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Abstract

The Cancer Target Discovery and Development (CTD2)
Network was established to accelerate the transformation of
"Big Data" into novel pharmacologic targets, lead compounds,
and biomarkers for rapid translation into improved patient
outcomes. It rapidly became clear in this collaborative network
that a key central issue was to define what constitutes sufficient
computational or experimental evidence to support a biolog-
ically or clinically relevant finding. This article represents a first
attempt to delineate the challenges of supporting and con-
firming discoveries arising from the systematic analysis of

large-scale data resources in a collaborative work environment
and to provide a framework that would begin a community
discussion to resolve these challenges. The Network imple-
mented a multi-tier framework designed to substantiate the
biological and biomedical relevance as well as the reproduc-
ibility of data and insights resulting from its collaborative
activities. The same approach can be used by the broad
scientific community to drive development of novel therapeu-
tic and biomarker strategies for cancer. Mol Cancer Res; 14(8);
675–82. �2016 AACR.

Introduction
Large-scale molecular characterization projects are generat-

ing comprehensive data for pediatric and adult malignancies,
from hundreds to thousands of patient-derived samples (1–3),
transgenic mouse models (4), patient-derived xenografts, and
cancer cell lines (5–7). These data allow systematic evaluation
of key biologically and clinically relevant hypotheses, such as
the association between drug sensitivity and specific genetic
alterations, or between specific biological features and patient
outcome. As a result, biomedical discovery is being increas-
ingly driven by the integrative analyses of large amounts of
data followed by experimental evaluation both in vitro and in
vivo. The challenge is to capitalize on these different data
sources in a systematic way that makes the process of target
discovery and translation more efficient, transparent, and
reproducible.

Such transition from a strictly hypothesis-driven to an increas-
ingly hypothesis-generating paradigm presents new types of
challenges. For instance, to what extent can knowledge be
extracted from computational analysis of large-scale data repos-
itories without conventional follow-up experimental validation?
If experimental validation is needed, what can be considered an
appropriate level of validation to justify follow-up preclinical and
clinical studies? These questions are especially relevant in view of
critical challenges to the very foundation of the biomedical
research enterprise, from result reproducibility (8, 9) to biomed-
ical impact (10).

The Cancer Target Discovery and Development (CTD2) Net-
work (http://ctd2.nci.nih.gov/) was established with the spe-
cific intent to accelerate the transformation of "Big Data" into
novel pharmacologic targets, lead compounds, and biomarkers
for rapid translation into improved patient outcomes. This
process includes the development of novel methods that enable
the identification and validation of actionable therapeutic
targets. Specifically, in the "Big Science" classification system
of Sean Eddy, the CTD2 Network aims to be a "leading
wedge"—democratizing breakthrough technology for validat-
ing cancer therapeutic targets to all laboratories, an urgent
medical need requiring radically improved methods (11). With
13 centers collaborating in the context of CTD2 Network, the
issue of what constitutes sufficient computational or experi-
mental evidence to support a biologically relevant finding
becomes central. Indeed, to a large extent, the multi-Center
Network represents a microcosm of the complex interactions
that drive biomedical translation forward in the broader con-
text of academic and industrial research.

The questions discussed in this article represent the specific
challenges faced by this group of researchers as they began to
develop successful, multi-center collaborations leading to numer-
ous publications and clinical translation efforts. Specifically,
CTD2 investigators quickly realized that, while each Center was
an expert in the methodologies related to a specific aspect of
biological discovery—from Big Data analysis to large-scale chem-
ical-biology screens to pooled functional assays—the ability to
operate at the intersection of these methodologies, especially in
terms of quality control and data is a major challenge. For
instance, the specific quality control infrastructure and mechan-
isms necessary to ensure reproducibility of Big Data analyses or
in vivo functional assays are quite different. Thus, collaborations
that leverage more than one data modality require potentially
orthogonal communities to develop a cross-disciplinary under-
standing of their individual competencies.
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This is a vast and complex undertaking, and as such, this
perspective cannot be interpreted as a fully finished and compre-
hensive framework to support interdisciplinary collaborations.
Rather, it represents the first essential step in motivating the
community to address several critical issues on a systematic and
comprehensive basis. Indeed, we envision this effort as the first of
a series of manuscripts representing both a dialog and a resource
for the community, which may be especially useful to young
investigators and trainees as they face the complexity and chal-
lenges of large-scale collaborative research efforts that are emerg-
ing as necessary to address an equally increasing complexity of
biological discovery.

