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Transforming Binary Uncertainties
for Robust Speech Recognition

Soundararajan Srinivasan, Member, IEEE, and DeLiang Wang, Fellow, IEEE

Abstract—Recently, several algorithms have been proposed to
enhance noisy speech by estimating a binary mask that can be
used to select those time—frequency regions of a noisy speech signal
that contain more speech energy than noise energy. This binary
mask encodes the uncertainty associated with enhanced speech in
the linear spectral domain. The use of the cepstral transformation
smears the information from the noise dominant time—frequency
regions across all the cepstral features. We propose a supervised
approach using regression trees to learn the nonlinear transforma-
tion of the uncertainty from the linear spectral domain to the cep-
stral domain. This uncertainty is used by a decoder that exploits the
variance associated with the enhanced cepstral features to improve
robust speech recognition. Systematic evaluations on a subset of
the Aurorad4 task using the estimated uncertainty show substantial
improvement over the baseline performance across various noise
conditions.

Index Terms—Binary time—frequency mask, computational au-
ditory scene analysis (CASA), robust automatic speech recognition,
spectrogram reconstruction, uncertainty decoding.

1. INTRODUCTION

HE performance of automatic speech recognizers (ASRs)
degrades rapidly in the presence of noise and other dis-
tortions [20]. Speech recognizers are typically trained on clean
speech and face a problem of mismatch when used in conditions
where speech occurs simultaneously with other sound sources.
If samples of the corrupting noise source are available a priori,
a model for the noise source can additionally be trained and
noisy speech may be jointly decoded using trained models of
speech and noise [17], [47]. Alternatively, noisy speech may be
enhanced by approximating the probability density function of
the log-spectra of noisy speech using a vector Taylor series [30].
However, in many realistic applications, adequate amounts of
noise samples are unavailable a priori, and hence training of a
noise model is not feasible.
In contrast to the model-based approaches described above,
in feature-based robust speech recognition, noisy speech is
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typically preprocessed by speech enhancement algorithms,
such as linear filtering methods [6], [16], [27]. It is shown in
[14] that certain feature-based approaches can achieve lower
error rate than model-based approaches. However, the accuracy
of even the best speech enhancement algorithms often varies
widely across time frames. Additionally, the variances of en-
hanced features also differ even within a time frame. Recently,
an uncertainty decoding approach to robust speech recognition
has been proposed to effectively account for the varied accu-
racies of features derived from front-end preprocessing [15].
In this approach, computation of the observation probability
during recognition involves integration over all possible speech
feature values. Specifically, speech enhancement uncertainties
contribute to an increase in the variance of acoustic model
variables. It is shown in [15] that the uncertainty decoder
significantly outperforms the conventional ASR operating on
the enhanced speech features.

Currently, most algorithms estimate the uncertainty associ-
ated with the enhanced speech features in either the log Mel-fre-
quency domain or directly in the cepstral domain [2], [15], [25],
[46]. Hence, the uncertainty decoder is coupled with speech
enhancement algorithms operating in these domains. However,
several speech enhancement algorithms operate in the linear
spectral domain. In particular, many recent methods attempt to
estimate a binary time—frequency mask that can be used to select
those time—frequency (T-F) regions of a noisy speech signal that
contain more speech energy than noise energy [1], [19], [39],
[40], [54]. Some methods rely on the observation that individual
signals in a mixture are sparsely distributed in the time—fre-
quency domain [39], [54]. This enables them to handle a variety
of mixing conditions, including those involving more sources
than sensors [35]. The use of a binary mask as the computational
goal makes only weak assumptions about interference condi-
tions. Further, estimation of the binary mask imposes a lesser
demand on the speech enhancement front-end and is often more
robust than full-band speech enhancement [44], [49].

Signals reconstructed from such masks have been shown to
be substantially more intelligible for human listeners than orig-
inal mixtures [9], [11], [39]. However, conventional ASR sys-
tems are extremely sensitive to the distortions produced during
resynthesis. To minimize the effect of distortions on recognition,
these speech enhancement systems are currently coupled with a
missing-data recognizer [12], [31], [39]. Missing-data ASR at-
tempts to improve robust speech recognition by distinguishing
between reliable and unreliable data in the T-F domain. It uses
the binary mask generated by speech enhancement algorithms to
label the speech-dominant T-F regions as reliable and the rest
as unreliable. While the performance of the missing data rec-
ognizer is significantly better than the performance of a system
using front-end speech enhancement followed by recognition of
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enhanced speech [12], a significant disadvantage of the missing
data recognizer is that recognition is performed in the spectral or
the T-F domain. It is well known that recognition using cepstral
coefficients yields a superior performance compared to recog-
nition using spectral coefficients under clean speech conditions
[13]. In addition, the performance of the missing-data ASR de-
grades as the vocabulary size increases [44]. Attempts to adapt
the missing data method to the cepstral domain have centered
around reconstruction or imputation of the missing values in the
spectral domain followed by transformation to the cepstral do-
main [37]. This reconstruction is typically based on a trained
speech prior.

