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Abstract Transformers, the dominant architecture

for natural language processing, have also recently

attracted much attention from computational visual

media researchers due to their capacity for long-range

representation and high performance. Transformers

are sequence-to-sequence models, which use a self-

attention mechanism rather than the RNN sequential

structure. Thus, such models can be trained in parallel

and can represent global information. This study

comprehensively surveys recent visual transformer

works. We categorize them according to task scenario:

backbone design, high-level vision, low-level vision and

generation, and multimodal learning. Their key ideas

are also analyzed. Differing from previous surveys,

we mainly focus on visual transformer methods in

low-level vision and generation. The latest works

on backbone design are also reviewed in detail. For

ease of understanding, we precisely describe the main

contributions of the latest works in the form of tables.

As well as giving quantitative comparisons, we also

present image results for low-level vision and generation

tasks. Computational costs and source code links for

various important works are also given in this survey to

assist further development.

1 NLPR, Institute of Automation, Chinese Academy of Sciences,

Beijing 100190, China. E-mail: Y. Xu, xuyifan2019@ia.ac.cn;

M. Lin, linminxuan2018@ia.ac.cn; Y. Deng, dengyingying2017@

ia.ac.cn; W. Dong, weiming.dong@ia.ac.cn (�); C. Xu,

changsheng.xu@ia.ac.cn.

2 School of Artificial Intelligence, University of Chinese

Academy of Sciences, Beijing 100040, China.

3 School of Artificial Intelligence, Jilin University, Changchun

130012, China. E-mail: H. Wei, weihp20@jlu.edu.cn;

F. Tang, tangfan@jlu.edu.cn.

4 Youtu Lab, Tencent Inc., Shanghai 200233, China. E-mail:

K. Sheng, saulsheng@tencent.com; M. Zhang, davinazhang@

tencent.com; F. Huang, garyhuang@tencent.com.

5 CASIA-LLVISION Joint Lab, Beijing 100190, China.

Manuscript received: 2021-06-17; accepted: 2021-07-16

Keywords visual transformer; computational visual

media (CVM); high-level vision; low-level

vision; image generation; multi-modal

learning

1 Introduction

Convolutional neural networks (CNNs) [1–3] have

become the fundamental architecture in computa-

tional visual media (CVM). Researchers began to

incorporate a self-attention mechanism into CNNs to

model long-range relationships, due to the problem

of locality of convolutional kernels [4–8]. Recently,

Dosovitskiy et al. [9] found that using a self-attention-

only structure, without convolution, works well

in computer vision. Since then, the transformer

architecture [10], a non-convolutional architecture

dominating the research field of natural language

processing (NLP), has has been used in computer

vision. Introducing transformers into computer vision

provides four advantages that CNNs lack:

• Transformers learn with more inductive bias and

performs better when trained on large datasets

(e.g., ImageNet-21K or JFT-300M) [9, 11].

• Transformers provide a more general architecture

suitable for most fields, including NLP, CV, and

multimodal learning.

• Transformers powerfully model long-range

interactions in a computationally-efficient manner

[12, 13].

• The learned representation of relationships is

more general and robust than the local patterns

from convolution modules [14].

As Table 1 shows, an increasing number of works on

visual transformers have come out in various subfields

of computational visual media. An instructive survey

is important because of the difficulties in arranging
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Table 1 Recent visual transformers introduced in this survey

Area Secondary area Method Contributions

Backbone

network

Classification

T2T ViT [15] An effective and efficient tokens-to-token module

TNT [16] The first to exploit the benefit of pixel-level relations

CPVT [17] An instance-level position embedding module

ConViT [18] Adaptive reception field in visual transformers

DeepViT [19] A Re-Attention module for deep-layer ViTs

Swin Transformer [20] A shifted-window based MSA & a deep-narrow module

PiT [21] The first to investigate the benefit of pooling in ViTs

LocalViT [22] A depth-wise convolution based module to exploit locality

Visualization Transformer-Explainability [23] A better tool to visualize feature maps from ViT models

High-level

vision

Detection

DETR [24] First transformer-based detection SOTA model

Deformable DETR [25] An efficient attention module reducing time consumption

UP-DETR [26] An unsupervised pre-training method for DETR

PVT [27] A general transformer architecture for dense prediction

Segmentation
VisTR [28] First transformer-based segmentation model

SegFormer [29] A lightweight efficient segmentation transformer model

Low-level

vision

Colorization ColTran [30] First transformer-based image colorization model

Text-to-image
TIME [31] Text-to-image generation

DALL·E [32] Zero-shot text-to-image generation framework

Super resolution
IPT [11] Image processing model

TTSR [33] Flexible application of transformer

Image generation

TransGAN [34] First pure transformer-based GAN for generation

GANsformer [35] A bipartite transformer

VQGAN [36] A transformer-based high-resolution image generator

Image restoration Uformer [37] A transformer-based hierarchical encoder–decoder network

Style transfer StyTr2 [38] First transformer-based style transfer model

Point cloud learning PCT [39] Among the first transformer-based point cloud models

Multi-modality

learning

Two-stream model ViLBERT [40] The first proposed two-stream model for V+L tasks

Single-stream model UNITER [41] A universal model for joint multi-modal embedding

Mixed model SemVLP [42] First mixed single- and two-stream model

such fast and abundant developments. Due to the

fast development of visual transformer backbones,

this survey specifically focuses on the latest works in

that area, as well as low-level vision tasks.

Specifically, this study is mainly arranged into four

specific fields: backbone design, high-level vision (e.g.,

object detection and semantic segmentation), low-

level vision and generation, and multimodal learning.

We highlight backbone design and low-level vision

as our main focus in Fig. 1. The developments to

be introduced are summarised in Table 1. For

backbone design, several latest works are introduced,

considering two aspects: (i) injecting convolutional

prior knowledge into ViT, and (ii) boosting the

richness of visual features. We also summarize the

breakthrough ideas of each work in Fig. 1. For high-

level vision, we introduce the mainstream of DETR-

based transformer detection models [24]. For low-level

vision and generation, we arrange papers according

to different subareas including colorization [30, 43–

45], text-to-image [31, 32, 46], super-resolution [47–

49], and image generation [50–54]. For multimodal

learning, we review some recent representative

works on vision-plus-language (V+L) models and

summarize pretraining objectives in this field.

We comprehensively compare results in different

fields and give training details, including computa-

tional cost and source code links to facilitate and

encourage further research. Some images resulting

from low-level vision models are also illustrated. The

rest of the paper is organized as follows. Section 2

introduces visual transformers. Section 3 lists latest
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Fig. 1 Organisation of recent works on visual transformers.

developments in backbone networks for visual

transformers in image classification. Section 4

describes several recent advanced designs using visual

transformers in object detection. Section 5 introduces

transformer-based methods for various low-level

vision tasks. Section 6 reviews recent representative

works on multimodal learning. Finally, we draw

conclusions from different research fields in Section 7.