In this vein, this Perspective begins to delineate the challenges
of supporting and confirming discoveries arising from the sys-
tematic analysis of large-scale data resources in a collaborative
environment. We provide a framework to start addressing the
pivotal question: "What level of experimental evidence is neces-
sary to complement insights derived from Big Data analysis in
order to reach its potential to impact human health positively?"
Althoughour focus in this Perspective is based entirely ona system
that we have adopted within the collaborative CTD2 Network to
disseminate the hypotheses and insights resulting from this Net-
work's research, the approach and methodology is generalizable,
and is thus not limited to CTD2 Network activities. Furthermore,
we hope that the research community will use this initially sparse
framework to provide increasingly in-depth insight and mechan-
isms to address quality control and reproducibility at the bound-
ary of the multiple and highly complementary subdisciplines of
biological investigation.

The Network implemented a system to ensure that data and
insights resulting from its activities would be reproducible (12),
and would thus be used by the CTD2 or the scientific community
to drive the development of novel therapeutic and biomarker
strategies for cancer. We also hope to provide the scientific
community a framework for the effective reporting of data gen-
erated by these and other methods in future applications of the
knowledge derived from Big Data for biological insight. This
Perspective should be seen as the first step in elucidating the
critical challenges and deriving a framework that will begin a
community-wide discussion of the challenges that will lead to a
more detailed description of the metrics needed for specific
research technologies such as proteomics and drug screening
analysis that have not already been systematically evaluated in
the literature and through consensus white papers.

Data Sharing and Clarity
To enable clear description of novel therapeutic targets and

pathways identified by the CTD2 Network, the members have
devised a set of classification criteria to stratify targets, pathways,
associated biomarkers, and their small-molecule or biological
modulators into "Evidence Tiers," based on available supporting
evidence. These criteria should also enable the scientific commu-
nity to understand more easily the evidence on which CTD2 and
other findings are based. A key priority of this lexicon is to
minimize the misinterpretation of reported results, thereby help-
ing the scientific community to understand the likelihood that the
interpretations can be successfully progressed to human investi-
gations (9).

Network Centers share their methods and results via publica-
tions, and all raw and analyzed data are made publicly available

through the CTD2 Data Portal (https://ctd2.nci.nih.gov/dataPor-
tal/). This resource is regularly updated as new data are generated
and additional findings are validated. All data posted in the Data
Portal have undergone quality-control evaluation, but have not
independently been confirmed (Fig. 1).

We consider that Data Portals are necessary, but not sufficient,
for ensuring clarity and reproducibility of published results.
Therefore, classification of supporting evidence resulting from
analysis of CTD2 data into Evidence Tiers (see below) informs a
separateweb-based "Dashboard" (http://ctd2-dashboard.nci.nih.
gov/)—a platform to share CTD2 Network findings with the
research community. The Dashboard is intended to house the
results that connect targets, biomarkers, and modulators with
evidence supporting their validation. In each Evidence Tier, we
enumerate information related to three entities that are critical to
the development of cancer therapeutics. These include: (1)molec-
ular targets, (2) small-molecule or biological modulators of the
targets, and (3) associated predictive or prognostic biomarkers for
patient selection.

Evidence Tier Definitions
Tier 1: Preliminary positive observations

These data represent the initial results of high-throughput
experiments, typically using a single experimental or compu-
tational platform; examples are given for illustration purposes
only.

Small-molecule assays. These include positive results ("hits")
from primary high-throughput screens (HTS) with small or
large molecules such as antibodies (the term small-molecule
screen is used throughout to include the potential for large-
molecule screens). Other means of high-throughput data gen-
eration (e.g., cheminformatic analyses, correlations of genomic
and cheminformatics data, patents, published literature, etc.)
may also inform a small-molecule approach and are thus
acceptable.

Genetic perturbation assays. These include results from high-
throughput screening experiments [such as whole-genome or
targeted RNA interference (siRNA or shRNA) loss of function,
CRISPR, or open-reading frame cDNA (ORF) gain of function
screens], as well as computational and statistical analyses that
either support hit selection or filter out potential artifacts.

