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Abstract

Part model is one of the key factors to high performance

person re-identification (ReID) task. In recent studies, there

are mainly two streams for part model. The first one is to

divide a person image into several fixed parts to obtain their

local information, but it may cause performance degrada-

tion in case of misalignment. The other one is to explore

external resources like pose estimation or human parsing to

locate local parts, but it costs extra storage and computa-

tion. Inspired by recent successful transformers on spatial

similarity modeling, we propose a novel Adaptive Part Di-

vision (APD) model to better extract local features. More

specifically, APD mainly consists of two crucial modules:

a Transformer-based Part Merge (TPM) module and a Part

Mask Generation (PMG) module. In particular, TPM first

adaptively assigns the patch tokens of the same semantic

object to the identical part. Then, PMG takes these iden-

tical parts together and generates several non-overlapping

masks for robust part division. We have conducted extensive

evaluations on four popular benchmarks, i.e. Market-1501,

CUHK03, DukeMTMC-ReID and MSMT17, and the exper-

imental results show that our proposed method achieves the

state-of-the-art performance.

1. Introduction

Person re-identification (ReID) [40] has been an active

research topic in computer vision and machine learning

techniques, which is an essential component in some im-

portant applications such as intelligent visual surveillance

(IVS) and driverless car. The aim of ReID is to identify

whether an individual has already been observed over a

camera in a network and the task is very challenging due to

the complicated environment (e.g. illumination, pose and

partial occlusion) and even different camera views.

Thanks to the recent development of the Convolutional

Neural Network (CNN) [14], the part based representations

[26, 29] for ReID which can capture finer information ex-
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Figure 1: Three different methods for local feature extrac-

tion. a) Manually Designed Masks. b) Pose-Driven Masks.

c) Our Transformer Masks.

hibit competitive performance and some typical ReID appli-

cations of this kind have been deployed in practice. How-

ever, the performance of ReID will probably be affected by

the preceding step pedestrian detection, the study on im-

proving robustness is necessary.

Generally speaking, for ReID task the person will first be

cropped from the image with the bounding box provided by

the pedestrian detecter, and the bounding boxes are assumed

to be precise and highly-aligned. Despite the recent great

progress, detected results can not always be promising and

there might be some biases in scale and shift, which will

lead to misalignment.

For the part-based model in Figure 1 (a), images will be
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divided by fixed masks. Since different pedestrian images

share the same masks, parts will be divided by mistake if

there is misalignment. In this way, the part-level features

which contain foot information will be compared with fea-

tures derived from thigh in the other image, and this will

lead to failure matching. A direct and effective way to solve

this problem is to use external resources like pose estima-

tion [23] or human parsing [13], which is shown in Fig-

ure 1 (b). Pedestrian landmarks predicted by a pose esti-

mation network are used to help extract local features by

pose-aware pooling. However, the external network will

increase the training and inference time significantly, and

in some cases the pose estimation methods are even more

time-consuming than person ReID itself.

In this paper, we propose a novel Adaptive Part Divi-

sion model to address above issues, which is shown in Fig-

ure 1 (c). Instead of setting the part masks manually, our

proposed APD can produce the masks adaptively accord-

ing to the input image. Firstly, the mask values are com-

puted adaptively in Transformer-based Part Merge module

according to the input image, which is expected to be ro-

bust to scale and shift variations. Secondly, in order to

make the extracted features more discriminative, Part Mask

Generation module also introduce competitive mechanism

to assure the diversity among different masks. Thirdly, the

transformer masks are derived from the existing feature ex-

traction backbone, in this way it will not bring too much

extra computation. Our contributions can be summarized

as follows:

1) We have proposed a novel Adaptive Part Division

(APD) model for part-based ReID feature extraction.

Unlike traditional methods which use manually de-

signed masks, the proposed APD containing TPM and

PMG still has the chance to capture the corresponding

areas of two different samples even when they meet

scale and shift misalignments.

2) APD is generally applicable and model-agnostic. It

can easily be applied to most of the existing popular

part-based architectures, such as PCB [26] and MGN

[29].