Although the spectrogram reconstruction method in [37] pro-
vides promising results, errors in mask estimation and subse-
quent reconstruction degrade the performance of the ASR. In
this paper, we present a two-step, supervised learning approach
to estimate the uncertainty associated with the reconstructed
cepstra. In the first step, we estimate the uncertainty in the spec-
tral domain by utilizing the statistical information contained
in the speech prior used in spectrogram reconstruction. In the
second step, this uncertainty is transformed to the cepstral do-
main using a nonlinear regression model. Specifically, we em-
ploy a nonparametric learning approach using regression trees
to directly estimate the uncertainties associated with static, dy-
namic, and acceleration cepstral coefficients. We thus convert
the binary uncertainty encoded by the T-F mask into a real-
valued uncertainty associated with the cepstral features. The
estimated cepstral-domain uncertainty is utilized by an uncer-
tainty decoder during recognition. We show that the resulting
system improves the recognition performance over that of the
conventional ASR across various noise conditions.

The rest of the paper is organized as follows. Section II briefly
reviews the uncertainty decoding framework for robust speech
recognition. Section III contains a detailed presentation of the
proposed method for estimating the uncertainty associated with
the reconstructed cepstra. The method has been systematically
evaluated on a subset of the Aurora4 noisy speech recogni-
tion task and the evaluation results are presented in Section I'V.
This section also contains a performance comparison of the
missing-data ASR and the uncertainty decoder on a digit recog-
nition task. Finally, conclusions and future work are given in
Section V.

II. UNCERTAINTY DECODING

A typical approach for robust speech recognition involves
preprocessing a noisy speech signal by a speech enhancement
algorithm to produce an estimate of the clean speech features.
These features are then used directly in the evaluation of the
acoustic model probability in ASR systems. As discussed in
the introduction, the performance of front-end denoising algo-
rithms is often inconsistent. This inconsistency could potentially
change the mean and the variance of the features extracted. Con-
ventional ASR systems are especially sensitive to changes in
the variance of the features derived from the output of speech
enhancement algorithms [8]. The uncertainty decoding method
accounts for such distortions in speech enhancement by inte-
grating the probability of the observed features over all possible
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speech feature values [15]. Hence, the new observation likeli-
hood is computed as

| plelointlz)a: 1)
where z is the clean speech feature seen during training, and v
denotes a parameterized model of the observation density. For
computational simplicity, following the suggestion in [15], we
assume that the front-end compensation model can be charac-
terized as

p(2|z) = N(2;2,%z) @

where % is the enhanced feature. The model in (2), therefore,
states that the error in the estimation of the clean speech feature
z — z is Gaussian distributed with zero mean and a variance of
>:. For many speech enhancement algorithms, this is a valid
assumption. Fig. 1 shows the histograms of the deviation of
two estimated cepstral coefficients from the true ones. The
speech samples are derived from the clean and the noisy de-
velopment portions of the Aurora4 database [33]. The noise
source corresponds to a restaurant environment. The speech
enhancement algorithm used is a spectral subtraction algorithm
(see Section IV). Fig. 1(a) shows the error distribution cor-
responding to the fourth-order cepstral coefficient. Similarly,
Fig. 1(b) shows the error distribution corresponding to the
11th-order cepstral coefficient. Note that the distributions can
be well approximated by zero-mean Gaussians.

The observation density in each state of a hidden Markov
model (HMM)-based ASR is usually modeled as a mixture of
Gaussian densities. Therefore

p(z|k, q) = N(2; pire,q, D g) 3)

is the likelihood of observing z given state ¢ and mixture com-
ponent k; jix o and X, , are the mean and the variance of the
Gaussian mixture component. When noisy speech is processed
by unbiased speech enhancement algorithms, it is shown in [15]
that the observation likelihood should be computed as

/zvmmwMW=N@wmmﬁm» 4

— 00

The role of the uncertainty associated with the enhanced fea-
tures can be seen in (4) as that of increasing the variance of in-
dividual Gaussian mixture components. Hence, those enhanced
speech features that deviate more from clean ones will con-
tribute less to the overall likelihood. For example, from Fig. 1
we can observe that the variance of the error distribution corre-
sponding to the fourth-order cepstral coefficient is smaller than
that of the 11th-order coefficient. Hence, the observation like-
lihood extracted from the former can be expected to contribute
more to the final acoustic model score.

It is shown in [2], [4], and [15] that the utilization of the
speech feature uncertainty contributes to a significant improve-
ment in the ASR accuracy on small vocabulary tasks. The per-
formance improvement is particularly substantial when the vari-
ance of the enhanced features is known a priori [15]. Hence, an
accurate estimate of the speech feature uncertainty is critical for
realizing the full benefits from uncertainty decoding.
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Fig. 1. Histograms of the errors in the estimation of clean speech features using a speech enhancement algorithm. Statistics are obtained using clean speech and
speech corrupted with restaurant noise from the Aurora4 database. (a) Histogram of the estimation error for the fourth-order cepstral coefficient. (b) Corresponding

results for the 11th-order cepstral coefficient.

