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Abstract

This paper presents a robust method to solve the two
coupled problems: ground layer detection and vehicle ego-
motion estimation, which appear in visual navigation. We
virtually rotate the camera to the downward-looking pose
in order to exploit the fact that the vehicle motion is roughly
constrained to be planar motion on the ground. This camera
geometry transformation, together with planar motion con-
straint, will: 1) eliminate the ambiguity between rotational
and translational ego-motion parameters, and 2) improve
the Hessian matrix condition in the direct motion estimation
process. The virtual downward-looking camera enables us
to estimate the planar ego-motions even for small image
patches. Such local measurements are then combined to-
gether, by a robust weighting scheme based on both ground
plane geometry and motion compensated intensity residu-
als, for a global ego-motion estimation and ground plane
detection. We demonstrate the effectiveness of our method
by experiments on both synthetic and real data.

1 Introduction
Ego-motion estimation and ground plane detection have

many applications, such as visual navigation, computer vi-
sion based driving assistance, and 3D environment map re-
construction. In this paper we address the case of a single
camera rigidly mounted on a car moving in traffic scenes
that includes cluttered background including other static or
moving objects on the ground plane. It is difficult to ap-
ply traditional Structure from Motion algorithms here since
they usually require estimating the depth for such cluttered
background. To overcome such difficulty, planes in the
scene have been used for ego-motion estimation [19, 13].

Ground plane is of special interest. Methods to obtain
ground plane include 2D dominant motion estimation [12]
and layer extraction [14, 26, 5, 28, 27, 20, 24, 15, 16].
These approaches can be classified into two categories: top-
down approaches and bottom-up approaches. Top-down ap-
proaches either assume that the ground plane is a dominant
plane, or assume that the scene can be approximated with
a few planar layers who simultaneously compete for layer

support. In our traffic scenarios, the ground plane is not
necessary a dominant plane, and the cluttered background
is hard to be modelled with a small number of planar layers.
It is therefore hard to apply the top-down approaches here.
In the bottom-up approaches, images are first divided into
small patches, and local measurement (such as 2D image
transformation) for each patch is then computed. These lo-
cal measurements are then grouped into layers. Due to the
typical forward motion in vehicle moving, it is necessary
to use projective homography for local 2D measurements.
Givensmall local support area and low texture on the road
(ground), the recovery of projective homography is not re-
liable due to large number of unknown parameters, small
field of view, and ambiguities among its parameters.

In this paper, we assume the camera is calibrated such
that its focus length and its relative pose with respect to the
vehicle is known. In such a particular setup, the ground
plane normal is explicitly constrained too1. We can there-
fore use ego-motion, instead of projective homography, as
the local measurement. Given an image patch that isas-
sumedto be on the ground, the estimated ego-motion is the
local measurement of such image patch. Using ego-motion
as the local measurement is an improvement over using pro-
jective homography, since it exploits the ground plane ge-
ometry. However, estimating ego-motion based on small
image patch still suffers from ambiguities among its param-
eters due to small field of view [2, 7].

To overcome the above difficulty, we exploit the fact that
the vehicle motion can be approximated by planar motion
on the ground. Such planar motion is of great practice im-
portance and has been used in structure from motion and
camera calibration [18, 4], and vehicle ego-motion estima-
tion [22]. In this paper, we use a virtual downward-looking
camera to exploit the planar motion constraint. Thinking of
a virtual downward-looking camera on planar motion has
the following advantages: 1) It eliminates the ambiguity be-
tween rotational and translational ego-motion parameters;
2) It improves the Hessian matrix condition in the direct

1We do not need to know the distance from the camera to the ground
due to the scale ambiguity between the camera translation and scene depth.



motion estimation process; 3) It induces image motions that
are linear in terms of image coordinates, and therefore can
be reliably estimated.

The virtual camera is used to collect the local measure-
ments, i.e., to estimate the planar ego-motions based on
small image patches. Such local measurements are then
combined together, by a robust weighting scheme for the
global ego-motion estimation and ground plane detection.
Regularization is then applied for the recovery of the re-
maining small non-planar motions.

2 Ego-motion estimation

In this section, we describe the direct method to estimate
the vehicle ego-motion with respect to a small image patch
that is assumed to be on the ground.