Prognostic or predictive biomarkers. Biomarker discovery involves
the use of primary data fromany number of sources (e.g., cell lines
isogenic for a mutant vs. wild-type candidate target, sequencing,
biologics screening, etc.). Where possible, a biomarker is linked to
specific molecular targets and small-molecule modulators. Tier 1
biomarker data could enable (1) identification of the patient
population likely to benefit from a given therapeutic strategy, (2)
quantification of efficacy in vivo for preclinical or clinical mea-
surements, (3) nomination of a pharmacodynamics readout for
drug activity in a patient, or (4) development of an indicator for
potential undesirable off-target effects or adverse events. Tier 1
biomarkers derive directly from the analysis of the primary data
and are not yet independently validated.

Molecular interactions. Discovery of molecular interactions from
protein–protein interaction (PPI) assays, protein–nucleic acid

Gerhard

Mol Cancer Res; 14(8) August 2016 Molecular Cancer Research676

D
ow

nloaded from
 http://aacrjournals.org/m

cr/article-pdf/14/8/675/2182601/675.pdf by guest on 25 August 2022



interaction assays, or computational analyses, among others, can
be used to generate hypotheses for specific molecular targets.
Examples of relevant assays include genome-wide chromatin
immunoprecipitation (ChIP-seq) or cross-linking immunopre-
cipitation (CLIP-seq), reporter-gene activity, protein fusions
(e.g., luciferase or fluorescent protein) in protein-complemen-
tation assays, yeast two-hybrid assays, F€orster-(fluorescence-)
resonance energy transfer (FRET), protein complex identifica-
tion by mass spectrometry, and reverse engineering computa-
tional algorithms.

Computational analyses. Any computational approaches and
strategies including the analysis of, for example, alternatively
spliced transcripts and cell surface markers and other factors
that might stimulate the immune system can identify candi-
date cancer targets or pathways. The primary data can be from
the public domain or project-specific high-throughput assays
that are released into the public domain and are clearly
referenced.

NOTE: In Tier 1, the data can support many concepts and not
just targets, biomarkers, or small-molecule perturbagens.

Tier 2: Confirmation of primary results in vitro
These results meet the Tier 1 requirements and have been

confirmed by at least one of the following:
* More detailed version of the original assay, such as

concentration–response versus single-point, high-replicate
(e.g., N > 4) versus low-replicate (e.g., singleton), target
silencing in additional patient-relevant cell lines ormodels, or
results from high-content microscopy experiments, etc.

* Orthogonal secondary assay or counter-screen.
* Independent confirmatory experimentwith the original assay,

performed by a different Center in the Network or from the
literature.

* Extension or corroboration of experiments in other in vitro
cancer models.

* Experimental investigations confirming the presence on the
cell surface of bioinformatically predicted cell-surface
peptides and epitopes.

Figure 1.

As Tiers successively increase, the strength of evidence associated with data under each Tier also increases. The data in the Portal are accompanied by a statement
summarizing the purpose for which they were collected and detailed experimental protocols so that others can readily reproduce them. Here are a few examples
of how molecular targets, prognostic biomarkers, and modulators of targets may progress through Tier rankings toward phase 0/I clinical trials.
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* Generation of an antibody, chimeric antigen receptor (CAR),
T-cell receptor, or other targeting molecule for cancer-specific
epitope expressed on tumor surfaces.

Examples of evidence for Tier 2 are given below. Sufficient
detail must be captured in the Dashboard (data, methods,
reagents, etc.; http://ctd2-dashboard.nci.nih.gov/) to enable qual-
ified investigators to reproduce the results.

Small-molecule assays.Thedata include adetailed characterization
of each candidate using the primary or suitable orthogonal assays.
These data define the desired biological profile and may include
testing in additional patient-relevant cell models. Some measure
of potency and selectivity is established (e.g., selective toxicity for
cancer cells over an appropriate normal cell model).

Genetic perturbation assays. A more detailed characterization of
gene candidates is required to meet the standard criteria of
demonstrating that at least two independently designed genet-
ic perturbation reagents produce the same effect. These experi-
ments could use RNAi, CRISPR, Transcription Activator-like
Effector Nucleases, or ORF reagents. In addition, the possibil-
ity of an effect being due to miRNA seed sequences should be
addressed. Validation of a reagent can occur through direct
measurements (mRNA depletion, protein levels), computa-
tional approaches (measurements of reagents made in multi-
ple cell lines or assays), or a combination thereof.