III. LEARNING CEPSTRAL UNCERTAINTY FROM SPECTRUM

Current methods for estimating the uncertainty involve the
use of speech enhancement algorithms operating in log-Mel fre-
quency or cepstral domains [15], [25]. However, a large class of
speech enhancement algorithms use other frequency represen-
tations such as auditory frequency (e.g., [19]), discrete Fourier
transform (DFT) (e.g., [6]), etc. In particular, several recent al-
gorithms perform speech enhancement by attempting to esti-
mate a binary mask that can be used to select speech-dominant
T-F regions of a noisy speech signal [39], [54]. Specifically,
the T-F units in a noisy mixture are selectively weighted (1 or
0) in order to enhance the desired signal. While the subjective
intelligibility of such enhanced signals is high [9], [11], [39],
the speech features extracted for use in ASR suffer from dis-
tortion due to mismatch arising from the noise dominant T-F
units. To mitigate the effect of these distortions on recognition,
these algorithms have been typically coupled to a missing-data
ASR [31], [39]. The missing-data ASR treats the noise-domi-
nant T-F units as missing or unreliable and marginalizes them
during recognition. As mentioned in the introduction, this con-
strains the recognition to be performed in the spectral or the T-F
domain. The use of cepstral transformation smears the informa-
tion from the noisy T-F units across all the cepstral features,
preventing its effective marginalization.

To utilize the advantage of cepstral features for recognition, it
is suggested in [37] that the information in the noise-dominant
T-F regions be first reconstructed using a speech prior. This al-
lows for subsequent use of the cepstral transformation. While
promising recognition results are reported in [37], as mentioned
in Section I, the ASR performance is sensitive to errors in mask
estimation and reconstruction. Estimation of these errors would
enable their use in the uncertainty decoder for improved recog-
nition results. Hence, we propose a two-step method for esti-
mating the uncertainty associated with reconstructed cepstra. In
the first-step, we estimate the uncertainty associated with the re-
constructed spectra by utilizing the statistical information con-

tained in the speech prior used in reconstructing the speech in-
formation in the noise-dominant T—F units. In the second step,
a nonlinear regression is performed to transform the estimated
spectral-domain variance into the cepstral domain. We use the
nonparametric method of decision trees [7] for the regression
operation.

A. Estimating the Uncertainty of Reconstructed Spectra

The noisy input is first analyzed using a short T-F decompo-
sition. The T-F resolution is 20-ms time frames with a 10-ms
frame shift and 257 DFT coefficients. Frames are extracted by
applying a running Hamming window to the signal. This signal
is then processed by a speech segregation algorithm that esti-
mates an ideal binary mask. A T-F unit in the ideal binary mask
is 1 if in the corresponding T-F unit, the noisy speech contains
more speech energy than interference energys; it is 0 otherwise.
The ideal binary mask may be obtained a priori from premixing
speech and noise. In practice, the ideal binary mask is not ob-
tainable from a noisy signal, but can be estimated using speech
separation algorithms. A binary T-F mask thus estimated is used
in conjunction with the spectrogram reconstruction approach to
derive features for recognition.

In the spectrogram reconstruction approach, a noisy spectral
vector Y at a particular frame is partitioned into reliable and
unreliable constituents as Y, and Y, where Y = Y, U Y, [37].
The reliable features are the T—F units labeled 1 (speech-dom-
inant) in the binary T-F mask while the unreliable features are
the ones labeled O (noise-dominant). Assuming that the reliable
features Y,. approximate well the true ones X,., a Bayesian de-
cision is then employed to estimate the remaining components
X, given the reliable ones and a prior speech model. As in [37],
we model the speech prior as a mixture of Gaussians

M

p(X) = p(k)p(X|k) )

k=1
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where M = 1024 is the number of mixture components, % is
the mixture index, p(k) is the mixture weight, and p(X |k) =
N(X; pg, Xk). The binary mask is also used to partition the
mean and covariance of each mixture into their reliable and un-
reliable components as

Hor ke Err k
= R 2 = 5 ’
i |::uu,k :| k [Lur,k
Note that X, . and X, ;. denote the cross-covariance between
the reliable and unreliable components.
It is shown in [12] and [37] that a good estimate of X, is

the minimum mean-square-error estimate or the expected value
conditioned on X,

Eru,k :| ) (6)

2]uu,k

M

EX’?L‘X’T‘(XU) = Zp(k‘Xr)Xu,k (7)
k=1

where p(k|X,) is the a posteriori probability of the kth
mixture given the reliable data and X u,k 1s the expected
value of X, given the kth mixture. p(k|X,) is estimated
using the Bayesian rule and the marginal distribution
p( X, k) = N(Xo; thrie, Brr i) S

p(EW(GIE) "

k;p(k)p(xrlk)

p(k|X;) =

The expected value in the unreliable T-F units corresponding to
the kth mixture can be computed as shown in [18] as

Kok = bk + Surk S5 (Xo = phrk)- ©)

Besides estimating the speech spectral value in the unreliable
T-F units, we are also interested in computing the uncertainty
in our estimates. The variance associated with the reconstructed
spectral vector X can also be computed in a similar fashion to
the computation of the mean in (7) as

M X
Ef\’ :Zp(MXT)X ([X Tk] —uk>
k=1 w

X, T To o
(e =) + [0 o]
(10)

where

A

Eu,k — Euu,k: - Zur,kz_l

rr.k

E7‘u,k . ( 1 1)
Note that the estimate of variance in (10) formed by taking
the weighted average across mixtures follows directly from the
usage of a mixture of Gaussians model for the speech prior in
(5) [18], [51]. It is well known that any density can in theory be
approximated by this model if an adequate number of mixtures
are used [28]. However, in the case of finite mixtures as used in
the present study, this model could lead to an overestimation of
the variance.