3) Extensive experimental results demonstrate the supe-

riority of the proposed method over a wide range of

the state-of-the-art ReID models on four large bench-

marks, i.e. Market-1501 [39], DukeMTMC-ReID

[21, 42], CUHK03-NP [16, 43] and MSMT17 [31].

The rest part of this paper is organized as follows. Sec-

tion 2 will introduce the related works in person ReID. Sec-

tion 3 is about the design details of APD. The extensive ex-

periments have been conducted and the results will be dis-

cussed in Section 4. Finally in Section 5 the conclusion will

be drawn.

2. Related Work

Feature extraction is the key step for person ReID, and

the aim is to obtain discriminative features. Inspired by the

success of CNN on image classification, deep global-based

methods exhibit some new insights in this direction. A sim-

ple way [3] to extract global features is applying CNN to

pedestrian images, and the relations among different sam-

ples can be further explored to enhance the discriminabil-

ity. BagOfTricks [20] is also a typical work of this kind,

which improves the performance by combining a collection

of training tricks. However, in some complex scenarios the

performance will probably be affected from large variations

like pose, occlusion and background clutters.

2.1. Part model for ReID

Part-based methods, which are designed to focus on lo-

cal regions and capture fine-grained cues, are expected to

be more effective and robust to these challenges. Meth-

ods such as [16, 17, 26, 29, 38, 9, 15, 28] generate the fi-

nal representations with specific predefined semantic parts,

and the fused features usually perform better than the orig-

inal global counterparts. However, these methods still have

some shortcomings. When used in the real scenes, the pre-

defined rigid body parts will not be robust to large pose de-

formations and complex view variations.

To solve this problem, an effective method is using ex-

ternal resources. SPReID [13] employs human semantic

parsing network to harness local visual cues. Semantic seg-

mentation results not only help to align each human part,

but also reduce the disturbance of complex background. In

PDC model [23], pose transformation network is used to do

affine transform for cropped part regions. The learned local

representations will hence focus on the transformed regions.

PABR [24] adopts a simple but effective solution. Features

from OpenPose [1] and GoogleNet [27] are aggregated by

bilinear pooling [19] to get final part-aligned features.

Methods with external resources mentioned above

achieve great success, but all of them can not be avoided to

import extra networks int both training and testing stage. In

this paper we propose an end-to-end learning framework, on

which the local feature extraction of different salient body

parts can be implemented with a novel Adaptive Part Divi-

sion model. Different from the existing methods, our pro-

posal will not involve any models from extra resources.

2.2. Transformer and Attention model for ReID

Recently, attention mechanism is a popular architectural

in neural networks, which improves the performance in both

natural language processing and computer vision. In recent

successful Vision Transformer, it also plays a key role. In

person ReID, transformer and attention model is used to

deal with misalignment problem. HA-CNN [18] combines
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Figure 2: Overview of our Framework.

both soft attention and hard attention to optimise misaligned

person images. IANet [12] proposes two attention mecha-

nism named SIA (Spatial Interaction-and-Aggregation) and

CIA (Channel Interaction-and-Aggregation) to model the

large variations in person pose and scale. ABD-Net [4]

adopts similar methods and proposes orthogonality regu-

larization to both hidden features and weights. TransReID

[11] is a pure transformer-based ReID framework, which

encodes one image as a sequence of patches and build a

transformer-based strong baseline. AAformer [45] adopts

the ”part tokens” to learn the part representations and inte-

grates the part alignment into the self-attention. HAT [30]

aggregate multi-scale features to better fuse semantic and

detail information for image-based person ReID. Instead of

producing attention feature maps like previous researches,

we are more interested in generating discriminative masks

and features at same time, which could produce better local

features.

3. Proposed Method

In this section, we will introduce the technical details of

the proposed Adaptive Part Division (APD) model and the

flowchart can be found in Figure 2 and Figure 3. There

are mainly two innovations on APD and they are fused into

a single framework. The first part is Transformer-based

Part Merge (TPM) module and will be described in Sec-

tion 3.1. It is expected to enhance the representation and

make it robust to scale and shift variations. The second part

is Part Mask Generation (PMG) module, which is designed

to avoid generate highly similar masks. Different masks are

supposed to focus on different key regions. The details will

be introduced in Section 3.2.