2.1 Ego-motion model

Given a sequence of imagesI0, I1, ..., IN under a per-
spective camera with internal matrix ofdiag(f, f, 1), we
want to compute the camera ego-motion between the refer-
ence imageI0 and another imageIi, i = 1, 2, ..., N . The
incrementalimage motion at an image pointp = (x, y)> in
Ii is given by (see [11]):

vi(p) = BpΩi +
1

Z(p)
ApTi (1)

whereΩi = (ωX , ωY , ωZ)>i andTi = (TX , TY , TZ)>i are
the camera rotational and translational velocity,Z(p) is the
3D scene depth at Pointp,

Bp =
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If we are given a 3D planen>P + d = 0 with n =
(n1, n2, n3)> the plane normal andP = (X, Y, Z)> the
3D coordinate of points on the plane, then we can rewrite
Eq.(1) as:

vi(p) = BpΩi +
n>F

d
ApTi (4)

whereF = (−x
f ,− y

f ,−1)>.
Eq.(4) shows that there is a scale ambiguity betweend

and the camera translationTi, which means that we can
only recover the direction of the camera translation. With-
out loss of generality, we setd = −1 in our experiments.

2.2 Direct estimation of ego-motion

As has been pointed out in [22], in typical traffic sce-
narios, direct method [11, 8, 6, 17] is more preferable than
optical-flow based approach [1, 10, 23, 21] for ego-motion
estimation. The reason is that the road usually has weak
texture or linear image structure, while the cluttered back-
ground including moving objects often contains many fea-

ture points.
Given calibrated camera and ground plane normal, we

use direct method to estimate the incremental ego-motion
based on the brightness constancy assumption, by minimiz-
ing the sum square difference (SSD) with respect to the in-
cremental camera motion parametersΘ = (Ωi,Ti):

E(Θ) =
∑

p

[Ii(p + vi(p, Θ))− I0(p)]2

≈
∑

p

[
g>p J>p Θ + ep

]2
(5)

whereep = Ii(p)−I0(p) is the temporal difference at Pixel
p, g>p = ∇Ii(p) is the image gradient at Pixelp in image
Ii, andJp is the Jacobian atp:

Jp =
∂vi(p)

∂Θ
=
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=
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From Eq.(5), we can see that every pixel inside the im-
age patch with non-zero intensity derivative makes a con-
tribution to the final solution ofΘ. To achieve robust-
ness to outliers, the contribution of each pixel should be
weighted according to some robust criteria. For exam-
ple, robust estimator uses the residualep to determine the

weight wp = w(ep) = ρ̇(ep)
ep

, whereρ(·) is some robust
M-estimator.

The weighted least square solution of Eq.(5) is given by:

Θ = L−1b (7)

where

L =
∑

p

wpJpgpg>p J>p (8)

is theHessian,

b =
∑

p

(−wpepJpgp) (9)

is theaccumulated residual.
Once we recover the incremental camera motion param-

etersΘ = (Ωi,Ti), we perform an incremental update to
the ego-motionMi:

Mi ← Mi

[
R(Ωi) Ti

0 1

]
(10)

whereR(Ωi) is the incremental rotation matrix given by
the Rodriguez’s formula:

R(Ω) = I + [ñ]× sin θ + [ñ]2×(1− cos θ) (11)

whereθ = ‖Ω‖, and

[ñ]× =
1
θ




0 −wz wy

wz 0 −wx

−wy wx 0


 . (12)

The overall direct ego-motion computation is an itera-
tive Gauss-Newton gradient decent process. Each iteration
consists of the following three steps:



1. Compute the incremental motion parameters (Eq.(7)).

2. Perform the incremental update to the ego-motionMi

(Eq.(10)).

3. Warp the imageIi towards the reference imageI0,
using the homography induced by the ground plane
(n, d) under current ego-motion:H = K(R(Ω) −
T
d
n>)K−1, whereK = diag(f, f, 1) is the camera in-

ternal matrix.