Fig. 2 shows the comparison between ideal and estimated un-
certainties. Fig. 2(a) shows a spectrogram of a clean speech ut-
terance from the Aurora4 database. Fig. 2(b) shows the spec-
trogram of a mixture of the speech and restaurant noise from
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the same database. A binary T-F mask, estimated using a spec-
tral subtraction-based algorithm (see Section IV), is shown in
Fig. 2(c). The reliable T—F units in this mask are black and the
unreliable ones white. This mask is applied to the mixture as
explained above and the results are presented in Fig. 2(d). Note
that the application of the binary mask and the spectrogram re-
construction algorithm results in a significant reduction of noise
in the mixture, especially in the mid- and high-frequency re-
gions. However, the enhancement is not perfect and deviations
from clean speech exist. Fig. 2(e) and (f) show the ideal and the
estimated uncertainties associated with the reconstructed spec-
trogram in Fig. 2(d), respectively. The darker T-F units are
more reliable. In other words, the uncertainty associated with
the darker T—F units is lower. The ideal uncertainty is computed
as the squared difference between the spectral energies of the
enhanced and the clean speech utterances. We use the diagonal
components of X ¢ as the estimate of the uncertainty associated
with the reconstructed spectral vector X. Observe that the esti-
mated uncertainty is similar to the ideal uncertainty, especially
in those time frames that contain voice activity. The cesptra 2
derived from X is used as input to the ASR in the experiments
reported in Section I'V. Note that no information about the noise
source is used in the estimation of X ..

B. Transforming Spectral Uncertainty Into Cepstral Domain

In the second step, we use a set of regression trees to trans-
form diag {X} into ¥, the estimated variance associated
with the reconstructed cepstra. Regression tree is a flexible and
easy-to-interpret tool for nonparametric and multivariate regres-
sion analysis. It is a particularly attractive option if a parametric
form of relationship between the predictor and the dependent
variables is unavailable from domain knowledge. Since regres-
sion trees are fairly well documented in the literature [7], we
only provide a brief overview here. A regression tree performs
a histogram analysis of the regression surface. In essence, this
involves the use of a binary decision tree to partition the input
space using a sequence of yes/no questions that form the leaf
nodes of the tree. Depending on the answers, the tree is traversed
until a terminal node is reached. The terminal nodes contain the
values of the dependent variable. In regression analysis, a ques-
tion is chosen so that the answer partitions the predictor variable
space in such a manner as to minimize the weighted sample vari-
ance of the dependent variable at that node [7].

For each frame, the input to the regression tree consists of
diag {¥ ¢} corresponding to that frame. It is also found to be
useful to supplement the spectral domain variance by the recon-
structed cepstra in that frame and in one frame before and after.
The desired output, as suggested in [15], is a diagonal matrix
formed by the squared difference between the reconstructed
and clean cepstra. The feature vectors used in the recognition
experiments reported in Section IV consist of 12 Mel-frequency
cepstral coefficients and the log frame energy along with the
corresponding delta and acceleration coefficients. Hence, the
uncertainties corresponding to a 39-dimensional output feature
are required. We estimate the uncertainty corresponding to
static, delta, and acceleration coefficients independently. Note
that the cepstral transform approximately orthogonalizes the
spectral features [43]. While it is certainly possible to compute
the uncertainties of the difference coefficients from the static
ones [15], [23], it may be advantageous to estimate them
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Fig. 2. Comparison between estimated and ideal uncertainties of the reconstructed spectra. (a) The spectrogram of a clean speech utterance. (b) The spectrogram
of a mixture of the clean speech utterance and restaurant noise. (c) The binary T-F mask produced by spectral subtraction. Reliable T-F units are marked black and
unreliable white. (d) The spectrogram obtained from (b) by applying the mask in (c) followed by reconstruction of the unreliable T-F units. (e) The true uncertainty
associated with the reconstructed spectrogram in (d). (f) The corresponding estimated uncertainty.

directly. It is shown in [53] that the difference features are more
robust than static features. However, the computation of the un-
certainties of the dynamic coefficients from the static ones using
typical linear transforms would result in increased uncertainty
of the static ones. Additional justification for the independence
modeling assumption using difference coefficients can be found

in [50]. Hence, we train a separate tree for each output dimen-
sion using the same input feature set.

Two parameters critical to the successful use of regression
trees are the minimum splitting threshold and the tree size. The
minimum splitting threshold refers to the minimum number of
training samples in a terminal node for it to be a valid one [41].
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Fig. 3. Choosing the best tree size by cross validation. The plot shows how the
regression error variance changes as the number of terminal node increases on
the cross-validation dataset. The plot also shows the number of terminal nodes
for the best tree chosen. The best tree has an error variance one standard devia-
tion higher than the minimum variance.