2 Visual transformers

Before introducing the latest developments, we give

the basic formulation of visual transformers by using

ViT [9] as an example. As shown in Fig. 2, a typical

ViT mainly contains five basic procedures: splitting

input images into smaller local patches, preparing

the input token (patch tokens, class token, and

position embedding), a series of stacked transformer

blocks [55] (i.e., layer normalization (LN) [56] + multi-

head self-attention (MSA) [57] + skip-connection

layer [1] + multilayer perception (MLP) or feed-

forward network (FFN)), and post-process module.

Formally, given an input image X ∈ R
H×W ×C and

its labels Y , X is first reshaped into a sequence of

flattened 2D image patches Xp ∈ R
N×(P 2

·C). Then,

following BERT [10], a class token and several

position tokens are used to record extra meaningful

information for inference. Together, the input is

formulated as follows:
z0 = [xcls; x1

p · E; · · · ; xN
p · E]

+ [Ecls
pos; E1

pos; · · · ; EN
pos]

where xcls ∈ R
D is the class token, E ∈ R

(P 2
·C)×D is

a linear projection of each patch Xp, and Ei
pos ∈ R

D

is the learnable position embedding for the i-th token.

Then, the input is sent into several sequential

Fig. 2 Framework of ViT (left) and typical pipeline of a transformer encoder (right). Reproduced with permission from Ref. [9], c© The

Author(s) 2021.
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transformer blocks:

z
′

l+1 = zl + MSA(LN(zl))

zl+1 = z
′

l+1 + MLP(LN(z
′

l+1))

where l ∈ {0, · · · , L − 1} denotes the layer, L is

the number of transformer blocks, the MLP includes

two fully-connected layers using GELU [58] as the

activation function, LN(·) is a layer-normalization

module [56], and the MSA module is formulated as

MSA(z) = [SA1(z); · · · ; SAH(z)] × Umsa

SAi(Q, K, V ) = σ

(

Q · KT

√
dk

)

· V

where z is the input, [Q, K, V ] = z × U i
qkv, U i

qkv ∈
R

D×(3·Dh) projects the D-dimensional input z to Dh-

dimensional Q, K, and V in the head i, σ(·) is the

softmax function, and Umsa ∈ R
(H·Dh)×D re-casts the

output from H heads of the MSA module into one

D-dimensional output. Several variants of MSA, like

Reformer [59], Performer [60], and LinFormer [61],

are available.

3 Backbone design

In this section, we describe several recent designs

for the backbone of ViT models. Without loss

of generality, we focus on the image classification

task. We divide recent progress into two mainstream

approaches: (i) injecting convolutional prior know-

ledge into ViT, works including T2T-ViT [15],

ConViT [18], PiT [21], and Swin Transformer [20],

and (ii) boosting the richness of visual features,

including TNT [16], CPVT [17], DeepViT [19],

and LocalViT [22]. We also briefly describe recent

developments in visualizing feature maps of ViT

models [23, 62, 63], which help to better understand the

working mechanism of ViT models. We list core details

of their performance on ImageNet [64] in Table 2.

3.1 Latest developments

3.1.1 T2T-ViT

Yuan et al. [15] note that the method to convert input

images into tokens in a typical ViT [9] ineffectively

models the spatial structure of image data and

may lead to poor training efficiency and suboptimal

performance. They propose two effective approaches

to address the aforementioned problem. First, they

propose a token-to-token (T2T) module to inject

spatial information into the tokenization of image

patches and reduce the length of tokens progressively

for the sake of computational and parameter efficiency.

Inspired by CNN architectures [1–3], they also

devise a deep-narrow ViT framework to reduce the

number of parameters and enhance training efficiency.

Overall, they train ViT models from scratch on

ImageNet without additional datasets.

3.1.2 TNT

Han et al. [16] propose a novel Transformer-iN-

Transformer (TNT) framework to further exploit

the intrinsic spatial structural information in image

data. As Fig. 3 shows, TNT considers patch and

pixel level relations in learning useful visual features.

They propose a TNT block to utilize the pixel-

level representations effectively and efficiently. They

introduce an additional transformer called an Inner

T-Block to model pixel-level relationships in each

patch and then reinforce the patch-level features

with the calculated pixel-level ones. Consequently,

TNT achieves 81.3% top-1 classification accuracy

on ImageNet [64] at the cost of only moderate

additional computation. The experimental results

verify the positive effects of pixel-level relation

modeling.

3.1.3 ConViT

D’Ascoli et al. [18] propose a novel ViT model

with soft convolutional inductive biases (ConViT) to

endow transformers with an adaptive receptive field.

Figure 4 schematically shows the core block, called

a gated positional self-attention (GPSA) module. A

GPSA block has two branches: Wqry or Wkey is used

to model the global or long-range relationship, and

vpos is utilized to model the relationship within local

regions. To adaptively trade-off between the two

branches, they adopt a learnable parameter λ, which

Fig. 3 Framework of TNT. Reproduced with permission from

Ref. [16], c© The Author(s) 2021.
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Table 2 Classification accuracy on ImageNet [64] for various visual transformers

Method Image size FLOGs (G) #Param (M) Acc (%) Source (GitHub)

Convolution-based neural network

ResNet [1] 2242 4.1 25.6 76.2 —

RegNetY-4G [3] 2242 4.0 21 80.0
facebookresearch/pycls

RegNetY-16G [3] 2242 16.0 84 82.9

EfficientNet-B0 [2] 2242 0.4 5.3 77.1

rwightman/gen-efficientnet-pytorch

EfficientNet-B1 [2] 2242 0.7 7.8 79.1

EfficientNet-B3 [2] 3002 1.8 12 81.6

EfficientNet-B5 [2] 4562 9.9 30 83.6

EfficientNet-B7 [2] 6002 37.0 66 84.3

Visual transformer

ViT [9]
3842 55.4 86 77.9

google-research/vision_transformer
3842 190.7 307 76.5

DeiT [65]
2242 4.6 22 79.8

facebookresearch/deit
3842 55.4 86 83.1

T2T ViT [15] 2242 5.2 21.5 80.7 yitu-opensource/T2T-ViT

TNT [16]
2242 5.2 23.8 81.3

huawei-noah/noah-research/tree/master/TNT
2242 14.1 65.6 82.8

CPVT [17]
2242 — 23 81.5

Meituan-AutoML/CPVT
2242 — 88 82.3

ConViT [18]
2242 5.4 27 81.3

—
2242 17 86 82.4

DeepViT [19]
2242 — 27 82.3

zhoudaquan/dvit_repo
2242 — 55 83.1

Swin Transformer [20]
2242 4.5 29 81.3

microsoft/Swin-Transformer
3842 47.0 88 84.2

PiT [21]
2242 4.6 22.1 81.9

naver-ai/pit
2242 12.5 73.8 84.0

LocalViT [22] 2242 4.6 22.4 80.8 ofsoundof/LocalViT

Fig. 4 Framework of ConViT and the gated positional self-attention

mechanism. Reproduced with permission from Ref. [18], c© The

Author(s) 2021.

is initialized as 1 for all layers and all heads in MSA.

