ability of
the algorithm is unstable, and it is easy to fall into the local
optimum. It often needs multiple iterations to find the optimal
solution. Its search ability depends on the inertia weight. The
larger the value is, the stronger the global search ability is, and
the smaller the value is, the stronger the local search ability
is. The quantitative inertia weight of the traditional particle
swarm optimization algorithm is improved to time-varying
inertia weight, and the inertia weight is linearly reduced
from the maximum value to the minimum value by using the

FIGURE 3. Transformer fault diagnosis model.

linearly varying weight, so as to facilitate the accurate search
of the current search area and facilitate the convergence of the
algorithm.

For the traditional particle swarm optimization algorithm,
in each iteration, the particle updates itself through two
extrema Pbest and gbest , and the velocity and position of the
particle can be self updated as follows:

vi = ω × vi + c1 × rand()×
(
pbesti − xi

)
+ c2 × rand()

×
(
gbesti − xi

)
(13)

xi = xi + vi (14)

where i = 1, 2, · · · , n is the number of particle swarm,
vi is the speed of the i-th particle, xi is the position of the
i-th particle, c1, c2 are the learning factor, which determines
the search ability of particles, rand() is a random number
between 0-1, ω is the inertia weight, which can be updated
as follows:

ω = ωmax −
m ∗ (ωmax − ωmin)

mmax
(15)

where m is the number of iterations. According to the for-
mula, with the increase of the number of iterations m, the
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FIGURE 4. SVM weak classifier model based on IPSO.

inertia weight ω will decrease. With the increase of the
number of iterations, the search center of ipso algorithm will
change from global search to accurate search.

The classification ability of the weak classifier RBF-SVM
depends on the penalty factor c and the kernel parameter g.
The penalty factor c is the SVM’s tolerance to the relaxation
vector. If the value is too small, the trainer will give up the
classification of the relaxation vector and pay more attention
to the whole sample. If the value is too large, it will pay
too much attention to the relaxation vector and lead to the
wrong classification of other samples. The smaller the kernel
parameter g is, the more detailed the classification will be,
that is to say, the easier it will lead to overfitting; The larger
the size, the more careless the classification will be, making
it impossible to distinguish the data. In this paper, the param-
eters of RBF-SVM are optimized by the IPSO algorithm,
and the IPSO-SVM weak classifier model is established,
as shown in Figure 4.

IV. FEATURE VECTOR SELECTION
DGA data of oil immersed transformer includes H2, CH4,
C2H6, C2H4, C2H2, CO and CO2. In order to reduce the
influence of data error on diagnosis accuracy, the selection of
eigenvector is also very important. According to the power
grid equipment condition based maintenance regulations
and field experience, the characteristic gases produced by

overheating fault are CH4 and C2H6, the sum of which gen-
erally accounts for more than 80% of the total hydrocarbon
[21], [22]. With the increase of fault point temperature, the
proportion of C2H6 will increase. Generally, C2H2 will not be
produced when the temperature is below 200 ◦C [23]. When
the temperature is below 500 ◦C, the content of C2H2 does
not exceed 2% of the total hydrocarbon. When the temper-
ature is seriously overheated, the content of C2H2 does not
exceed 6%. When the overheat fault involves solid insulating
materials, in addition to the above gases, a lot of CO and CO2
are also produced [24], so CO and CO2 have a great influence
on the overheat fault diagnosis results. High energy discharge
fault gas production speed is fast, gas volume is large, fault
characteristic gas is mainly C2H2 and H2, followed by a large
number of C2H6 and CH4 [25], C2H2 generally accounts for
20-70% of the total hydrocarbon, H2 accounts for 30-90%,
in most cases, C2H6 content is higher than CH4. Due to the
low discharge energy, the total hydrocarbon content of low-
energy discharge fault is generally low, and its main com-
ponent is H2, followed by CH4. When the discharge energy
density increases, C2H2 will also be produced, but the propor-
tion of C2H2 in total hydrocarbon is generally less than 2%,
which is the main difference between high-energy discharge
fault and low-energy discharge fault [25]. According to
DL/T 722-2000 and IEC 60599-2015, the internal faults of
transformers are divided into five types: medium and low
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temperature overheating (T1-T2), high temperature overheat-
ing (T3), low energy discharge (D1), high energy discharge
(D2) and partial discharge (PD). Based on the collected
419 sets of domestic transformer fault data, the three-
dimensional visualization of fault types and some DGA
indexes is drawn, as shown in Figure 5. Fault types 1-5
in the figure represent PD, D1, D2, T1, T2 and T3 faults
respectively. It can be seen from the figure that the H2
concentration of most discharge faults is very high, while
the distribution of thermal faults in the visualization dia-
gram is relatively scattered, and there is no obvious rule.
The discharge fault can be judged by the H2 concentration,
and the CH4 concentration produced by partial discharge
is relatively low. Similarly, by drawing three-dimensional
visualization distribution maps of other DGA indexes, the
concentrations of C2H6 and C2H2 can effectively distinguish
high-energy discharge and low-energy discharge faults, the
temperature range of thermal fault can be determined by
C2H2 concentration, the concentration of C2H4 is higher in
high-energy discharge and low-energy discharge faults, but
the contents of partial discharge and thermal fault are lower.
Among them, five kinds of gases H2, CH4, C2H6, C2H4 and
C2H2 are selected as eigenvectors, and their gas concentra-
tions are recorded as C(H2), C(CH4), C(C2H6), C(C2H4) and
C(C2H2).