3 Camera models for planar ego-motion esti-
mation

There are several difficulties in estimating the full vehi-
cle ego-motion based on asmall image patch:

• During a short period of time, the vehicle undergoes
approximately planar motion. For a camera rigidly
mounted on such vehicle2, its ego-motion consists of
a rotation around an axis vertical to the ground plane,
and two translations parallel to the ground plane.
Therefore, full ego-motion model contains more pa-
rameters than necessary. Estimating such diminishing
parameters are inherently ill-conditioned.

• There are inherent ambiguities between rotation and
translation. Given a small image patch, therefore small
field of view (FOV), it is hard to differentiate the
wX -induced flow from theTY -induced flow, and the
wY induced flow from theTX -induced flow, respec-
tively [2, 7]. These inherent ambiguities introduce
elongated valley in the SSD error function [3], result-
ing in slow convergence and bad local minima.

It is therefore necessary to exploit the planar motion con-
straint. To do so, we divide the six ego-motion parameters
into two triples. The first triple consists of the planar mo-
tion parameters, and the second triple consists of the dimin-
ishing non-planar motion parameters that can be ignored at
the stage of local measurement. In the following, we intro-
duce two virtual cameras and analyze how the selection of
camera models affects the effectiveness in exploiting planar
motion constraint.

Virtual cameras can be achieved by rectifying the images
using the homography induced by the ground plane and the
relative pose between the original camera and the virtual
camera. Doing so requires camera calibration for the cam-
era rotational pose with respect to the vehicle. We assume
the camera is fixed with respect to the vehicle, which means
that the calibration can be done before hand (see the Ap-
pendix for a simple calibration method). It is important to
keep the virtual cameras always on the same plane so that
the camera motions among the rectified images are still pla-
nar motions.

2The camera can have any orientation, but is otherwise fixed w.r.t. the
vehicle body.

3.1 Virtual forward-looking camera

In a typical setting, the camera is mounted on the vehicle
looking at the ground at some angle, as shown in Fig.(7).
A simple way to make use of the planar motion constraint
is to virtually rotate the camera such that its optical axis (Z
axis) points forward horizontally and itsXZ plane parallel
to the ground plane, as has been done in [22]. We will call
it the forward-lookingcamera.

The planar ego-motion parameters are then reduced to
Θf = (wY , TX , TZ). There still exists ambiguity between
wY andTX . In [22], the dominant camera motion set is cho-
sen to be(wX , wY , TZ). But in real experiments we have
observed non-negligibleTX , especially when the vehicle is
changing lanes or turning. Moreover, the camera motion is
not longer planar due towX .

In the coordinate frame of the forward-looking camera,
the normal of the ground plane is(0, 1, 0), and the Jacobian
w.r.t. Θf is:

Jp =
∂vi(p)
∂Θf

=

[
f + x2

f y −xy
f

xy
f 0 −y2

f

]>
(13)

In addition to the ambiguity betweenwY andTX , the
above Jacobian also indicates the following problems:

• It is usually hard to estimatewY andTZ within a small
FOV since they introduce image motions that are sec-
ond order polynomial terms of the image coordinate
(x, y).

• The Hessian matrix is determined by both the image
texture and the Jacobian. When the texture is low,the
second order terms in the Jacobian will contribute to a
badly-conditioned Hessian matrix.

Coordinate normalization and translation are useful tech-
nique to improve the matrix condition number [9]. In our
case, coordinate normalization does not change the condi-
tion of the Hessian matrix, since every element in the Ja-
cobian is multiplied by a same constant3. Translating the
coordinates to center around(0, 0) will improve the matrix
condition. Doing so effectively translates the camera such
that its optical axis passes through the center of the input
image patch. In the forward-looking camera, it is impos-
sible to do so given an image patch on the ground that is
parallel to the camera optical axis.

3.2 Virtual downward-looking camera

The above analysis on forward-looking camera geometry
motivates us to rotate and translate (parallel to the ground
plane) the camera geometry such that we think of a virtual
camera whose optical axis is vertical to the ground plane

3Notice thatf also needs to be scaled according to the normalization
to preserve the correctness of Eq.(1).



and passing through the center of input image patch. We
call it thedownward-lookingcamera.