In our experiments, we set the minimum splitting threshold to
10. To avoid over-fitting, a tenfold cross-validation is used to
find the best tree size [7], [41]. Fig. 3 shows how the regres-
sion error variance changes on the cross-validation data as the
tree size increases. The data corresponds to regressing the uncer-
tainty of the first-order cepstral coefficient. Note that the regres-
sion error variance decreases as the number of terminal nodes
is increased. However, to avoid over-fitting, we choose the best
tree size as the one that has an error variance one standard devi-
ation higher than the minimum regression error variance. Fig. 3
also shows the tree size and the cross-validation error variance
of the best tree so chosen.

Fig. 4(a) and (b) shows the true and the estimated cepstral un-
certainties for the same noisy mixture as used in generating the
results shown in Fig. 2, respectively. The brightness of a pixel is
related to the degree of the uncertainty of the corresponding cep-
stral coefficient. Greater brightness indicates higher uncertainty.
Fig. 4(a) shows the true uncertainties corresponding to the static,
the delta, and the acceleration (Acc.) coefficients. The figure
supports the conclusion in [53] that the dynamic cepstral coeffi-
cients are more reliable than the static ones. Fig. 4(b) shows the
uncertainties estimated using the set of 39 regression trees. No-
tice that the estimated uncertainties approximate well the true
ones.

IV. EXPERIMENTAL RESULTS

We have evaluated the proposed method of uncertainty
estimation in conjunction with the uncertainty decoder on the
Aurora 4, 5000-word closed-vocabulary recognition task [33].
This task is based on the Wall Street Journal (WSJ0) database
[34], which is created by recording speakers reading articles
from the Wall Street Journal. Aurora4 consists of several test
sets corresponding to different noise sources digitally added to
the clean speech recordings. The signal-to-noise ratio (SNR)
is randomly chosen from 5 to 15 dB, with an average SNR of
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10 dB. This database also includes other test sets that incor-
porate microphone and sampling rate variations. As the focus
of this paper is on noise robustness, we consider only a subset
of the Aurora4 task. This subset corresponds to training and
testing on the recordings from the Sennheiser microphone at
16 kHz and processed by a P.341 filter [33]. The use of the
P.341 filter simulates the transmission characteristics for wide-
band telephony [22]. In particular, 7138 utterances from 83
speakers in the “training_clean_sennh” set are used for training
the acoustic model and the speech prior used in reconstruction
(see Section III-A). The acoustic model consists of state-tied,
cross-word triphone-based HMMs. The observation density in
each state is modeled using a mixture of four Gaussians [32].
We use the same bigram language model and the CMU pro-
nunciation dictionary-based lexicon [10] as used in generating
the baseline results on Aurora4 [32]. Testing is performed on
noisy utterances from six different noise sources: car, babble,
restaurant, street, airport, and train. These noisy utterances
correspond to test sets 2—7, respectively. We use the standard
“short test set definitions” consisting of 166 test utterances for
each noise condition. This set gives results representative of
the complete test set [33]. The number of speakers in the test
set is eight. Training and testing on clean speech are performed
using the toolkit and scripts developed for Aurora4 [32]. For
testing on the noisy datasets, the decoder in [32] is modified to
incorporate the uncertainty decoding method. The word error
rate (WER) under clean speech conditions is 10.5%.

For training the regression trees (Section III-B), we use only
a 40-utterance development-subset corresponding to one of
the noise sources, restaurant noise. Note that for robust speech
recognition, it is desirable to utilize as little a priori information
about noise as possible. Hence, we avoid using other noise
sources in training the set of regression trees. To obtain the
reconstructed spectra during the regression learning, we use
ideal binary T-F masks (see Section III-A). As the Aurora4
corpus does not separately provide the noise source used to
construct the noisy test sets, the noise signal is estimated from
the mixture and the clean speech signals by assuming that
speech and noise are uncorrelated in the mixture. The noise
signal is then estimated by subtracting the clean speech signal
from the mixture signal. Finally, the enhanced (reconstructed)
cepstra 2 and its associated variance Xz, estimated using the
method described in Section III, are used in (4) to perform
uncertainty decoding in the following experiments.

Spectral subtraction is frequently used to generate binary T-F
masks in missing data studies [3], [12]. Hence, we first report
results using binary masks generated by spectral subtraction.
The spectrum of noise is estimated as the average spectrum of
the first and the last 50 frames of the noisy speech spectrum.
The noise spectrum is then used to estimate the local SNR in
each T-F unit. Asin [12], a T-F unit is labeled speech-dominant
in the mask if the local SNR exceeds a threshold. The choice
of this threshold represents a tradeoff between providing more
T—F units with reliable labels to the spectrogram reconstruction
algorithm (Section III-A) and preventing wrong labeling of T-F
units [38]. The optimal value is also dependent on the SNR [38],
[42]. For simplicity we set this threshold to a constant. The value
of 5 dB is found to give the best recognition performance on the
development set and is used for all the test sets. Additionally,
as suggested in [37], the estimated noise spectrum is used to
“clean” the reliable T-F units by subtracting the noise energy
from the mixture energy.
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Fig. 4. Comparison between true and estimated cepstral domain uncertainties. (a) The true uncertainty associated with the static, the dynamic, and the acceleration

cepstral coefficients. (b) The corresponding estimated uncertainty.