FIGURE 5. Domestic data visualization.

Because of the large difference of the gas production,
it may affect the accuracy of fault diagnosis directly as
the model input, so it is necessary to normalize the data
and take the normalized gas concentration as the primary
feature.

Although there is a certain relationship between different
types of gas, only using the above normalized gas volume
concentration as the data feature can not obtain accurate fault
diagnosis results. In the field of DGA fault diagnosis, gas
fraction ratio is generally used to represent more extensive
feature information. Through a large number of experiments
and literature review, the traditional ratiomethod is improved,
and a new ratio method is proposed. The traditional ratio
method usually needs coding, while the new ratio method

only needs gas concentration ratio. The relationship between
characteristics and fault types can be better reflected by the
percentage of key gas in total gas or total hydrocarbon con-
centration, The above gases were combined in nine ratios.
The DGA eigenvectors based on the new ratio method are
shown in Table 1. Among them, features 1-3 are the three
ratios of the three ratio method, and features 4-7 are the ratios
of four kinds of carbonaceous gases CH4, C2H2, C2H4 and
C2H6 to total hydrocarbon respectively. The ratio of single
gas to total hydrocarbon concentration can better reflect the
relationship between various fault types. For example, the
percentage content of C2H2 can determine which overheating
fault the transformer is in, In feature 8-9, C2H4 concentration
and CH4 concentration can effectively distinguish partial
discharge and other two kinds of discharge faults. The con-
centration of H2 is the key to distinguish all discharge faults,
Let Cn (CxHx) be the total concentration of all carbonaceous
gases.

Cn (CxHx) = Cn (CH4)+ Cn (C2H2)+ Cn (C2H4)

+Cn (C2H6) (16)

The first part of the simulation experiment first introduces
the type of transformer data used in the simulation and its
source; The second part uses the global search algorithm and
the IPSO algorithm to optimize the hyperparameters of the
SVM. The purpose is to better exert the classification ability
of the weak classifier SVM, and compare the GreyWolf Opti-
mizer(GWO) and PSOAlgorithm illustrates the superiority of
IPSO algorithm; The third part compares different input fea-
ture vectors to illustrate the superiority of the improved ratio
method; the fourth part combines the AdaBoost algorithm
with the SVM optimized by the IPSO algorithm to the final
classificationmodel and compares it with themodel proposed
in the literature.

A. EXAMPLE SAMPLE
Transformer faults are divided into internal faults and exter-
nal faults. The article mainly studies the five types of
internal faults defined in DL/T 722-2000 guidelines and
IEC 60599-2015. The sample of the calculation example is
117 sets of IECTC10 standard data and 419 sets of trans-
former fault data collected in China. During the simulation,
the 117 sets of IECTC10 fault data are divided into two parts,
including 87 training samples and 30 test samples, which
are used to test and compare AdaBoost The classification
ability and fault diagnosis performance of the algorithm, and
the generalization performance of the diagnosis algorithm is
verified through 419 sets of transformer fault data in China.
Table 2 shows the distribution of fault types in the IEC TC
10 standard data set and the domestic 419 sets of transformer
fault data sets.