With the proposed GPSA module, they manage to

adaptively expand the self-attention receptive field

during training.

3.1.4 CPVT

Chu et al. [17] resort to a novel design of position

embedding module to further reinforce the richness

of learned visual features from ViT. Instead of a

predefined position embedding that is independent

of the input data, they propose a conditional

position embedding scheme to generate different

positional encodings for various input tokens, akin

to dynamic neural network design [66]. In their

implementation, they also rearrange the input

tokens in a spatial manner and apply convolution

operations to extract the position embedding in a

learnable way. In this way, they also maintain the

local neighborhood information during tokenization,

benefiting classification performance.
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Two further ViT models, LeViT [12] ① and CoaT [67] ②,

investigate the importance of position embedding

and propose different implementations. We do not

describe them further due to lack of space.

3.1.5 Swin Transformer

On the basis of the observations that image data

contain much redundant spatial information and

given the success of deep-narrow CNN architectures,

Liu et al. [20] propose a novel hierarchical visual

transformer design. Figure 5(a) illustrates the

core idea of the window MSA (W-MSA) and the

shifted W-MSA (SW-MSA) within Swin Transformer,

which separate local patches into several windows

and run the MSA module window by window.

With the W-MSA mechanism, they reduce the

computation complexity from O(4HWC2+2(HW)2C)

to O(4HWC2 + 2M2HWC), where H and W

represent the size of input patches, M × M is

the number of windows, and C is the feature

dimension. A shifted window design is also proposed

to encourage cross-window communication for rich

visual features. They also propose a deep-narrow

architecture (see Fig. 5(b)). Extensive experiments on

ImageNet, COCO, and ADE-20K demonstrate that

Swin Transformer enhances efficient use of parameters

and achieves state-of-the-art object detection and

semantic segmentation.

Dong et al. [68] also propose another vision transfor-

mer model, CSWin Transformer, which utilizes a

cross-shaped window self-attention mechanism (akin

to criss-cross attention [69] or strip pooling [70])

and a locally enhanced position encoding. CSWin

Transformer obtains even better performance than

SWin Transformer.

3.1.6 DeepViT

Layer scaling (e.g., 152-layer ResNet [1]) is an

important aspect of CNN architectures. With regard

to ViT models, Zhou et al. [19] empirically find that

the performance of deep layer ViT models saturates

when we stack more than 20 transformer blocks even

with the help of skip-connection layers. They unveil

that the reason is attention collapse: the feature

maps extracted from each head in one MSA module

share increasingly similar patterns, leading to huge

information redundancy and low training efficiency.

If the communication between the MSA heads is

promoted, the information redundancy between each

head and rich learned visual feature can be reduced.

Fig. 5 (a) Window MSA (W-MSA) greatly reduces computational cost and facilitates communication between each isolated W-MSA.

(b) Overview of Swin Transformer. Reproduced with permission from Ref. [20], c© The Author(s) 2021.

① https://github.com/facebookresearch/LeViT

② https://github.com/mlpc-ucsd/CoaT
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On the basis of the aforementioned motivation, they

propose a simple and effective Re-Attention module:

Norm

(

ΘTsoftmax

(

Q · KT

√
d

))

· V

where Θ ∈ R
H×H is a learnable parameter

to facilitate the communication between the H

heads within one MSA module. Experiments on

ImageNet [64] verify that a 32-layer ViT model can

be trained without performance saturation with the

help of a Re-Attention module.

Notably, concurrent work, which is termed

CaiT [71], also investigates the topic of layer scaling

and proposes a different perspective. Further details

can be obtained from their paper.

3.1.7 PiT

Considering the importance of the pooling layer to

model capability and generalization performance of

CNN architectures, Heo et al. [21] investigate the

possibility of taking advantage of pooling modules

in ViT. The pooling layer in a conventional CCN

architecture conducts spatial information aggregation

for spatially invariant features. On the basis of

this observation, they propose to implement spatial

information condensation via depth-wise convolution.

As shown in Fig. 6, they first split the obtained input

tokens into class tokens and spatial ones, and then

they recover the spatial shape of the latter. Next,

they leverage a depth-wise convolution operation

on the spatial branch for the purpose of a pooling

layer. Meanwhile, they apply a fully connected layer

to project the class token into the same dimension.

With a simple and effective pooling module, they

propose a pooling-based ViT (PiT) and achieve an

optimal trade-off between computation efficiency and

classification performance.

Fig. 6 Pooling layer in the PiT architecture. Reproduced with

permission from Ref. [21], c© The Author(s) 2021.

3.1.8 LocalViT

Li et al. [22] study the differences between ViT

models and CNN architectures. They find that visual

transformers are good at modeling global relations

while lacking a local scheme to learn interactions

within a local region, which is the characteristic of

convolution. A local mechanism is important and

useful for modeling spatial structures for image data.

Thus, they believe that visual transformers must

reinforce the model’s capability for local relation

modeling to promote the learned visual features

from ViT models. Specifically, they investigate

several possible blocks and then propose local ViT

(LocalViT), as shown in Fig. 7(right). Experiments

on ImageNet [64] indicate that the LocalViT module

is a practical local mechanism which boosts the

performance of various ViT models [15, 16, 27, 65].

3.2 Comparison on ImageNet

We compare the classification accuracies of the latest

ViT models on the ImageNet benchmark [64] in

Table 2, together with their implementation details,

namely, #FLOGs, #Param, and source code, to

facilitate further research. The experimental values

indicate that ViT models have potential to achieve

comparable performance or even outperform state-

of-the-art CNN architectures like RegNet [3] and

EfficientNet [2], which are based on expert-designed

basic modules and the power of neural architecture

search (NAS) techniques. We also observe very

recent exciting progress, in that the latest proposed

ViT models possess higher model capability and

better parameter efficiency for vision than the original

version of ViT.

Fig. 7 Comparison of the convolutional version of the FFN module in

ViT models (left), inverted residual blocks (center), and the proposed

module in LocalViT to exploit the benefit of locality in ViT (right).

Reproduced with permission from Ref. [22], c© The Author(s) 2021.
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3.3 Visualization of ViT

Visualizing the feature maps in ViT is also an

interesting and worthy research topic. As ViT

models leverage different basic components from

CNN models, we should adopt different visualization

methods correspondingly. As shown in Fig. 8, the

latest tools specialized for MSA modules and ViT

models, namely, partial LRP [63] and Transformer-

Explainability [23]①, can generate better results for

feature map visualization than the visualization

methods for CNN. The visualizations indicate that

ViT models can learn additional meaningful spatial

information with image-level annotations alone.