3.1. Transformerbased Part Merge Module

The main disadvantage for manual division is that both

mask size and mask position are fixed, and as we analyze

before the ReID performance will probably be affected by

detection results. During training, transformer masks are

expected to locate serval informative and salient regions ac-

cording to the input images meanwhile the feature map will

be refined and updated iteratively according to structural

information. In order to well generate the discriminative

transformer masks, it is important to provide discrimina-

tive feature maps. We adopt Transformer-based Part Merge,

which could model relations between all local patches on

feature maps, to produce distinctive part regions.

The structure of TPM is illustrated in Figure 3, which

could not only capture local part information but also can

explore the long-range dependencies. We follow Vision

Transformer (ViT) [6] to construct the main module. Spe-

cially, class token and position embeddings are not adopted.

The former is designed to produce the embedding for classi-

fication, but in this task, we only aim to cluster similar patch

embeddings to one part. The latter is used to retain posi-

tional information to the vector sequence in element-wise,

however, our enhanced feature maps will finally generate

masks in PMG, and positional information has no benefit to

this.

Given a feature map x ∈ R
H×W×C with resolution

(H,W) and channel C as input, we reshape it into a se-

quence of flattened 2D patches x ∈ R
N×C to fit the Trans-

former architecture, and N = (H × W ) is the length of

feature patch sequence. Then, We map the patches to vec-
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Figure 3: Details of TPM and PMG.

tors of N × G × 3 × C/r dimensions with linear projec-

tion and modify them as the input of transformer encoder.

The linear projection is a 1× 1 convolution layer to reduce

dimensions. G means attention heads in Multi-head Self-

Attention (MSA), and r is the reduction ratio. The outcome

vector sequence Z ∈ R
N×C/r is fed to a MSA encoder, Z

means the query, key or value in one attention head. Unlike

the standard Transformer encoder, we remove Multi-Layer

Perception (MLP) blocks, because these blocks will impact

the diversity of masks in PMG.

The self-attention mechanism is based on three types of

vectors, query, key and value. Query vector in a sequence

(Q ∈ R
N×C/r), we match it against a set of key vectors

(K ∈ R
N×C/r) using inner products. These inner products

are then scaled and normalized with a softmax function to

obtain the score matrix (S ∈ R
N×N ). The output of the

self-attention for this query is the weighted sum of a set

of N value vectors (V ∈ R
N×C/r). For all the queries

in the sequence, the output matrix of self-attention can be

obtained by:

Attention(Q,K, V ) = Softmax(
QKT

√
D

V ), (1)

where the Softmax function is applied over each row of the

input matrix and the
√
D term provides appropriate normal-

ization. Query, key and value matrices are all computed

from the outcome vector sequence by vector splitting, we

could also regard them as three different linear projection:

Q = ZWQ, K = ZWK , V = ZWV .

Finally, the MSA layer is defined by considering G at-

tention ”heads”, which means G self-attention functions are

applied to the input in parallel. Each head provides a se-

quence of size N × C/r, we do not any rearrangments, be-

cause they are fed into PMG module, and each head will

produce a transformer mask.

3.2. Part Mask Generation Module

Though we generate different mask from different atten-

tion head, it is still hard to to guarantee that all masks could

highlight distinct local regions. In some cases, these masks

may be homogeneous. Thus, it is important to guide each

mask to focus on different regions to reduce redundancy.

In other words, reducing the overlap area among differ-

ent regions is key to this problem. To achieve this goal,

we introduce competitive mechanism to solve the problem.

Same positional features on different masks should only
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have one maximum response value, which means that only

one mask could have response to one position.

As shown in Figure 3, the outputs of TPM is reshaped

to H × W × C/r on each head independently. Then, we

do 1 × 1 convolution to all reshaped feature maps to get

initial masks M0 ∈ R
G×H×W×1. Specially, this linear pro-

jection is adopted separately, to avoid generating homoge-

neous masks. Then, a softmax function is used to estab-

lish competitive mechanism on channel dimension. It could

further adjust initial masks, by limiting same position re-

sponse on different masks. We obtain competitive masks

M1 ∈ R
G×H×W×1, and regard them as diverse salient re-

gions for a person. They are adaptive to the input image,

and have good diversity to capture important regions.