B. SVM PRARMETER OPTIMIZATION
In order to more clearly show the impact of penalty fac-
tors c and kernel parameters g on the accuracy of SVM
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TABLE 1. DGA characteristics based on improved ratio method.

TABLE 2. Sample data.

FIGURE 6. Global search algorithm of SVM in preliminary parameters optimization.

and reduce the optimization range of the IPSO algorithm,
a global search algorithm is used to initially optimize the
range in which the hyperparameters may have optimal solu-
tions, and the penalty factors and kernel parameters are used
for preliminary optimization. The logarithmic form of is the
coordinate axis, and the curve plane and contour map of
the model diagnosis accuracy rate at different parameters
are shown in Figure 6. In the figure, the deeper the yel-
low, the higher the SVM model diagnosis accuracy rate,
and the optimization of SVM parameters The better the
effect, the darker the purple, the lower the diagnostic accuracy
of SVM.

Based on Figure 6, it can be seen that the training effect
is generally better when the penalty factor is [23, 210], and
the optimal value of the kernel parameter is [2−5, 25]. This
range is used as the boundary of the IPSO algorithm for
optimization.

The proposed IPSO algorithm is used to accurately opti-
mize the SVM parameters. The parameters of the IPSO
algorithm during simulation are initialized as follows: the
population size is 50, the maximum number of iterations
is 50, the learning factor C1 is 1.5, C2 is 1.7, and the ωmax
is 0.9. The ωmin is 0.4. The curve of the number of iterations
and fitness is shown in Figure 7.

It can be seen fromFigure 7 that in the initial iteration of the
IPSO algorithm, the inertia weight takes the maximum value.
At this time, the search center of gravity is searching for the
whole world. With the increase of the number of iterations,
the weight will decrease, and the local optimization ability
will be gradually strengthened to benefit the algorithm. The
search accuracy and convergence speed. The weight of the
algorithm changes constantly in the iterative process, realizes
self-update, and verifies the performance of the improved
particle swarm algorithm.
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FIGURE 7. Ipso parameter optimization.

By comparing with the optimized SVMof GWO algorithm
and PSO algorithm proposed by others, the result is shown
in Figure 9. And use five-fold cross-validation to further
increase the credibility of the results.

FIGURE 8. Different optimization algorithms comparison.

It can be seen from Figure 8 that the accuracy of the three
algorithms are similar. Among them, The traditional PSO has
the lowest diagnosis accuracy and convergence speed among
the three algorithms. The IPSO algorithm has the highest
accuracy, and the convergence is relatively fast, and the most
stable. Therefore, it can be concluded that the IPSO algorithm
is much better than the PSO algorithm.

C. DGA FEATUREVECTOR OPTIMIZATION SIMULATION
From the extensive analysis in the third chapter, it can be
seen that the direct fault diagnosis of the DGA raw data
will lead to the low diagnosis accuracy of the model. This
article compares the influence of different feature vectors on
the accuracy of fault diagnosis, and first divides the input
feature vectors into three types: (1) DGA full data, including

TABLE 3. AdaBoost algorithm validation accuracy.

H2,CH4,C2H2,C2H6,C2H4,CO,CO2, and total hydrocar-
bons; (2) the three-ratio characteristic quantity is composed
of CH4/H2, C2H4/C2H6 and C2H2/C2H4; (3) the improved
ratio method proposed in this article. Then, the fault diagnosis
method based on the IPSO-SVM multi-class AdaBoost pro-
posed in this paper is used as a model, and the fault diagnosis
accuracy curve with three different input feature vectors is
shown in Figure 10. Among them, the green line, red line,
and blue line respectively represent the diagnosis accuracy
rate of the improved ratio method, the three ratio method and
the DGA gas as the input feature vector.

FIGURE 9. Comparison of different feature.

Figure 9 shows that with the improved ratio method as
the input feature vector, the error is minimized and sta-
bilized after several iterations of the algorithm. Compared
with the traditional three ratio method and the DGA feature
gas feature vector, the diagnosis is more accurate and the
number of iterations is also greater. Less, the convergence
speed is faster and more stable. The correct rate of trans-
former fault diagnosis obtained by the threemethods is shown
in Table 3.