Therefore, ViT models have potential values in weakly

supervision scenarios, such as weakly supervised

object detection.

4 High-level vision

In this section, we focus on representative recent high-

level vision tasks based on transformer framework.

High-level vision refers to stages of visual processing

that transition from analyzing local image structure

to exploring the structure of the external world that

produced those images. The main tasks include

object detection [24–26], segmentation [28, 29, 74–79],

and key-point detection [80–85]. As the focus of

this survey is low-level vision tasks, we only

briefly introduce some interesting works in object

detection. Modern detection methods address the

set prediction task by defining a large set of propos-

als [86, 87], anchors [88], or window centers [89, 90].

Unlike previous attempts [91–96], transformer-based

detection raises the possibility of total anchor-free

and end-to-end models. We begin with the stream

of DETR [24], followed by Deformable DETR [25]

and UP-DETR [26]. A more complete approach,

PVT [27], which is the earliest transformer backbone

for dense prediction tasks like detection, is also

introduced. Additional recent high-level backbones like

Swin Transformer [20] and Twins [97] are introduced

in Section 3. A comparison is provided in Table 3.

4.1 DETR

Carion et al. [24] were the first to provide a completely

end-to-end detection model based on the transformer

encoder–decoder architecture. It gives researchers a

new insight that the transformer architecture can

achieve state-of-the-art performance in detection.

Unlike previous detection models, DETR does not

rely on artificially designed anchors. The overall

structure is illustrated in Fig. 9. The transformer

encoders are arranged after a convolution feature

Fig. 8 Class-specific visualization results from ViT. Left to right: input image, rollout [62], raw-attention, GradCAM [72], LRP [73], partial

LRP [63], and Transformer-Explainability [23]. Reproduced with permission from Ref. [23], c© The Author(s) 2021.

① https://github.com/hila-chefer/Transformer-Explainability
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Table 3 Comparison of transformer-based detection models on the COCO 2017 val set

Method
Training

AP AP50 AP75 APS APM APL

#Param
FPS

FLOPS Source

epochs (M) (G) (GitHub)

Convolution-based models

FCOS [90] 36 41.0 59.8 44.1 26.2 44.6 52.2 — 23 177 tianzhi0549/FCO

Faster R-CNN+FPN [86] 109 42.0 62.1 45.5 26.6 45.4 53.4 42 26 180 rbgirshick/py-faster-rcnn

Transformer-based models

DETR [24] 500 42.0 62.4 44.2 20.5 45.8 61.1 41 28 86
facebookresearch/detr

DETR-DC5 [24] 500 43.3 63.1 45.9 22.5 47.3 61.1 41 12 187

Deformable DETR [25] 50 43.8 62.6 47.7 26.4 47.1 58.0 40 19 173 fundamentalvision/Deformable-DETR

UP-DETR [26] 150 40.5 60.8 42.6 19.0 44.1 60.0 41 — —
dddzg/up-detr

UP-DETR [26] 300 42.8 63.0 45.3 20.8 47.1 61.7 41 — —

PVT-T [27] 300 36.7 56.9 38.9 22.6 38.8 50.0 23.0 — —
whai362/PVT

PVT-M [27] 300 41.9 63.1 44.3 25.0 44.9 57.6 53.9 — —

ViT-B/16-FRCNN [98] 21 37.8 57.4 40.1 17.8 41.4 57.3 21 — — —

Fig. 9 Overall structure of DETR. Reproduced with permission

from Ref. [24], c© Springer Nature Switzerland AG 2020.

extractor. We introduce the encoder and decoder

modules in order.

In the DETR encoder, first, the output feature map

of CNN is decomposed into patches as for ViT [9]

introduced in Section 3. Then, the patches are

mapped to one-dimensional vectors to go through

several traditional transformer encoders. DETR

and traditional BERT encoders differ only in the

positional embedding. The positional embedding is

injected into all encoder blocks rather than only the

input layer to preserve the positional information;

they claim that high-level vision detection needs

more positional information than classification. Only

queries and keys are also injected into the positional

embedding.

The decoder has two inputs. The first is the object

query, which only serves as queries in the second

MSA layers. The second is the output of the encoder

module, which serves as values and keys for the second

MSA layers. To easily understand the mechanism,

readers can treat the object queries as information of

different target objects and suppose the decoder aims

to find whether the similar patterns to the object

queries exist in the image features. The output of

the decoder is then passed through two branches,

namely, the box and class branches. The box branch

predicts the positions of the target objects, while the

class branch serves to predict the category of each

predicted box.

4.2 Deformable DETR

Although considerable progress has been achieved

by DETR in transformer-based detection, its main

deficiency is its huge computational cost. Training

a DETR on one V100 GPU is reported to take 48

days, which is unaffordable for common institutions.

Thus, Zhu et al. [25] propose the deformable self-

attention module to reduce the training time to 340

GPU hours at the same time as improving the original

performance. The core idea of deformable attention

is to find the nearest K values of an input query to
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calculate attention. Nearest here refers to semantic

distance rather than spatial distance. Deformable

attention is illustrated in Fig. 10, which is drawn

from deformable convolution [99]. A linear model is

established to learn the offsets of the nearest K values,

and then another linear model is established to learn

the attention score of each value. In summary, the

main contributions of deformable attention module

are (i) only K corresponding values rather than all

values are required to calculate the attention of one

query and (ii) the attention scores are learned by

a network rather than by simple multiplication of

queries and keys.

4.3 UP-DETR

Dai et al. [26] propose a novel unsupervised pre-

training method called random query patch detection

for DETR [24, 25], which leads to better performance.

Figure 11(a) illustrates their pretraining method. A

random query patch is randomly cropped from an

input image. Then, the query patch is added to the

object queries of the DETR decoder. The final goal

is to predict two things: (i) Lcls, that is, existence

of objects in the query patch, and (ii) Lbox, that

is, the location of the query patch in the image. A

reconstruction loss Lrec is also designed to ensure

that the CNN has extracted full information from

the query patch. This pretraining method leads to

more flexible training. As shown in Fig. 11(b), a more

robust representation can be learned after augmenting

the random query patches.

4.4 PVT

Diverging from DETR, Wang et al. [27] also

propose a pure transformer-based backbone, called

a pyramid vision transformer (PVT), for detection

and segmentation. Its framework is shown in Fig. 12.

After each stage, the output is rearranged to recover

spatial structure and is then down-sampled to half

resolution. Notably, the spatial reduction is only

conducted on the key K and value V while the

spatial size of the query Q is maintained. In practice,

the full architecture of PVT-based detection models

includes a PVT backbone and a general detection

head, such as RetinaNet [88] and Mask R-CNN [100].