TABLE I
WER (%) OF UNCERTAINTY DECODING AND RECOGNITION WITH
RECONSTRUCTED CEPSTRA WHEN USING THE SPECTRAL SUBTRACTION
MASK ON THE AURORA4 TASK. FOR COMPARISON, BASELINE
RECOGNITION RESULTS ARE ALSO SHOWN

Test Set
System
2 3 4 5 6 7
Baseline 575 554 554 63.0 541 659
Enhanced Speech | 23.3 473 546 504 505 49.1
UD 22.1 435 515 495 476 469

Table I summarizes the performance of the uncertainty de-
coder (“UD”) on the reconstructed cepstra by utilizing the es-
timated uncertainty. Performance is measured in terms of per-
centage WER. For comparison, we also show the performance
of the conventional decoder on the reconstructed cepstra (“En-
hanced Speech”). Additionally, the baseline performance of the
conventional decoder on the noisy data is also shown (“Base-
line”’). As can be seen from Table I, across all noise conditions,
the performance of the uncertainty decoder using the estimated
uncertainty shows significant improvement over that of the con-
ventional ASR on the reconstructed cepstra. The average reduc-
tion in error rate is 5.2%. Moreover, large improvement over the
baseline performance is obtained, with an average error rate re-
duction of 27.34%. Notice that the system is able to generalize
well across noise conditions not seen during the regression tree
training.

We now present results using the masks generated by a com-
putational auditory scene analysis (CASA) system [19]. This
system is a voiced speech separation system based on two main
stages: segmentation and grouping. In segmentation, the input
signal is decomposed into a collection of contiguous T-F units
that are dominated by one sound source. During grouping, those
segments that likely belong to the same source are grouped
together based on common periodicity. In the low-frequency
range, the system generates segments based on temporal con-
tinuity and cross-channel correlation, and groups them based

TABLE II
WER (%) OF UNCERTAINTY DECODING AND RECOGNITION WITH
RECONSTRUCTED CEPSTRA WHEN USING THE COMBINED VOICE
SEPARATION AND SPECTRAL SUBTRACTION MASK

Test Set
System
2 3 4 5 6 7
Enhanced Speech | 31.1 455 504 51.6 532 532
UD 27.5 42 469 515 471 492

on periodicity similarity. For high frequencies, the signal enve-
lope fluctuates at the pitch rate and amplitude modulation rates
are used for grouping [19]. Provided that the speech pitch con-
tour can be estimated, this segregation mechanism produces a
binary mask that labels those T—F units where speech dominates
the interference. The CASA system shows a robust performance
when tested with a variety of noise intrusions. For input to the
system in [19], a pitch estimate is derived from the noisy speech
signal using Praat [5]. The system in [19] uses an auditory fil-
terbank decomposition of the input signal. For consistency with
the DFT decomposition used in our spectrogram reconstruction,
this mask is mapped into the DFT domain prior to reconstruction
by labeling the corresponding DFT bins. Note that the system in
[19] segregates only voiced speech. Hence, if a valid pitch is not
detected in a particular frame, we use the mask obtained by spec-
tral subtraction in those frames. Table II shows the performance
of the uncertainty decoder when using the combined mask from
[19] and spectral subtraction. As before, across all SNR con-
ditions, significant improvement over the performance of the
conventional ASR on the enhanced speech is obtained when
using the estimated variance. The average reduction in WER is
7.6%. Note that under nonstationary noise conditions, the per-
formances of both the conventional ASR and the uncertainty
decoder using the combined mask are significantly better than
their performance using the spectral subtraction mask alone.
While test sets 3 and 4 correspond to nonstationary noise con-
ditions, the rest correspond to fairly stationary ones. Mask es-
timation based on spectral subtraction appears to be better for
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TABLE III
WER (%) FROM UNCERTAINTY DECODING WITH ESTIMATED AND
IDEAL VARIANCE AND RECOGNITION WITH RECONSTRUCTED
CEPSTRA WHEN USING THE IDEAL BINARY MASK

Test Set
System 2 3 4 5 6 7
Enhanced Speech | 14.7 22 252 29 196 26
Estimated UD 14 20 22 249 175 257
Ideal UD 14 201 222 251 168 249

the stationary noise conditions in the present study. This is due
to the inability of the voice separation system to recover the in-
harmonic components of speech in the voiced frames. On the
other hand, under nonstationary noise conditions, this drawback
is more than offset by improved segregation of harmonic com-
ponents.

To show the ceiling performance of the proposed method,
we also report results obtained using the ideal binary T-F
masks. These masks are generated in a similar fashion to
those used in our regression tree training with the front-end
that produces a DFT decomposition of the input signal every
frame (see Section III-A). For comparison, recognition results
using the ideal uncertainties (“Ideal UD”) are also shown. Ideal
uncertainty is computed as the squared difference between the
reconstructed and clean cepstra as suggested in [15]. Table III
shows that the performance of the uncertainty decoder using
the estimated uncertainty (“Estimated UD”) is close to its
performance using the ideal uncertainty. This indicates that the
proposed approach estimates the uncertainty associated with
the reconstructed cepstra accurately. Notice that even with the
use of ideal binary masks, the uncertainty decoder can still
improve recognition results compared to the conventional ASR;
the average reduction in error rate is 8.75%. Note that for test
sets 3-5, the performance of uncertainty decoder using the ideal
uncertainties is slightly worse compared to its performance
using the estimated ones. However, the performance difference
is statistically insignificant.