It can be seen from Table 3 that the accuracy rate of
the improved ratio method is 30% higher than that of the
DGA full data and 16.7% higher than the three ratio method,
indicating that the improved ratio method can significantly
improve the accuracy of transformer fault diagnosis and
has better stability for fault diagnosis, And can effectively
reduce the interference caused by different data, verifying the
effectiveness of the proposed improved ratio method as the
input feature vector.
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FIGURE 10. The diagnosis results of each fault model.

TABLE 4. Classification accuracy of different algorithms.

D. FAULT DIAGNOSIS SIMULATION BASED ON IPASO-SVM
MULTI-CLASS ADABOOST
Select the hyperparameters according to the optimization
method in Section 4.2, set the number of weak classifiers
to 50, and use the improved ratio method as the feature
vector to train the IPSO-SVM multi-class AdaBoost model.
At the same time, in order to verify the performance of
the proposed method, based on the same improved ratio
The method is the feature vector, and the decision tree,

IPSO-SVM, AdaBoost-DT, PSO-SVM algorithm is used for
fault diagnosis, and the diagnosis result is shown in Figure 10.
The ordinates 1-5 in the figure indicate PD, D1, D2, T1\T2,
and T3 failures respectively.

It can be seen from Figure 10 that the overall diagnosis
effect of the AdaBoost model based on the SVM classifier
is better than the diagnosis effect based on the decision tree
model. The AdaBoost model based on the SVM classifier has
a poor classification effect on high temperature faults and low
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energy discharge faults. The AdaBoost model is less effective
in classifying high-energy discharges and partial discharges.
Summarizing the correct fault diagnosis of the four methods,
it can be seen that after the decision tree is enhanced by
the AdaBoost algorithm, its correct rate is 86.7%, which is
an increase of 20% compared with the 66.7% before the
enhancement. After the IPSO-SVM algorithm proposed in
this paper is enhanced by themulti-class AdaBoost algorithm,
its diagnostic accuracy is up to 90%, which is 6.7% higher
than the pure IPSO-SVM algorithm, and 3.3% higher than
the traditional version of AdaBoost-DT and AdaBoost-PSO-
SVM. It shows that the multi-class AdaBoost model based
on IPSO-SVM has better fault diagnosis performance. At the
same time, it can also be seen that the performance of the
IPSO algorithm is better than that of the PSO algorithm.

Using the IPSO-SVM-based multi-class AdaBoost algo-
rithm proposed in this article, the five-fold cross-validation
method is used to simulate and analyze the collected domes-
tic 419 sets of transformer fault data. and the same 419 sets
are used The transformer fault data is compared with the
AdaBoost-PSO-SVM algorithm, and the diagnosis results
and correct rates of different fault types are shown in
Figure 11.

FIGURE 11. Generalization testing.

It can be seen from Figure 11 that compared with the
AdaBoost-PSO-SVM algorithm, the enhanced AdaBoost-
IPSO-SVM model has significantly improved the diagnostic
accuracy of the five types of faults, and its diagnostic accu-
racy of the domestic transformer fault data is 87.1%, which is
similar to the IEC TC 10 fault data, which again verifies the
reliability and validity of the multi-class AdaBoost model of
IPSO-SVM proposed in this paper.

V. SUMMARIZE
In this paper, the AdaBoost algorithm is used to enhance
the improved particle swarm optimization (IPSO) optimized

support vector machine (SVM) transformer fault diagnosis
model.

And by analyzing the relationship between the dissolved
gas in the transformer oil and the fault type, applying the
uncoded ratio method to form a new gas combination as the
characteristic parameters of the fault model, and establishing
an improved ratio method as the input feature vector, through
the IEC TC 10 data set Perform fault diagnosis with domestic
transformer data.

(1) The IPSO-SVM fault diagnosis model enhanced by the
AdaBoost algorithm can effectively and accurately identify
the type of transformer fault. Compared with the traditional
SVM and AdaBoost algorithm, it shows higher classification
accuracy.

(2) The traditional PSO algorithm is easy to fall into the
phenomenon of local optimum and premature convergence
during the optimization process. By introducing linearly
decreasing weights to replace the quantitative weights of the
traditional PSO algorithm, the search performance of the
PSO algorithm is enhanced. By comparing the traditional
PSO algorithm, the IPSO algorithm shows its stronger search
ability.

(3) Through the analysis of the DGA fault data, the
improved ratio method proposed has a significant improve-
ment in accuracy compared with the traditional ratio method
and the DGA fault gas data.
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