Recently, several dense prediction backbones have

come out after PVT [27], like Swin Transformer [20],

CPVT [17], and Twins [97], which we introduced in

Section 3.

5 Low-level vision and generation

In this section, we focus on some representative

recent transformer-based works on low-level vision

Fig. 10 Deformable attention module. Reproduced with permission from Ref. [25], c© The Author(s) 2020.
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Fig. 11 (a) Random single query patch detection of UP-DETR. (b) More robust representation is derived by augmenting the query patch.

Reproduced with permission from Ref. [26], c© The Author(s) 2020.

Fig. 12 Framework of PVT. Reproduced with permission from Ref. [27], c© The Author(s) 2021.

tasks, as listed in Table 4. Low-level vision tasks

include super-resolution [101], denoising [101], image

Table 4 Source code links for ViT-based models for low-level vision

tasks

Method Source (GitHub)

TIME [31] —

IPT [101] —

ColTran [30]
google-research/google-research

/tree/master/coltran

TTSR [73] researchmm/TTSR

GANsformer [35] —

TransGAN [34] VITA-Group/TransGAN

DALL·E [32] openai/DALL-E

VQGAN [102] CompVis/taming-transformers

StyTr2 [38] —

PCT [39] Strawberry-Eat-Mango/PCT_Pytorch

colorisation [30], text-to-image generation [31], and

image generation [34, 35]. We separately introduce

how these tasks use transformers to achieve good

results (see examples in Fig. 13).

5.1 TIME

As a pre-trained NLP model is always required for the

text-to-image (T2I) task, it may introduce inflexibility

for the whole model. Liu et al. [31] propose an

efficient model for T2I tasks: Text and Image

Mutual Translation Adversarial Networks (TIME).

TIME can jointly handle T2I and image captioning

using a single network without a pretrained NLP

model. As Fig. 14 shows, TIME introduces a multi-

head and multi-layer transformer to the generator

and text decoder, which can be used to effectively
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Fig. 13 Representative results for low-level tasks, such as text-to-image generation, basic image processing tasks, colorization, image super

resolution, and image generation. Images are taken from the corresponding papers.

combine image features and the sequence of word

embeddings into the output. The Text-Conditioned

Image Transformer takes image feature fi and the

sequence of word embeddings ft, and outputs the

revised image fit according to the word embeddings.

The Image-Captioning Transformer is similar to the
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Fig. 14 TIME model overview. Reproduced with permission from Ref. [31], c© Association for the Advancement of Artificial Intelligence 2021.

Text-Conditioned Image Transformer but for image

captioning [103–105]. T2I and the image captioning

task are jointly trained in the generative adversarial

network (GAN) manner. TIME achieves state-of-the-

art T2I performance without pretraining.

DALL·E. Text-to-image generation is a classical

generation problem, which needs to construct a

mapping between two streams. Ramesh et al. [32]

propose a transformer-based framework to better

align text and image semantic information. A two-

stage model is applied to model the text and image

tokens. They first train a discrete variational

autoencoder [106] to build 1024 image tokens and

adopt 256 BPE-encoded text tokens to represent

the text information. Thereafter, an auto-regressive

transformer is used to capture the joint distribution

of the text and image tokens. They also use a mixed-

precision training strategy and PowerSGD [57] to save

GPU memory. The model consumes approximately

24 GB memory in 16-bit precision.

5.2 IPT

Classification models can be pretrained on large-

scale datasets to enlarge model representation ability.

Related low-level vision tasks such as image super-

resolution, inpainting, and deraining are combined

in a model to help one another. The generalized

pretraining procedure solves the problem of task-

specific data limitation. Therefore, Chen et al. [101]

develop a pretrained model for image processing using

the transformer architecture, the Image Processing

Transformer (IPT). The model architecture is shown

in Fig. 15. To adapt to different vision tasks,

Chen et al. [101] design a multi-head and multi-

tail architecture, which involves three convolutional

layers. The transformer body consists of an encoder

and a decoder described in Ref. [57]. Like the

discriminator in Ref. [34], they split the given features

into patches and each patch is regarded as a “word”

before features are input into the transformer body.

Unlike the original transformer, they utilize a task-

specific embedding as an additional input to the

decoder. The model is pretrained on ImageNet, which

is a key factor for success.

5.3 Uformer

Wang et al. [37] propose an effective and efficient

transformer-based architecture for image restoration.

It uses a transformer module to construct a

hierarchical encoder–decoder network. Two core

designs of Uformer make it suitable for image

restoration. The first is a local-enhanced window

transformer block. Specifically, a nonoverlapping

window-based self-attention is used to reduce the
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Fig. 15 Overview of IPT. Reproduced with permission from Ref. [101], c© The Author(s) 2021.

computational cost, and depth-wise convolution

is used in the FFN to further improve its

ability to capture local context. The second is the

skip-connection mechanism, which is explored to

effectively deliver the encoder information to the

decoder. Uformer can capture useful dependencies

for image restoration because of the two designs

above. The network structure of Uformer is shown

in Fig. 16. Its performance has been verified through

several image restoration tasks, including denoising,

deraining, and deblurring.

5.4 TransGAN

Driven by curiosity, Jiang et al. [34] first design

a GAN using pure transformer-based structures

to determine whether transformers perform well

when applied to generative adversarial networks

(GANs) [107]. This network consists of a memory-

friendly transformer-based generator and a patch-

level discriminator. Jiang et al. [34] also imitate

the philosophy in CNN-based GANs and design a

novel structure for image generation to avoid the

high cost when applying transformers from NLP

Fig. 16 (a) Overview of Uformer. (b) Structure of the LeWin transformer block. Reproduced with permission from Ref. [37], c© The Author(s) 2021.
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Fig. 17 Model overview of TransGAN. Reproduced with permission from Ref. [34], c© The Author(s) 2021.

to visual tasks. As shown in Fig. 17(left), the

memory-friendly transformer-based generator has

multiple stages, thus increasing the feature resolution

while decreasing the embedding dimension. The

discriminator splits the generated images into small

patches and regards them as “words”. The tokens

are taken by the classification head to output the

real/fake prediction. The whole net is trained with

three ingenious strategies: data augmentation, self-

supervised auxiliary task (super task) cooperative

training, and locality-aware initialization. The results

in CIFAR-10 and STL-10 are comparable to those of

some state-of-the-art works using CNN-based GANs.