Biomarkers. The specifics of a more detailed characterization of
biomarkers depend on the utility of the biomarker being devel-
oped. For biomarkers aimed at identifying the patient population
likely to benefit from a given therapeutic strategy, confirmation in
an independent, appropriately statistically powered population
for which relevant molecular profile data can be accessed is
required. Biomarkers that quantify efficacy for preclinical or
clinical measurements require validation in independent model
systems. Biomarkers providing a pharmacodynamics profile for
drug activity in a patient require confirmation in a distinct,
appropriately statistically powered preclinical model-organism
cohort. Biomarkers serving as an indicator for potential undesir-
able off-target effects or adverse events need confirmation in an
independent large sample set of cell lines or other biological
samples.

Molecular interactions. Interactions require confirmation in
orthogonal screening experiments in a biologically relevant con-
text using a different readout than used in Tier 1. Computational
data from the literature or public databases could also support
molecular interaction–based targets in this Tier.

Computational analyses. Hypotheses inferred by computational
analysis must be confirmed by experimental analysis to reach
Tier 2, which could be accomplished by interventions or through
data in the literature. In addition to experimental approaches
highlighted above, immunotherapeutic targets ormolecules, such
as antibodies, CARs, or T-cell receptors to novel cell-surface
epitopes either in cell lines or mass spectroscopy measurements
are needed and tested in cell lines.

NOTE: In Tier 2, an in vitro–validated target is progressing
toward a substantiated hypothesis; nonetheless, the absolute
connection is not yet complete.

Tier 3: Validation of results in a cancer-relevant in vivo model
These results meet the Tier 2 requirements and have been

validated by in vivo assays, including at least one of the following:
* Experiments in model organisms (e.g., Danio rerio, Mus

musculus, Drosophila melanogaster, etc.).
* A second, separate orthogonal secondary assay or counter-

screen on a single gene in an in vivo system.
* Independent validation assays in vivo (secondary assay or

counter-screen) by the same or a different Network Center, or
from the literature.

* For biomarkers only, extension or corroboration of validation
experiments in large independent human cancer sample
cohorts with appropriate clinical data.

In Tier 3, the functional hypothesis is effectively tested and, as
needed, either modified or removed based on orthogonal exper-
imental evidence. It is expected that assays are performed in
carefully controlled experiments in vivo (e.g., on a molecule-by-
molecule basis in relevant models such as xenografts, genetically
engineered mouse models, syngeneic tumor models, organoids,
patient-derived xenografts, or other biological systems), at least in
quadruplicate, that allow definitive conclusions. Cell-surface epi-
topes can be targeted either by a small molecule, an antibody, an
antibody-derivative protein, or a T-cell receptor. The following
types of evidence are offered at this Tier.

Small-molecule assays. The data presented include orthogonal
assays that further support the profile of selected compounds as
being consistent with the therapeutic hypothesis. The difference
from Tier 2 is 2-fold: (1) At Tier 3, the experiments are carried out
in vivo, and (2) proof of mode-of-action is necessary (e.g., mitotic
arrest using an image-based assay or identify the gene or molec-
ular alteration that leads to the cancer dependency of the small-
molecule activity).

Genetic perturbation assays. Relationships that are observed by
multiple groups, or a more detailed characterization of gene
(cancer dependency) candidates, are required, using in vivomodel
systems for validation. Lower-throughput experiments that fur-
ther support the specificity of the loss of gene function (or gain)
and the importance of that loss (or gain) to the proposed hypoth-
esis are needed.

Biomarkers. Biomarkers require a more thorough demonstration
of their reliability than at Tier 2 including, for example, statisti-
cally significant evidence fromanappropriate clinically annotated
patient cohort independent from those used for Tier 2. For all
types of biomarkers (see definitions in Tier 1), the assay used is
either performed independently by another Center, or with a
different technology platform tomeasure and detect the biomark-
er(s). As an alternative to a different technology platform, the
same platform could be validated in terms of robustness and
reproducibility meeting the requirement of a CLIA-like (Clinical
Laboratory Improvement Amendments) assay.

Molecular interactions. Demonstration of direct endogenous
molecular interactions, under physiologically relevant condi-
tions, is required. Experimental evidence demonstrating that a
molecular interaction–associated target is mechanistically, or at
least functionally, relevant to cancer is required. This relevance
is demonstrated by measuring the effect on tumor initiation,
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progression, or maintenance resulting from disrupting or sta-
bilizing the interaction using mutagenesis, peptides, or small
molecules. Efficacy of an antagonist peptide or small molecule
in a panel of clinically relevant cell lines or in vivo models is
required. Aberrant or neomorph-related interactions are iden-
tified as distinct from those occurring in a cell's physiologic
regime.