It can also be seen from Table III that use of the ideal binary
mask results in an excellent performance for both the conven-
tional ASR and the uncertainty decoder. This supports the use
of the ideal binary mask as the computational goal for speech
separation systems (see also [49]).

A. Comparison of Regression Trees and Multilayer Perceptrons
in Learning the Cepstral Domain Uncertainty

In an earlier study [45], we used a multilayer perceptron
(MLP) to transform the spectral domain uncertainty into the
variance associated with the reconstructed cepstra. Since MLP
is well known as a universal function approximator [36], it
can also be used for learning this transformation. Specifically,
we trained a one-hidden-layer (374-800-39) MLP [36]. The
input and the output features are the same as those described
in Section III-B. The transfer functions of the hidden and
the output layer neurons are tangent hyperbolic sigmoid and
linear, respectively. The MLP is trained using backpropagation,
optimized by the scaled conjugate gradient method [36]. The
network is trained for 100 epochs and a tenfold cross-validation
is used to avoid over-fitting.
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TABLE IV
COMPARISON OF WER (%) USING TWO DIFFERENT
TRANSFORMATION METHODS
Test Set
Transformation Method
2 3 4 5 6 7

Regression Tree 22.1 435 515 495 476 469

MLP 227 455 515 519 476 494

Table IV compares the WER of the uncertainty decoder using
regression trees and MLP to transform the uncertainty from the
spectral domain to the cepstral domain. For both methods, the
enhanced speech was produced using the binary masks gener-
ated by spectral subtraction. From Table IV, we can see that the
performance of the two methods is similar. Hence, both methods
are suitable for learning the uncertainty transformation. For this
task, the regression tree is slightly better perhaps due to its non-
parametric property which enables it to make minimal assump-
tions about the nature of the regression surface.

B. Comparison of Uncertainty Decoding With Missing-Data
Recognition

As mentioned in Sections I and III, for robust speech recog-
nition, speech segregation systems that compute a binary T-F
mask have been coupled to a missing-data ASR. While previous
studies have shown that the performance of the missing-data
ASR degrades as the vocabulary size increases [37], [44], here
we investigate whether uncertainty decoding can be a valid
alternative to missing-data recognition even on a small vocabu-
lary task. The specific missing-data method used is the bounded
marginalization algorithm which is known to be the best
missing-data method for small vocabulary tasks [12], [37]. In
the marginalization method, the posterior probability using only
the reliable constituents is computed by integrating over the
unreliable ones [12]. Feature vectors for the missing-data ASR
are the spectral energies extracted as described in Section III-A.
The bounded marginalization method uses the knowledge that
the true value of the spectral energy in the unreliable parts lies
between 0 and the observed spectral energy. These bounds are
used as limits on the integral involved in marginalizing the
posterior probability over the unreliable features.

We evaluate the two recognition approaches on a speaker-in-
dependent connected digit recognition task. The grammar for
this task allows for the repetition of one or more digits. This
is the same task used in the original study in [12]. Thirteen
(1-9, a silence, very short pause between words, zero, and oh)
word-level models are trained for both recognizers. All except
the short pause model have eight emitting states. The short pause
model has a single emitting state, tied to state 4 of the silence
model. The output distribution in each state is modeled as a mix-
ture of ten Gaussians, as suggested in [12]. The TIDigits data-
base’s male speaker dataset is used for both training and testing
[24]. Specifically, the models are trained using 4235 utterances
in the training set of this database. Testing is performed on a
subset of the testing set consisting of 461 utterances from six
speakers. All test speakers are different from the speakers in the
training set. The signals in this database are sampled at 20 kHz.
The noise source is factory noise from the NOISEX corpus [48],
which is also used in [3] and [12]. Factory noise is chosen as
it has energy in formant regions, therefore posing challenging
problems for recognition. An HMM toolkit, HTK [55], is used
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for training. During testing, the decoder is modified to incorpo-
rate the uncertainty decoding and the bounded marginalization
methods.