5.5 TTSR

Texture is often damaged during downsampling and

also cannot be easily recovered. Traditional single

image super-resolution always leads to blurring effects

in the output. Therefore, Yang et al. [33] propose

a reference-based image super resolution method,

namely, the Texture Transformer Network for Image

Super Resolution (TTSR). As shown in Fig. 18, the

Learnable Texture Extractor is first used to extract

proper texture information, which is crucial for super

resolution. Then, the input to the texture transformer

can be expressed as follows:

Q = LTE(LR ↑)

K = LTE(Ref ↓↑)

V = LTE(Ref)

where LR↑, Ref, and Ref↓↑ denote the image to be

reconstructed, the reference image, and the reference

image that is down-sampled and then up-sampled

respectively. The texture transformer contains a

Fig. 18 Model overview of TTSR. Reproduced with permission from

Ref. [33], c© IEEE 2020.

Hard-Attention and a Soft-Attention, and it is

applied to the high-resolution feature guided by the

reference image. Finally, they propose a cross-scale

feature integration module to exchange information

between the features at different scales for better

representation at different scales.

5.6 ColTran

Image colorization is a challenging task that needs

to determine the image semantics. Most colorization

models estimate log-likelihood based on neural

generative approaches. Kumar et al. [30] propose

the Colorization Transformer (ColTran) using a
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self-attention mechanism to promote the effects

of a probabilistic colorization model. ColTran

replaces self-attention blocks with axial self-attention,

which decreases the computational complexity from

O(D2) to O(D
√

D). Kumar et al. [30] adopt a

conditional variant of the Axial Transformer [108]

for low-resolution coarse colorization. As shown in

Fig. 19, the ColTran core consists of Conditional

Self-Attention, MLP, and Layer Norm modules, and

it applies conditioning to the auto-regressive core.

They also design a Color Upsampler and Spatial

Upsampler to produce high-fidelity colorized images

from low resolution results. The Color Upsampler

converts the coarse image of 512 colors back into a

3-bit RGB image with 8 symbols per channel. The

Spatial Upsampler generates colorized images with

high resolution. ColTran can handle grayscale images

of 256 × 256 pixels.

5.7 GANsformer

The cognitive science literature talks about two mech-

anisms by which human perception interacts, namely,

bottom–up and top–down processing. Previous vision

tasks using CNNs do not reflect this bidirectional

nature because the local receptive field reduces their

ability to model long-range dependencies. Therefore,

Hudson and Zitnick [35] aim to design a transformer

network with a highly adaptive architecture centered

around relational attention and dynamic interaction.

They propose a Bipartite Transformer to eliminate

the limitation of huge computational complexity

of self-attention of transformers. Unlike the self-

attention operator which considers all pairwise

relations between input elements, the Bipartite

Transformer generalizes this formulation by featuring

a bipartite graph between two groups of variables

(latent and image features) instead. As shown in

Fig. 20, simplex attention distributes information in a

single direction over the Bipartite Transformer, while

Duplex attention supports bidirectional interaction

between the elements. The bipartite structure makes

a good balance between expressiveness and efficiency,

and it constructs the interaction between latent and

visual features to generate good results.

5.8 StyTr2

Considering the limited receptive fields of CNNs,

obtaining global information about input images is

difficult but is critical for the image style transfer

task. The content leak problem also occurs when

CNN-based models are adopted for style transfer.

Therefore, Deng et al. [38] propose the first transformer-

based style transfer model using the ability for long-

range extraction (Fig. 21). The unbiased Style

Transfer Transformer framework StyTr2 contains

two transformer encoders to obtain domain-specific

Fig. 19 Overview of colorization transformer. Reproduced with permission from Ref. [30], c© The Author(s) 2021.
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Fig. 20 Overview of the GANsformer framework. Reproduced with

permission from Ref. [35], c© The Author(s) 2021.

information. Following encoding, a multilayer trans-

former decoder generates the output sequences.

Moreover, Deng et al. [38] propose a content-aware

mechanism to learn the positional encoding based on

image semantic features and dynamically expand the

position to suit different image sizes.

5.9 VQGAN

High-resolution image synthesis is a difficult genera-

tion problem which aims to generate high-fidelity

images within a reasonable time. Convolutional

approaches exploit the local structure of the image,

while transformer methods are good at establishing

long-range interactions. Esser et al. [102] utilize the

advantages of CNNs and transformers to build a high-

resolution image generation framework. They propose

a variant of VQVAE [36] and adopt adversarial

learning to achieve vivid results. The content hidden

space consists of a discrete codebook, and different

codes in the codebook are combined according

to a certain probability to represent the content

information. The key to sampling in a discrete

space is to predict the distribution of discrete codes,

and the transformer can deal with the issue. Given

the first i codes, the transformer module is used to

predict the probability of occurrence of the i-th code.

The number of codes in the codebook is 512–4096

according to the dataset. The model can synthesize

the results containing 1280 × 460 pixels.

5.10 PCT

Unlike CNNs, transformers are inherently permuta-

tion invariant when processing a series of points and

are thus suitable for point cloud learning. Guo et

al. [39] propose a state-of-the-art transformer-based

point cloud model based on offset-attention with an

implicit Laplace operator. They enhance the input

embedding based on farthest point sampling and

nearest neighbor search to better capture the local

context in the point cloud.

6 Multimodal learning

The above sections cover developments in conven-

tional computer vision. Apart from pure vision

tasks, transformer-based models have also achieved

promising progress in language and vision multimodal

tasks, such as visual question answering (VQA) [109,

110], image captioning [111], and image retrieval [112],

due to the high performance achieved by the NLP

transformers. Transformer-based vision-language

(V+L) approaches are often pretrained on multiple

tasks and fine-tuned on diverse downstream sub-tasks.

Inputs of different modalities share the analogous

single- or two-stream architecture.

In this section, we start from recently representative

transformer-based works on V+L tasks with different

frameworks (Section 6.1), and then summarise

pretraining objectives (Section 6.2) and compare

details (Section 6.3).

Fig. 21 Overview of StyTr2. Reproduced with permission from Ref. [38], c© The Author(s) 2021.
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6.1 Transformer-based V+L works

Most transformer-based V+L works are based on two

kinds of structures: the two-stream (each stream

for a single modality) framework or the single-

stream (common stream for jointly learning cross-

modal representation) framework. ViLBERT [40] and

UNITER [41] are representative works for two- and

single-stream frameworks, respectively. Meanwhile,

SemVLP [42] unifies the two mainstream architectures

for aligning the cross-modal semantics.

6.1.1 ViLBERT

ViLBERT [40] is a representative two-stream

transformer-based model for V+L. Two separate

streams are used for vision and language processing.

Figure 23 shows the architecture of ViLBERT. Two

parallel BERT-style models operate on image regions

and text tokens. Each stream connects a series

of transformer blocks (TRM) and co-attentional

transformer layers (Co-TRM). As shown in Fig. 22,

the Co-TRM layers enable information exchange

between modalities, and the modified attention

mechanism is the key technical innovation. By

exchanging key–value pairs in multi-headed attention,

the Co-TRM structure allows for variable network

Fig. 22 (a) Architecture of a standard encoder transformer block.