4. Experiments

4.1. Datasets and Settings

Three popular datasets are used to evaluate the perfor-

mance of our proposed method. Market-1501 dataset [39]

is one of the most frequently used datasets, which contains

1,501 labeled persons of 6 camera viewpoints. There are

12,936 images with 751 identities for training. The rest

with 750 identities is in the testing set which contains 3,368

query images and 19,732 gallery images. DukeMTMC-

ReID [21, 42] is a subset of the DukeMTMC dataset. It

is also one of the most challenging ReID datasets up to

now, which contains 1,404 identities captured by 8 cam-

eras in realistic conditions in winter. There are 16,522

training images, 2,228 query images and 17,661 gallery

images. CUHK03 [16] dataset contains 13,164 images of

1,467 identities. Each identity is observed by 2 cameras.

Different from the former two datasets, CUHK03 offers

both hand-labeled and DPM-detected [8] bounding boxes,

all of them are used in our evaluation. Considering the time-

consuming evaluation, we adopt the new training/testing

protocol proposed in [43], instead of adopting 20 random

splits in original paper. MSMT17 [31] is the largest person

ReID dataset. It have 126,441 images with 4,101 identi-

ties on 15 cameras. It is worthy mentioning that we strictly

follow the commonly used protocol for Market-1501 and

DukeMTMC-ReID datasets. In all experiments, we eval-

uate the results with only the single-query setting and the

multi-query setting is not adopted. In addition, we do not

apply re-ranking [43] algorithm in order to have a fair com-

parison with all methods above.

4.2. Implementation Details

We conduct all the experiments using Pytorch with 4

NVIDIA TESLA V100 GPUs. For data augmentation,

we use horizontal flipping, random erasing and normaliza-

tion. In addition, all the images are resized to resolution

384 × 128, and after padding 10px with value 0 the ran-

Method Backbone Rank-1 mAP

AACN [33] GoogleNet 85.9 66.9

PL-Net [36] GoogLeNet 88.2 69.3

SPReID [13] InceptionV3 92.5 81.3

PCB [26] ResNet-50 93.8 81.6

PABR [24] GoogleNet 91.7 79.6

MGN [29] ResNet-50 95.7 86.9

ADReID [34] ResNet 95.0 86.5

VPM [25] ResNet-50 93.0 80.8

BagOfTricks [20] ResNet-50 94.5 85.9

HPM [9] ResNet-50 94.2 82.7

PPS [22] ResNet-50 94.3 85.3

IANet [12] ResNet-50 94.4 83.1

DGNet [41] ResNet-50 94.8 86.0

DSAReID [37] ResNet-50 95.7 87.6

Pyramid [38] ResNet-101 95.7 88.2

CAMA [35] ResNet-50 94.7 84.5

BDB [5] ResNet-50 94.2 84.3

OSNet [44] ResNet-50 94.8 84.9

MHN-6 [2] ResNet-50 95.1 85.0

SONA [32] ResNet-50 95.6 88.8

BAT-net [7] GoogleNet-BN 95.1 87.4

ABD-Net [4] ResNet-50 95.6 88.3

TransReID [11] DeiT-B/16 94.9 88.1

AAformer [45] ViT-B/16 95.4 87.7

HAT [30] ResNet-50 95.6 89.5

Ours (PCB) ResNet-50 95.5 87.5

Ours (PCB) ResNet-101 95.6 88.6

Ours (MGN) ResNet-50 95.8 89.1

Ours (MGN) ResNet-101 96.0 90.3

Table 1: Comparison with the state-of-the-art methods on

the Market-1501.

dom region crop sized of 384 × 128 will be used as the

final output. We use the pretrained ResNet-50 and ResNet-

101 [10] as the backbone network. The only difference is

we set the stride to 1 in the last block. All networks are

trained with SGD. Besides, batch size, weight decay and

momentum will be set to 64, 5e-4 and 0.9 respectively. We

apply linear warm-up strategy for the first 5 epochs, and the

learning rate will be increased from 1e-3 to 1e-1. We adopt

Cosine learning rate during training and the total number of

epochs is set to 90, which will take 60 minutes for ResNet-

50 and 110 minutes for ResNet-101. For the hyper param-

eters in our method, the reduction ratio in attention mask is

set to 64. The attention head G is set to 6, and the reduc-

tion ratio r is set to 32. We use max pooling instead of avg

pooling to extract the features because MGN [29] finds the

former has a better result.
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Method Backbone Rank-1 mAP