NOTE: The evidence in Tier 3 is a robust definition of connec-
tion of small molecule (chemical or biologic) to target, genotype
to phenotype, and direct molecular interaction in vivo, such as
mouse tumor models, patient-derived tumor avatars (e.g., orga-
noids, conditionally reprogrammed cells, xenografts), or patient
cohorts.

Substantiated Hypotheses toward Human
Investigation

CTD2 aims to undertake and report research that can be
validated by qualified investigators inside and outside the Net-
work and that can lead to clinical applications, including the
generation of therapeutic agents whose activity is predicted by
specific molecular alterations in a patient's tumor. We anticipate
that substantiating hypotheses from the CTD2 Network will be
based on a combination of evidence types from different Tiers,
providing strong rationale for a candidate targetwith an agent that
modulates the cancer phenotype, together with an associated
biomarker for patient selection. Importantly, we expect such
results to be replicated independently of theCenter that generated
the initial data.

Substantiated hypotheses should include all the relevant infor-
mation necessary for their translation. Additional perspectives on
what qualifies as a substantiated hypothesis are provided below:

Cancer target
A candidate therapeutic target should be accompanied by

biomarkers for the stratification of patients most likely to derive
benefit from its use, small-molecule or peptide modulators that
are most likely to modify target activity, and proof of mechanism
of action. Substantiated hypotheses include compelling evidence
that supports translation to clinical trials.

Small-molecule assays
Small molecules should be accompanied by data that indi-

cate appropriate properties for testing in vivo (e.g., suitable
metabolic half-life, minimal toxicity, appropriate in vivo expo-
sure, etc.) and that substantiate statistically significant differ-
ential efficacy. This substantiation may require synthesis or
purchase of analogs that address compounds with shortcom-
ings in one of these areas. A detailed optimization strategy
(chemistry, pharmacokinetics, pharmacodynamics, etc.) is
important. Alternative acceptable surrogates include, but are
not limited to, other targeted therapeutics such as monoclonal
antibodies or soluble receptors.

Genetic perturbation assays
Selective effects of targets perturbed by multiple genetic

reagents (shRNA/siRNA/Clustered Regularly Interspersed Short
Palindromic Repeats) are explored with in-depth biological ex-
perimentation that includes in vivo interventions. This selectivity
may be demonstrated in a panel of clinically relevant patient-
derived xenographs, or in transgenic or xenograft mouse models

using shRNA or genetic ablation of the target. Confirmation of
suppression in vivo is necessary, and multiple endpoints (tumor
burden, survival, etc.) should be shown with appropriate statis-
tical significance.

Biomarkers
Biomarkers as listed in Tier 3 require additional development

and implementation of an analytical test system with well-estab-
lished performance characteristics and cut-offs. Any associated
algorithms are "locked" in terms of coefficients and other para-
meters. The analytic test system is used to evaluate the perfor-
mance of the type-specific potential biomarkers on an indepen-
dent validation patient-sample cohort. In addition, a credible
scientific framework that explains the physiologic or clinical
significance of the test results is required.

Molecular interaction
Mutational analysis of cancer-specific variants could provide

supporting data for molecular interactions. Aberrant or neo-
morph-related interactions should be identified as distinct from
those occurring in a cell's physiologic regime. Biomarkers that
reflect the status of the molecular interaction target should be
provided for translational studies.

Examples of Transition Through the
Evidence Tiers to Clinical Trials

To provide examples of how this framework facilitates the
discussion and comparison of different types of targets, we
describe three targets that were identified by CTD2 members and
for which further validation experiments provided substantiated
hypotheses, now in testing in clinical trials, also see Fig. 2.

Vignette 1: WEE1 inhibitor MK1775 (AZD1775) in head and
neck squamous cell carcinoma

The cell-cycle checkpoint kinaseWEE1 is an illustrative example
of advancing a target through Tiers of evidence from discovery to
preclinical validation, leading all the way to a clinical trial.