(b) Co-attention transformer layer in ViLBERT. Reproduced with

permission from Ref. [40], c© The Author(s) 2019.

depth for each modality and enables cross-modal

connections at different depths.

6.1.2 UNITER

Chen et al. [41] propose UNITER: UNiversal Image-

TExt Representation. It can power heterogeneous

downstream V+L tasks with joint multimodal

embeddings. As shown in Fig. 24, UNITER first

encodes image regions (visual features and bounding

box features) and textual words (tokens and positions)

into a shared embedding space with image and text

embedders. Then, UNITER applies a transformer

module to learn the joint embedding of the two

modalities through designed pretraining tasks that

include classic image–text matching (ITM), masked

language modeling (MLM), and masked region

modeling (MRM). UNITER uses conditional masking

on MLM and MRM, which means masking only one

modality while keeping the other untainted. A novel

word–region alignment pretraining task via optimal

transport is also proposed to encourage fine-grained

alignment between words and image regions. The

authors consider the matching of word tokens and

RoI regions as minimizing the distance of two discrete

distributions, where the distance is computed based

on optimal transport. UNITER, as a single-stream

model, achieved state-of-the-art performance when

proposed. ViLLA [113], which combines UNITER

and adversarial training, achieves higher performance.

6.1.3 SemVLP

Li et al. [42] present a novel V+L framework, SemVLP.

It unifies both mainstream architectures. By fusing

single- and two-stream architectures, SemVLP utilizes

cross-modal semantics. Its framework is detailed

in Fig. 25. On the basis of a shared bidirectional

transformer encoder with cross-modal attention

module, SemVLP can encode the input text and

image into different semantics. It adopts common

pretraining methods with a special training strategy:

single- and two-stream frameworks are updated in

Fig. 23 Overview of ViLBERT. Reproduced with permission from Ref. [40], c© The Author(s) 2019.
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Fig. 24 Overview of UNITER. Reproduced with permission from Ref. [41], c© Springer Nature Switzerland AG 2020.

Fig. 25 Overview of SemVLP. Reproduced with permission from Ref. [42], c© The Author(s) 2021.

each half of the training time for each mini-batch of

image–text pairs.

6.2 Multimodal pretraining

Designing reasonable pretraining objectives for

transformer-based models, such as masked language

modeling (MLM) and next sentence classification

from BERT, has brought excellent results on NLP

tasks. These methods also work in the cross-modal

field with V+L. The key challenge is the way to

replicate or extend large-scale pretraining to cross-

modal methods and to design novel pretraining

objectives for multimodal learning. In this section,

we briefly introduce pretraining tasks extended from

BERT. These extended approaches include MLM,

masked region modeling (MRM), and image–text

matching (ITM). We also list other specially designed

pretraining tasks for multimodal learning.

6.2.1 Masked language modeling

Most recent V+L works follow BERT in using

MLM for cross-modal tasks. UNITER modifies

MLM by introducing visual information. Specifically,

UNITER attempts to predict masked words based on
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observation of the surrounding words and all image

regions. InterBERT [114] changes MLM to masked

segment modeling. In the case of using a random

word to replace the selected word, masked segment

modeling masks a continuous segment of text instead

of random words.

6.2.2 Image–text matching

For another pretraining task of BERT, next sentence

classification has been converted to an ITM problem,

which determines whether a pair of sentence and

image regions match. This task is widely used in

advanced V+L works. InterBERT [114] performs

ITM with hard negatives by regarding the image–

text pairs in the dataset as positive samples, pairing

the images with uncorrelated texts, and regarding

the pairs as negative samples. VL-BERT [115] and

UnifiedVLP [116] also do not use ITM, tending to

use other efficient choices like MRM introduced next.

6.2.3 Masked region modeling

The existing masking method, MRM, is the dual

task of MLM. MLM can be easily applied to visual

input. Some researchers have proposed several novel

pretraining methods by masking input visual tokens

to extend masked modeling to vision. Masked

region feature regression (MRFR) is one of these

approaches applied by ViLBERT [40]. ViLBERT

trains the model to regress the masked input RoI

pooled feature, which is extracted by Faster R-

CNN [86]. Most models perform optimization with

L2 loss. VL-BERT [115] also follows MRFR instead

of using ITM. It uses masked RoI classification with

linguistic clues, predicting the category label of the

masked RoI obtained by Fast R-CNN [117] from

the other clues. On the contrary, some models

choose masked region classification, which lets the

model predict the object semantic class for each

masked region. Models are often optimized by

cross-entropy loss or KL-divergence to learn the

class distribution. These MRM tasks are performed

in UNITER and UNIMO [118]. InterBERT [114]

also changes MRM strategy in the visual modality

by masking objects which have a high proportion

of mutual intersection with zero vectors to avoid

information leakage due to overlap between objects.

Notably, earlier transformer-based works, such as

VisualBERT [119] and B2T2 [120], do not extend

MLM to the visual domain.

6.2.4 Other designs for V+L

Some models are also trained with unique, newly

designed pretraining strategies. In Oscar [121], each

image–text pair is defined as a triple and thus consists

of a word sequence, a set of object tags, and a set of

image region features. Therefore, in addition to MLM

on words and object tags, Oscar uses a contrastive

loss to encourage the model to distinguish the original

and modified triple. By differently using contrastive

learning, UNIMO creates image–text pairs by a novel

text rewriting method. ERNIE-ViL [122] introduces

a scene graph to design advanced pretrained tasks,

including object prediction, attribute prediction, and

relationship prediction. Li et al. [123] add masked

sentence generation to optimize their model: a cross-

modal decoder is taught to autoregressively decode

the input sentence word-by-word conditioned on

the input image. Training directly on downstream

tasks like QA is also used in LXMERT [124] and

SemVLP [42].

6.3 Comparisons and implementation de-

tails

Table 5 details implementations and open source. The

MSCOCO dataset [111], maintained by Microsoft, is

widely used in multiple tasks like object detection. The

Conceptual Captions Dataset (CC) [125] is provided

by Google AI and consists of nearly 3.3 million

images annotated with captions harvested from the

web. The SBU Captions Dataset [126] includes

image captions collected from 1 million images from

Flickr①. MSCOCO, CC, and SBU all can be used

for image caption tasks. The Visual Genome [127]

is a dataset including images and image content

semantic information. Visual Genome, VQA [109],

VQAv2 [110], and GQA [128] datasets can all be used

for VQA pretraining. Notably, partial datasets are

used as benchmarks simultaneously. Table 6 shows

the performance of models reported above on different

V+L benchmark datasets. The results are obtained

by models fine-tuned on the corresponding datasets.