In the coordinate frame of downward-looking camera,
the normal of the ground plane is(0, 0, 1). The dominant
motion becomesΘd = (wZ , TX , TY ), and the Jacobian
w.r.t. Θd is:

Jp =
∂vi(p)
∂Θd

=
[ −y f 0

x 0 f

]>
(14)

The advantages of using the downward-looking camera
are:

• The above Jacobian consists of only zero and first or-
der polynomial terms, which, together with the virtual
camera translation so that its image coordinates are
center around(0, 0), will result in a well-conditioned
Hessian matrix even when the road has low texture.

• There is not inherent ambiguities among the parame-
ters inΘd. It is easy to differentiate the flow induce by
wZ from the flow induced by(TX , TZ). Indeed,Θd

can be reliably estimated since they induce image mo-
tions that are linear in terms of image coordinate(x, y)
(no perspective distortion).

Notice that equally treating the pixels in the rectified im-
age is equivalent to give larger weights to pixels (in the orig-
inal un-rectified image) that correspond to points further-
away on the ground plane, due to the perspective distor-
tion (front-shorten) in the un-rectified image. We can ad-
just such scene-dependent weighting by non-uniform image
sampling. Also notice that translating the camera to look at
the patch center effectively enlarges the camera field of view
(FOV). We avoid the degenerate case of infinite rectified
image area by using only the image pixels below the hori-
zon line (vanishing line of the ground plane), since pixels
above the horizon line in the image are obvious non-ground
pixels. Given the camera pose relative to the vehicle, it is
straightforward to calculate the horizon line (see Appendix
for details).

4 Ground plane detection and global ego-
motion estimation by virtual downward-
looking camera

This section describes a robust technique to combine lo-
cally estimated ego-motions for ground plane detection and
global ego-motion estimation. The general framework of
the algorithm is:

1. Bootstrap from local estimations: Divide the image
into smalln × n patches4. For each patch, estimate
an ego-motion (Section 3.2) and compute its robust
weights based on both geometry and intensity resid-
uals (Section 4.1).

4We use overlap image patches.

2. Combine the local estimations according to their
weights for global ego-motion estimation, including
the non-planar motions.

3. Recompute the robust weight based on current ego-
motion.

Step 1 is an important bootstrap step to provide a good
initialization for further global estimation. Step 2 and 3 are
the two iterative steps. In our experiments, we have found
one or two iterations are enough, due to the accurate local
ego-motion estimation by the downward-looking camera.
The ground plane is detected based on the final weights.

4.1 Geometry based robust weighting

Traditional robust weighting uses motion compensated
pixel intensity residualsep, i.e.,wp = w(ep) in Eq.(7). The
residualep depends on both geometry and texture. Pixels
not on the ground plane but with low texture will also have
low residuals when compensated by the motion correspond-
ing to the ground plane, and will be given large weights
if weighting is purely based on intensity residuals. When
the ground layer has low texture, the inclusion of those
false pixels will affect the final ego-motion estimation. We
should exclude such false pixels by exploiting the ground
plane geometry in the robust weighting.

For each patch in the image, we initialize its plane nor-
mal as the ground plane normal, then refine its plane normal
(Section 4.1.1) under the currently estimated ego-motion. If
the patch is in fact on the ground, the refined plane normal
will be close to the ground normal due to accurate initial-
ization. Otherwise, we will end up with a plane normal that
is distinct from the plane normal of the ground5.

Our final weighting scheme use both the intensity resid-
uals, and the angle between the re-estimated plane normal
n and the ground normalng:

wp = w(ep, θ) (15)

whereep is the intensity residual,θ = arccos
(

n>ng

‖n‖·‖ng‖
)

,

andw(·, σ) is the robust weighting with scaleσ that is set
to the robust standard deviation (see [5]) byσ = 1.4826 ·
medianp|ep|.
4.1.1 Compute plane normal

This section describes the direct method to estimating the
plane normal based on current ego-motion. We re-use
Eq.(7) and the corresponding algorithm in Section 2.2,
except that the unknowns are the plane normaln =
(n1, n2, n3) instead of ego-motionΘ. We therefore need
to derive the new JacobianJp = ∂vi(p)

∂n . Given the ego-
motion and the ground plane equation, we prefer using the
exact homography to representvi(p), instead of using the

5We do not care if such non-ground plane normal is actually correct, as
long as it is distinct from the normal of the ground plane.



instantaneous representation in Eq.(4). The reason is the
following. In each step of incremental ego-motion estima-
tion, the instantaneous representation is a good approxima-
tion since the incremental ego-motion is very small. But
once the final ego-motionΘ is recovered, instantaneous rep-
resentation is no longer a good approximation, especially
when multiple frames are used.