The Fred Hutchinson Cancer Research Center's CTD2 per-
formed an unbiased siRNA kinome screen, using both mouse
and human squamous cell carcinoma cells, that provided
Tier 1 level of evidence for WEE1 as a cancer target (13).
Specifically, siRNAs to WEE1 were among the most effective at
inhibiting growth of p53-mutant head and neck squamous
cell carcinoma (HNSCC) cells. Retesting with different siRNAs
to WEE1 in additional cell lines and using a small-molecule
inhibitor of the WEE1 kinase, MK1775 (now AZD1775),
provided Tier 2 evidence for WEE1 as a cancer target. Disrup-
tion of G2–M regulation by inhibition of WEE1, particularly in
the context of p53 mutation and DNA damage, leads to
apoptotic cell death.

Tier 3 evidence was obtained by inhibition of growth of p53-
mutant HNSCC xenografts in mice treated twice weekly with
AZD1775, as well as confirmation of target engagement by
inhibition ofWEE1 kinase activity in tumor extracts. These studies
led to an investigator-initiated clinical trial of AZD1775, in
combination with neoadjuvant weekly docetaxel and cisplatin,
prior to surgery in HNSCC (NCT02508246; E Mendez, Principal
Investigator). Of note, the gene encoding WEE1 is not mutated
in tumors and may represent yet another example of a therapy
targeting cancer-specific vulnerabilities (13).
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Vignette 2: JAK2 inhibitor ruxolinitib in trastuzumab-relapsed
ERBB2-amplified breast cancer

Breast cancers that present aberrant activity of the ERBB2
receptor tyrosine kinase are treated with trastuzumab, a mono-
clonal antibody that acts as a specific ERBB2 inhibitor. However, a
substantial number of patients who initially respond to trastu-
zumab (up to 70%) will eventually relapse with tumors that are
drug-resistant and have poor prognosis.

The Columbia University's CTD2 combined results from
pooled RNAi screens inMCF10A cells, followed by ectopic ERBB2
expression, with network-based analysis of master regulator pro-
teins in ERBB2-amplified breast cancer patients from The Cancer
Genome Atlas. This analysis revealed STAT3 as a critical master
regulator of ERBB2-amplified tumors in ER-/ErbB2Amp patients,
as well as a critical dependency of the transformed MCF10A cells
(Tier 1). Such an approach highlighted how independent evi-

dence from large-scale computational and experimental assays
can provide complementary clues that lead to identification of
biological mechanisms with high potential for successful exper-
imental validation, both in vitro and in vivo. Specifically, unless
they are performed in a very large number of phenotypically
relevant cellular contexts, pooled RNAi screens are often not
sufficiently selective to pinpoint generalizable tumor dependency
mechanisms. One concern, for instance, is that these screens may
highlight idiosyncratic dependencies induced by the nonphysio-
logic nature of the cell line context used in these assays. In contrast,
network-based analysis of Big Data from human samples to
identify master regulators of tumor cell state has shown remark-
able ability to pinpoint functional drivers, with validation rates in
the 70% to 80% range. Yet, the latter must still be experimentally
validated to separate truly biological dependencies frompotential
computational artifacts (4, 14, 15). The use of combined pooled

© 2016 American Association for Cancer Research
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Figure 2.

The three vignettes that exemplify how Tier I observations were validated in vitro and in vivo as Tier II and Tier III, respectively, before the results were translated into
the clinical setting are summarized.

Gerhard

Mol Cancer Res; 14(8) August 2016 Molecular Cancer Research680

D
ow

nloaded from
 http://aacrjournals.org/m

cr/article-pdf/14/8/675/2182601/675.pdf by guest on 25 August 2022



RNAi screens with computational, network-based approaches
addresses both issues providing clear complementarity and thus
allowing efficient and systematic functional driver elucidation,
leading to extremely high success and validation rates in follow-
up in vivo and clinical studies. For instance, in this case, hundreds
of potential candidates from pooled RNAi screens and tens of
candidates from master regulator analysis resulted in a core of
three drivers that were validated in follow-up assays, including
one (STAT3) providing critical insight for the development of
combination therapy in relapsed HER2þ breast cancer.