AACN [33] GoogleNet 76.8 59.3

SPReID [13] InceptionV3 84.0 69.8

PCB [26] ResNet-50 83.3 69.2

PABR [24] GoogleNet 84.4 69.3

MGN [29] ResNet-50 88.7 78.4

ADReID [34] ResNet 86.0 74.6

VPM [25] ResNet-50 83.6 72.6

BagOfTricks [20] ResNet-50 86.4 76.4

HPM [9] ResNet-50 86.6 74.3

PPS [22] ResNet-50 86.6 74.3

IANet [12] ResNet-50 87.1 73.4

DGNet [41] ResNet-50 86.6 74.8

DSAReID [37] ResNet-50 86.2 74.3

Pyramid [38] ResNet-101 89.0 79.0

CAMA [35] ResNet-50 85.8 72.9

BDB [5] ResNet-50 89.0 76.0

OSNet [44] ResNet-50 86.6 74.8

MHN-6 [2] ResNet-50 89.1 77.1

SONA [32] ResNet-50 89.4 78.3

BAT-net [7] GoogleNet-BN 87.7 77.3

ABD-Net [4] ResNet-50 89.0 78.6

AAformer [45] ViT-B/16 90.1 80.0

TransReID [11] DeiT-B/16 90.2 81.3

HAT [30] ResNet-50 90.4 81.4

Ours (PCB) ResNet-50 87.1 74.2

Ours (PCB) ResNet-101 88.1 75.4

Ours (MGN) ResNet-50 90.7 81.1

Ours (MGN) ResNet-101 91.3 82.1

Table 2: Comparison with the state-of-the-art methods on

the DukeMTMC-ReID.

Method Backbone Labeled Detected

Rank-1 mAP Rank-1 mAP

PCB [26] ResNet-50 - - 63.7 57.5

MGN [29] ResNet-50 68.2 67.4 66.8 66.0

HPM [9] ResNet-50 - - 63.9 57.5

PPS [22] ResNet-50 75.6 72.7 73.7 70.6

DSAReID [37] ResNet-50 78.9 75.2 78.2 73.1

Pyramid [38] ResNet-101 78.9 76.9 78.9 74.8

CAMA [35] ResNet-50 70.1 66.5 66.6 64.2

BDB [5] ResNet-50 - - 76.4 73.5

BAT-net [7] GoogleNet-BN 78.6 76.1 76.2 73.2

OSNet [44] ResNet-50 - - 72.3 67.8

MHN-6 [2] ResNet-50 77.2 72.4 71.7 65.4

AAformer [45] ViT-B/16 79.9 77.8 77.6 74.8

HAT [30] ResNet-50 82.6 80.0 79.1 75.5

Ours (PCB) ResNet-50 77.0 73.8 74.6 70.6

Ours (PCB) ResNet-101 78.7 75.9 77.0 73.4

Ours (MGN) ResNet-50 79.9 77.2 78.1 75.3

Ours (MGN) ResNet-101 82.1 80.6 79.2 75.7

Table 3: Comparison with the state-of-the-art methods on

the CUHK03-NP

4.3. Comparison with the StateoftheArts

In order to show the effectiveness of our proposed

method, we have compared it with the state-of-the-art meth-

ods on Market-1501, DukeMTMC-ReID, CUHK03-NP and

MSMT17. We adopt the same architecture with PCB as

Method Backbone Rank-1 mAP

IANet [12] ResNet-50 75.5 46.8

PCB [26] ResNet-50 68.2 40.4

BAT-net [7] GoogleNet-BN 79.5 56.8

ABD-Net [4] ResNet-50 82.3 60.8

AAformer [45] ViT-B/16 83.1 62.6

HAT [45] ResNet-50 82.3 61.2

Ours (PCB) ResNet-50 79.8 57.1

Ours (PCB) ResNet-101 80.3 59.9

Ours (MGN) ResNet-50 82.4 61.2

Ours (MGN) ResNet-101 82.9 62.7

Table 4: Comparison with the state-of-the-art methods on

the MSMT17.