Suppose the initial plane normal isn, we want to com-
pute the incremental plane normal updatem to n. The ho-
mographyH induced by the updated plane(n+m)P+d =
0 is:

H = K(R(Ω)− T
d

n>)K−1 −K
T
d

m>K−1

= R̃−K
T
d

m>K−1 (16)

whereK = diag(f, f, 1) is the camera internal matrix.

Denoter>i the i-th row of R̃, and[x̃, ỹ] = [ r
>
1 p

r>3 p
,
r>2 p

r>3 p
].

The incremental image motion at pointp = (x, y, 1)> is:

vi(p) =
[

u
v

]
=




h>1 p

h>3 p
− x̃

h>2 p

h>3 p
− ỹ


 (17)

whereh>i is thei-th row vector ofH.

The JacobianJp with respect tom is: Jp = ∂vi(p)
∂m =

diag(x, y, 1)
dr3>p

[
x̃
f TZ − TX

x̃
f TZ − TX x̃TZ − fTX

ỹ
f TZ − TY

ỹ
f TZ − TY ỹTZ − fTY

]>

At each iteration, the plane normal is updated by:

n ← n + m

The new plane normal is then plugged into Eq.(16) to com-
pute the new homography for the next iteration.

4.2 Recovering remaining non-planar motion parame-
ters

After the planar ego-motions have been recovered, we
can estimate other small non-planar motions, which might
exhibit due to vehicle bouncing or non-planar road condi-
tion. Under the coordinate frame of the downward-looking
camera, the non-planar motion set isΘ2 = (wX , wY , TZ).
The JacobianJp w.r.t. the non-planar motion parameters
Θ2 is:

Jp =
∂vi(p)
∂Θ2

=

[
−xy

f f + x2

f −xn>F
d

−(f + y2

f ) xy
f −y n>F

d

]>

EstimatingΘ2 is inherently ill-conditioned since it induces
very small or diminished image motions that are second or-
der polynomial terms of image coordinates. Nevertheless,
small or diminishing motions mean that it is safe to apply
strong regularization to improve the condition. The regular-

ized cost function is:E(Θ2) =
∑
p

[
Ĩi(p + vi(p, Θ2))− I0(p)

]2

+ λ
∑
p

vi(p,Θ2)2

(18)
whereĨi is the imageIi warped by the homograpy induced
by the ground plane under current ego-motionΘ1. The sec-
ond summation term is the regularization term, which states
that the image motion induced by parameter setΘ2 must be
small. λ ≥ 0 is a constant parameter. A largerλ enforces
stronger regularization.

By setting ∂E(Θ2)
∂Θ2

= 0, the weighted least square solu-
tion is:

Θ2 =

[∑
p

wpJp(gpg>p + λI)J>p

]−1 ∑
p

(−wpepJpgp)

(19)
Enforcing the regularization is equivalent to “virtually im-
prove” the texture, as shown by the diagonal matrixλI in
Eq.(19), and will therefore improve the condition of Hes-
sian matrix.

5 Experimental results

5.1 Local planar ego-motion estimation

This section presents the experimental results on estimat-
ing the planar ego-motion based on small image patches,
which is an important bootstrap step for further global ego-
motion estimation and ground plane detection. To deal with
large motion, in the experiments we use a multi-resolution
Gaussian pyramid of the input images. In all experiments,
we only use the image pixels below the horizon line, since
pixels above the horizon line in the image are obvious non-
ground pixels.

5.1.1 Synthetic case

To compare different motion models, we use a synthetic
image sequence with ground truth. Fig.(1) shows the two
synthesized images, where the camera simulates a moving
vehicle on the ground plane by simultaneously moving for-
ward and turning left (around an axis at some distance to
the vehicle and vertical to the ground). The normal of the
ground plane and the camera focus length are known.