Indeed, further investigation in cell lines showed that aberrant
STAT3 activity was regulated by an autocrine loop involving
expression and secretion of IL6 and induced expression and
secretion of the S100A and S100B hetero-dimerizing isoforms
linked to aggressive breast cancer malignancy. Specifically, IL6-
mediated activation of the IL6 receptor, upstreamof the JAK/STAT
cascade, closed the resulting signaling loop, resulting in STAT3
autoregulation. Depending on kinetics of the signaling loop, the
latter could become ERBB2 independent, thus inducing trastu-
zumab resistance. Conversely, when combinedwith trastuzumab,
abrogation of JAK2 activity, either genetically or via the small-
molecule inhibitor ruxolitinib, abrogated STAT3 activity, reduced
S100A/B expression, and induced profound synergistic loss of
viability in trastuzumab-resistant cell lines (Tier 2 evidence) and
xenografts (Tier 3), which was reversed by ectopic S100A/B
expression. These multi-Tier findings led to development of a
clinical trial to test the trastuzumab–ruxolitinib combination in
ERBB2-amplified breast cancer patients who had relapsed follow-
ing trastuzumab therapy and no longer responded to the drug
(NCT02066532; ref. 16).

Vignette 3: TBK1 inhibitor momelotinib in lung and pancreatic
cancer

Oncogenic mutations in KRAS occur in nearly all pancreatic
cancers as well as a significant number of lung and colon
cancers. Although KRAS is a well-validated oncogene involved
in both tumor initiation and maintenance, targeting KRAS
pharmacologically has proven challenging. The Dana-Farber
Cancer Institute CTD2 Center performed an arrayed shRNA
screen to identify genes that were required in cancer cell lines
that are dependent on the expression of mutant KRAS, and
identified the serine-threonine kinase TBK1 as a codependency
in such cells (17), making it a Tier 1 target. Subsequent studies
by this Center and others (18, 19) identified TBK1-dependent
induction of autocrine signals as the reason for this dependency
and demonstrated that small-molecule inhibition of TBK1
reproduced the genetic findings (ref. 20; Tier 2). Indeed, these
studies help explain why studies involving pooled shRNA
screens fail to identify TBK1 because in such massively parallel
screens, signaling loops involving secreted molecules are not
interrupted. In addition, genetic and pharmacologic perturba-
tion of TBK1 induced tumor regression in genetically engi-
neered mouse models of lung cancer driven by K-ras (ref. 20;
Tier 3). Three clinical trials testing this TBK1 inhibitor, mome-
lotinib, have been started in patients with lung and pancreatic
cancer (NCT02258607, NCT02101021, and NCT02244489).

Future Outlook
We introduce a multi-Tier framework designed to provide an

approach to substantiate the biological and biomedical relevance,

as well as the reproducibility, of novel biomedical insights arising
from analysis of Big Data. Such an approach allows the systematic
identification of relevant insights derived from large-scale data
analyses, through a series of increasingly strict filters, rather than
through a singlemonolithic filter, whose failuremay compromise
the entire validation process. The approach is not meant to be
prescriptive but rather to represent the minimal data elements
ensuring biological and clinical relevance. Indeed, we expect that
there will be insufficient evidence to credential many targets or
small molecules initially classified as Tiers 1 to 3 as substantiated
hypotheses. Nevertheless, this framework permits one to classify
potential targets, biomarkers, or small molecules based on the
available information.

We define Evidence Tiers to clarify the levels of validation for
pharmacologically accessible therapeutic targets, associated bio-
markers, andbiochemicalmodulators. In each Tier,we enumerate
information related to three entities: (1) molecular targets, (2)
associated predictive or prognostic biomarkers for patient selec-
tion, and (3) small-molecule or biological modulators of the
targets that are critical to the development of cancer therapeutics.
Effective representation of specific hypotheses will often involve
multi-modal evidence from different Tiers (e.g., a target with
associated biomarkers for stratification and pharmacodynamics
and a set of small-molecule modulators). We expect that system-
atic availability of these evidence Tiers, with additional substan-
tiation by other CTD2 investigators and extra-Network investiga-
tors, will motivate the use of Network-generated insight and
knowledge for clinical investigation.

Experiments supporting the substantiation of any hypothesis
are essential before any target is prioritized for development,
either by Network Centers, other investigators, or by biotech-
nology or pharmaceutical companies. The Evidence Tiers
defined in this document help delineate and communicate the
complex process of data analysis, starting from large genomic
or functional data sets, and ending with the generation of
preclinical leads for characterizing targets, small molecules,
and biomarkers. We expect that new information generated by
the CTD2 Network and others will inform an improved defi-
nition of the concepts we present here. We hope that the
principles of Tiers of evidence as applied in the CTD2 Dash-
board will be useful in other contexts and thereby provide
confidence in the quality, clarity, and reproducibility of
research performed in the public sector.
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