Method Rank-1 Rank-5 Rank-10 mAP

PCB 94.8 98.2 98.8 85.4

+ PMG (sigmoid) 95.0 98.3 98.9 86.6

+ PMG (w/o softmax) 95.1 98.3 98.8 86.4

+ PMG (softmax) 95.3 98.3 98.9 86.5

+ TPM (w/o heads) + PMG 95.4 98.3 98.0 87.1

+ TPM + PMG (w/o heads) 95.3 98.4 98.9 87.2

+ TPM + PMG 95.5 98.6 99.2 87.5

+ TPM + PMG + CLS 95.5 98.6 99.2 87.4

+ TPM + PMG + ABS PE 95.4 98.3 98.9 87.1

+ TPM + PMG + REL PE 95.3 98.3 99.1 87.4

Table 5: Details of the module settings.

backbone, and the experimental results show that our pro-

posed method is comparable with the state-of-the-art meth-

ods. In addition, if we use more complex structure (e.g.

MGN [29], a multi-branch architecture), our method can

be further boosted on all four datasets. Replacing ResNet-

50 backbone with ResNet-101 leads to significant improve-

ments.

More specifically, HAT is also based on ResNet-50, and

the performance is better than our method on PCB with

ResNet-50. However, the result with MGN for our method

is comparable with HAT, the Rank-1 is better and the mAP

is worse. Further more, HAT adopts four standard trans-

former modules on four stages. According to our calcula-

tions, the extra FLOPs is 1460M, which is almost 40% of

ResNet-50. While we only use one transformer module, and

the FLOPs is 481M, which is much less than HAT. More de-

tails can be found in Table 1, Table 2, Table 3 and Table 4.

4.4. Ablation Study

To verify the effectiveness of each component, we have

designed extensive ablation studies on Market-1501, in-

cluding mask strategies and reduction ratio. In addition, all

the rest settings are kept the same as in Section 4.2.

Mask Strategies. As shown in Table 5, TPM gives us sig-

nificant improvement over basic PCB, and using channel

softmax to form a competitive mechanism further improve

the performance. Adding TPM with multi heads could en-
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Figure 4: Visualization of some examples. Even though

there are scale and shift misalignments, our proposed APD

can still capture the corresponding areas.

Reduction Ratio Rank-1 Rank-5 Rank-10 mAP

1 95.0 98.2 98.9 86.8

2 95.0 98.3 98.9 86.7

4 95.1 98.1 98.9 87.0

8 95.1 98.1 98.9 87.0

16 95.0 98.3 98.9 87.1

32 95.5 98.6 99.2 87.5

64 95.4 98.4 99.0 87.4

128 95.2 98.2 98.8 87.0

256 95.1 98.4 98.9 87.2

Table 6: Performance for different reduction ratios in TPM.

hance discriminability of features and also increase diver-

sity of masks. It is also beneficial to the result. We also

add class token and we find it has no use fot the result. For

position embedding, both absolute position and relative po-

sition are harmful to the performance. The details on the

visualization of the masks can be found in Fig. 4.

Reduction Ratio in TPM. As shown in Table 6, different

reduction ratios can change performance significantly. The

best result achieves 95.5% for Rank-1 and 87.5% for mAP,

while the worst results for Rank-1 and mAP are only 95.0%

and 86.7% respectively. We find that both large number

or small number of channels in TPM leads to poor perfor-

mance, the reason could be that large number of channels

may introduce too much noises in similarity calculation,

and small number is not enough to represent a patch. Proper

channel number helps to learn the better corelation among

different local patches.

5. Conclusion

In this paper, we propose a novel method named Adap-

tive Part Division (APD) for person ReID, which contains

a Transformer-based Part Merge (TPM) module and a Part

Mask Generation (PMG) module. TPM introduces Trans-

former to enhance the discriminability of features and as-

signs the patch tokens of the same semantics to one identical

part. PMG produces non-overlapping part marks adaptively,

which increases robustness to scale and shift variations.

Extensive experiments have been conducted on four ReID

datasets, and the results show that our proposed method is

comparable with the state-of-the-arts.
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