The synthetic case in Table (1) quantitatively compares
the condition number of the Hessian matrix and the re-
covered ego-motion parameters using four different motion
models. The image patch used to compute the ego-motion
is indicated by the rectangle in Fig.(1a).

From Table (1), we can see that removing the dimin-
ishing parameters greatly improves the condition of Hes-
sian matrix, since diminishing parameters are inherently ill-
conditioned. As a result, the 8-parameter model has the
worst condition since its number of unknown parameters
is far more than necessary. The downward-looking camera
improves the condition number by orders of magnitudes,



synthetic case (Fig.(1)) real case (Fig.(3))
condition num. ego-motion condition num. ego-motion

8-parameter 1.6312e+006 N/A 1.7618e+006 N/A

full ego-motion 3.0674e+003

[
0.2162◦ -0.1360◦ -1.5926◦

-0.0301 0.0226 -0.1264

]
8.5083e+004

[
-0.7710◦ -0.1182◦ 0.2130◦

-0.2001 -0.2367 0.0636

]

forward-looking 2.1349e+002 [-0.4725◦, 0.0058, 0.0903] 4.5254e+003 [0.0108◦, -0.0064, 0.0595]
downward-looking 8.4357e+000 [-0.9991◦, -0.0181, 0.1066] 5.5469e+001 [-0.0840◦, -0.1222, 0.2497]

Table 1. Ego-motion estimation and condition of Hessian (larger condition number means worse condition). For synthetic case,
the ground truth of ego-motion is:(wY , TX , TZ) = (−1.0◦,−0.0175, 0.1), in the coordinate frame of forward-looking camera.
Translations are measured by the unit of image height. The motion parameters of the 8-parameter model do not directly indicate the
ego-motion parameters, and are not shown here.

Figure 1. Synthesized images where the ground plane has
low textures. The rectangle shows one of the patch used to
compute the camera ego-motion.

(a): 8-parameter (b): full ego-motion

(c): forward-looking (d): downward-looking

Figure 2. Motion compensated residual images by mo-
tions from Table (1). The residuals are scaled up by a factor
of 4 for visibility.

and recovers the most accurate ego-motion, which supports
our observations in Section 3.2. The forward-looking model
performs better than the full ego-motion model. But it ap-
pears that part of the left-turn has been confused by left-
translation in the forward-looking model.

Fig.(2) shows the motion-compensated residual images
for qualitative comparison. As we can see, pixels inside the
used rectangle are well-compensated in all models, but only
the downward-looking camera fully compensates all pixels
in the ground plane, which means that it actually recovers a
good global motion model based on a small image patch.

Figure 3. Real images with low textures on the ground
plane, and moving cars/bus in the background.

(a): 8-parameter (b): full ego-motion

(c): forward-looking (d): downward-looking

Figure 4. Motion compensated residual images. The
residuals are scaled up by a factor of 4 for visibility. No-
tice the residuals of lane-marks at the bottom left, and
the residuals of car dash-board right below the lane-marks.
The downward-looking camera model compensates the lane
marks best, and shows correct parallax on the car dash-
board.

5.1.2 Real case

In this subsection, we use real images to compare the per-
formance of ego-motion estimation based on small image
patches. Fig.(3) shows the images we use, where the cam-
era is put on a car that is simultaneously moving forward
and turning left (around an axis at some distance to the ve-
hicle and vertical to the ground). The rectangle shows the
image patch we randomly select to compute the ego-motion.
It is quite a challenging task due to the very low texture of



Figure 5. Traffic scene in city with cluttered background
containing moving cars. The road has weak or linear tex-
tures.

the road and the small image patch.
The last two columns in Table (1) show the condi-

tion number of the Hessian matrix and the recovered ego-
motion. As we can see, the downward-looking camera has
the best condition number, and its recovered ego-motion
correctly indicates that the car is moving forward and turn-
ing left. The forward-looking camera model does not re-
cover the correct left-turn motion, which appears to be
caused by the confusion betweenwY and TX . The full
ego-motion model has large non-planar motions, which is
obviously incorrect.