For both methods, the binary T-F mask used is the ideal bi-
nary mask. As pointed out earlier, this mask needs to be esti-
mated in practice. Hence, we investigate how robust the two rec-
ognizers are to deviations from the ideal binary mask. Specif-
ically, we randomly flip a certain number of 1s and Os in the
mask. The percentage deviation is measured using the fraction
of 1s flipped, which takes on the values of 0%, 5%, 10%, 20%,
and 50%. Since the spectral energy in a T-F unit has a large
dynamic range, we additionally calculate the energy deviation
as the ratio of the total energy corresponding to the flipped bits
to the total energy corresponding to T—F units labeled 1 in the
ideal binary mask. The resulting masks are used directly by the
missing-data ASR. For use by the uncertainty decoder, we re-
construct the speech spectral energy in the missing T-F units
and derive cepstral features along with the associated uncertain-
ties as described in Section III. Fig. 5(a)—(c) summarizes the per-
formance of the two recognizers at SNR values of 10, 5, and 0
dB, respectively. Additionally, the performance of the conven-
tional ASR on the reconstructed cepstra is also shown. Perfor-
mance is given in terms of WER across various energy devia-
tion ratios. To better illustrate the differences between the two
recognition methods, the error rates in Fig. 5 are plotted to dif-
ferent scales for the three different SNRs. Fig. 5(a) shows that at
10-dB SNR, both the conventional ASR and the uncertainty de-
coder outperform the missing-data recognizer. The uncertainty
decoder also outperforms the missing-data ASR at 5-dB SNR as
shown in Fig. 5(b). Fig. 5(c) shows that the performance of the
uncertainty decoder and the missing-data recognizer are com-
parable at the 0 dB SNR condition. Hence, the proposed un-
certainty decoding approach gives a strong alternative to the
missing-data approach for robust speech recognition using bi-
nary T-F masks. Note that across all SNRs the uncertainty de-
coding outperforms the coventional recognition of the recon-
struted cepstra.

V. CONCLUDING REMARKS

We have proposed a general solution to the problem of es-
timating the uncertainty of cepstral features derived from the
output of front-end preprocessing algorithms that use a binary
T-F mask for speech enhancement. Using the uncertainty de-
coding approach in [15] on the Aurora4 task, we have shown
that the estimated uncertainty yields significant reductions in
WER compared to conventional recognition on the enhanced
cepstra. We have also obtained substantial improvements over
the baseline ASR performance. Furthermore, our experiments
on the digit recognition task suggest that the proposed method
provides a valid alternative to the missing-data approach for ro-
bust speech recognition.

Recently, other extensions to the uncertainty decoding
method in [15] have also been proposed. In [26], the joint
distribution of clean and corrupted speech features is used
in a model-based uncertainty decoding scheme. To avoid the
requirement of aligned clean and corrupted speech data during
training, noise statistics are used in a vector Taylor series ap-
proach to uncertainty decoding in [52]. In [21], the uncertainty
decoding approach is extended to incorporate a model for the
prior distribution of clean speech features in (1) to handle
channel distortion.
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Fig. 5. Comparison of conventional recognition of enhanced speech, uncer-
tainty decoding, and missing-data recognition. The figures show the WER with
respect to deviations from the ideal binary mask. (a) WER at 10-dB SNR. (b)
WER at 5-dB SNR. (c) WER at 0-dB SNR.

The principal advantage of the proposed method is that it
neither requires that noise conditions be known a priori nor
assumes a noise model; hence, it falls under the category of
feature-based robust speech recognition. As mentioned in the
introduction, model-based noise compensation techniques



SRINIVASAN AND WANG: TRANSFORMING BINARY UNCERTAINTIES FOR ROBUST SPEECH RECOGNITION

offer an alternative approach to robust speech recognition.
Model-based methods either require all noise sources encoun-
tered during deployment to be available a priori or assume a
model for each noise in the environment. When these assump-
tions are met, model-based techniques tend to give very good
performance.

Our training of regression trees requires a limited amount of
aligned clean and noisy speech data, corresponding to one of
the noise sources used in the evaluation. However, as seen in
Section IV, the system is able to generalize across noise sources
not seen during training. We wish to emphasize that the exact
choice of the noise source used in learning the uncertainties is
not crucial for the performance. In an earlier study [45], for ex-
ample, we used a different noise source, street noise, but the
resulting performance was very similar. Hence, the proposed
method can be used in conjunction with CASA systems that do
not require noise conditions known a priori for robust speech
recognition.

An alternative approach for estimating the uncertainties as-
sociated with the reconstructed cepstra is given in [23]. The
variance of the static coefficients is approximated using the un-
scented transform. The variance of the dynamic coefficients is
estimated using the same linear transformation employed in ob-
taining the dynamic features. As described in Section III-B,
this approach is not optimal. A key advantage of the proposed
method is the direct estimation of uncertainties corresponding to
the static, the delta, and the acceleration coefficients. This en-
ables us to exploit the differences in the a priori accuracies of
the static and the dynamic coefficients [53].

For learning the transformation of spectral domain uncertain-
ties to cepstral ones, we used the ideal binary T-F mask. This
transformation was then applied to the masks generated using
spectral subtraction and a CASA system. Although the resulting
uncertainty estimates provide promising results, additional im-
provements may be obtained by training the regression trees
directly on the output of particular speech enhancement algo-
rithms. Future work will address this issue.

Finally, the uncertainty associated with the enhanced features
can also be utilized using the minimax classification approach
[29]. In this approach, speech enhancement errors are modeled
as the mismatch in the mean of the acoustic model variables.
However, it is shown in [8] that ASR systems are more sensitive
to increases in the variance of enhanced features than to changes
in their means. Hence, in this paper we have accounted for the
uncertainty in the variance of the enhanced features. The ASR
performance may be further improved by exploiting uncertain-
ties in both the means and the variances of the enhanced speech
features.
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