7 Conclusions and discussion

7.1 Backbone design

Section 3 describes several recent developments in

the backbone design of visual transformers, including

① https://www.flickr.com
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Table 5 Model setting in various papers. COCO refers to MS COCO [129], CC to Conceptual Captions [125], VG to Visual Genome [127],

SBU to SBU captions [126], and OI to OpenImages [130]

Model Dataset(s) for pre-training Params Batch size Hard-aware Source (GitHub)

ViLBERT [40] CC 221M 512 8 TitanX jiasenlu/vilbert_beta

VL-BERT [115] CC 110M 256 16 V100 jackroos/VL-BERT

UNITER [41] CC/COCO/VG/SBU 110M Dynamic 16 V100 ChenRocks/UNITER

Oscar [121] CC/COCO/VG/SBU/Flicker30K/VQA/GQA 110M 512 — microsoft/Oscar

VILLA [113] CC/COCO/VG/SBU — Task-specific — zhegan27/VILLA

ERNIE-ViL [122] CC/SBU 210M 512 8 V100 PaddlePaddle/ERNIE

UNIMO [118] CC/COCO/VG/SBU — — — weili-baidu/UNIMO

VinVL [131] CC/COCO/VG/SBU/Flicker30K/VQA/GQA/OI — 1024 — pzzhang/VinVL

TDEN [123] CC — 1024 16 P40 YehLi/TDEN

UniT [132] COCO/VG/VQAv2 — 64 64 V100 —

SemVLP [42] CC/COCO/VG/SBU/VQAv2/GQA 140M 256 4 V100 —

Table 6 Comparison of transformer-based V+L models on VQA [109], GQA [128], Flickr30K [112], CoCo Caption [111], NLVR2 [133],

SNLI-VE [134], VCR [135], and RefCOCO+ [136] benchmarks

VQA GQA IR-Flickr30K TR-Flickr30K CoCo Caption NLVR2 SNLI-VE VCR RefCOCO+

test-dev test-std test-dev test-std R@1 R@5 R@10 R@1 R@5 R@10 BLUE4 CIDEr dev test-P val test Q/A QA/R Q/AR val testA testB

ViLBERT [40] 70.55 70.92 — — 58.20 84.90 91.52 — — — — — — — — — 73.3 74.6 54.8 72.34 78.52 58.20

VL-BERT [115] 71.79 72.22 — — — — — — — — — — — — — — 75.8 78.4 59.7 80.31 83.62 75.45

UNITER [41] 73.82 74.02 — — 75.56 94.08 96.76 87.3 98.0 99.2 — — 79.12 79.98 79.39 79.38 77.3 80.8 62.8 84.25 86.34 79.75

Oscar [121] 73.61 73.82 61.58 61.62 — — — — — — 41.7 140.0 79.12 80.37 — — — — — 84.40 86.22 80.00

VILLA [113] 74.69 74.87 76.26 94.24 96.84 87.9 97.5 98.8 — — 79.76 81.47 80.18 80.02 78.9 79.1 60.6 84.40 86.22 80.00

ERNIE-ViL [122] 74.95 75.10 — — 76.66 94.16 96.76 89.2 98.5 99.2 — — — — — — 79.2 83.5 66.3 75.89 82.37 66.91

UNIMO [118] 73.79 74.02 — — — — — — — — 38.6 124.1 — — 80.00 79.10 — — — — — —

VinVL [131] 76.52 76.60 65.05 64.65 75.40 92.90 93.30 58.8 83.5 90.3 41.0 140.9 82.67 83.98 — — — — — — — —

TDEN [123] 72.50 72.80 — — — — — — — — 40.2 133.4 — — — — 75.7 76.4 58.0 — — —

SemVLP [42] 74.52 74.68 62.87 63.62 74.80 93.43 96.12 87.7 98.2 99.3 — — 79.00 79.55 — — — — — — — —

feature map visualization approaches. Recent pro-

gress can be technically divided into two main

streams: (i) enhancing the capability of visual

transformers in modeling spatial structure and

locality mechanism, such as a better image-to-token

module, a pixel-level transformer block, a depth-

wise convolution-based pooling layer, and an SW-

MSA module, and (ii) boosting the richness of

learned visual features and promoting efficient use

of parameters, such as conditional position encoding,

a message communication scheme between the MSA

heads, and deep-narrow ViT architectures.

As the first visual transformer was proposed very

recently (October 2020), we believe that the potential

of the ViT model has not been fully exploited and

several research topics are worthy of consideration

and effort:

• Advanced designs of basic ViT operation or

modules and the corresponding learning scheme

for CV tasks, like injecting prior knowledge of

image data or the computer vision task into the

module design or the learning scheme of visual

transformer models, and making the transformer

more computationally efficient, are of interest.

The versatility of ViT models in additional

real-world scenarios, such as aesthetic visual

analysis [137–139], face anti-spoofing [140, 141],

and point cloud learning [142], is also worthy of

exploration.

• The transformer block can be placed in the

perspective of NAS. One of the goals of the

NAS framework [143–145] is to search for optimal

network architectures for a given task without

human intervention. Interesting architectures can

be considered and practical insights for further

developments can be gained by building on a well-

designed search space that contains a transformer

block. Several recent works have investigated this

topic. Wang et al. [146] and So et al. [147] leverage

NAS techniques to seek for effective and efficient

transformer-based architectures automatically. Li

et al. [148] propose a novel scheme, BossNAS, to

achieve optimal solutions which trade-off CNN

architecture and transformer blocks.
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• Understanding of the working mechanism and

theoretical rationale of visual transformers can

be enhanced. Several researchers have achieved

promising progress in unveiling the power of

transformer models, from such perspectives as

information bottlenecks [149, 150] and better

visualization tools [23, 63].

7.2 High-level vision

In Section 4, we introduce several representative

works on object detection. The basic logic follows

the line of DETR [24]. PVT [27], which is a general

backbone for dense prediction, is also introduced.

Several problems still need to be addressed despite

improvements brought by these works. Unlike

CNN-based methods, such as Faster-RCNN [86],

current transformers for dense prediction tasks suffer

from high computation time. Thus, efficiency of

transformers for high-level vision remains a pressing

research direction.

7.3 Low-level vision and generation

In Section 5, we introduce some low-level vision

and image generation tasks using transformer-based

models. They can achieve outstanding results but

have difficulty generating large images. Therefore,

extending a pure transformer with CNN layers is

widely adopted by many works. A pure transformer

structure still faces the challenge of high computation

time.

7.4 Multimodal learning

In Section 6, we introduce several representative

transformer-based models proposed in the past 2

years for vision and language tasks. We also review

mainstream pretraining tasks in the V+L field.

Meanwhile, transformer-based models have succeeded

for the tasks listed in Table 6, but performance can

still be improved:

• Pure transformers may be an alternative choice

for the image mode.

• Design of efficient pretraining tasks can lead to

better results and performance.
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