The motion compensated residual images in Fig.(4)
qualitatively show the performance. As we can see, all mo-
tion models well compensate the pixels inside the rectangle
that are used for estimation, but only the downward-looking
camera compensates all the pixels on the ground, as can be
indicated by the yellow lane marks at the bottom-left of the
images. The darker pixels at the very bottom-left of the im-
ages (right below the yellow lane marks) in Fig.(3) are part
of the car dash-board, and their corresponding residuals in
the downward-looking camera model show correct parallax.
We also use the shape of the image boundaries to indicate
the ego-motion. As we can see, only the downward-looking
camera has correct shape corresponding to forward and left-
turn motions.

5.2 Ground layer detection and global ego-motion es-
timation

In this section, we show the results of ground layer de-
tection and the global ego-motion estimation. Fig.(3) and
Fig.(5) show the two image sequences we used in this ex-
periment. The roads have either very weak texture, or linear
image structure. The backgrounds are cluttered and contain
moving objects.

Fig.(6) shows the experimental results. The first row is
the result on Fig.(3), and the second row is the result on
Fig.(5). Fig.(6b) shows the weights (see Eq.(15)) indicat-
ing the ownership (ground layer or non-ground layer) of
the pixels. Outliers, such as moving cars (and their shad-
ows), buildings, and trees on the side, are clearly indicated
by low weights. Fig.(6c) shows the detected ground layer
using a simple histogram-based threshold scheme. The lane
marks on the road are included in the ground layer although

their colors are quite different from the majority pixels of
the road plane. The car dash-board at the bottom-left in the
first image sequence, and the trees and moving cars on the
ground in both image sequences, are excluded due to sig-
nificantly lower weights. Notice that some of the outliers,
such as the trees at the right side of the road in the second
sequence, have very low texture and therefore low intensity
residuals, but still be excluded due to the fact that their ge-
ometries (plane normals) are significantly different from the
ground plane normal. Fig.(6d) shows the motion compen-
sated residuals by the global ego-motion estimated based on
the weights in (b). As we can see, the pixels on the road are
well compensated, while pixels from other objects, such as
the buildings, trees, and the moving cars with their shadows,
show correct parallax.

6 Conclusion

Vehicle ego-motion estimation and ground layer detec-
tion are challenging tasks due to low texture on the road
and the non-linear perspective distortion. By ways of vir-
tual camera, we have made use of the constraint that the
vehicle is undergoing planar motion on the ground. Enforc-
ing such constraint is necessary to avoid the estimation of
diminishing parameters that are ill-conditioned. By using
virtual downward-looking camera, we further improve the
condition of the Hessian matrix, and eliminate the ambigu-
ities among the unknown parameters, which are linear in
terms of image coordinates and can be reliably estimated.
Together with a geometry-based robust weighting scheme,
we have shown promising results on vehicle ego-motion es-
timation and ground layer detection.

We have assumed that the camera focus length is known.
In practice, we only require a rough initialization of the fo-
cus length, since the error in the focus length only intro-
duces systematic bias on the estimated ego-motion, but does
not affect the ground layer detection. We can therefore use
the algorithm presented in this paper to derive the ground
plane. Then use the detected ground plane to calibrate the
camera [25] to correct the bias in ego-motion.
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Appendix: calibration of camera look-at point
Fig.(7) shows the coordinate frames of the vehicle

(XW , YW , ZW ) and the camera(XC , YC , ZC). We must
know the camera look-at point6w.r.t. the vehiclein order to
virtually rotate the camera desired pose. The look-at point is
defined, in the frame of(XW , YW , ZW ), as the intersection point
of axisZC and the planeZW = 1. Since the camera is fixed w.r.t.
the vehicle, the look-at point is fixed too. To derive the look-at
point, we drive the car along a straight road with parallel lane
marks, and take a few images. If the optical axisZC is identical
to the axisZW , the vanishing point in each image,v = (xv, yv),
of the parallel lane marks will be coincident with the camera
principal point c = (xc, yc)

7. Therefore the look-at point is(
xv−xc

f
, yv−yc

f

)
, wheref is focus length. Each image gives an

estimation of the look-at point. If using multiple images, we use
the mean of them. The horizon line is then defined asy = yv.
Automatic techniques have been developed by researchers to
compute vanishing points. In our experiments, the lane marks are
semi-automatically identified.

vehicle

O

image plane

f θ
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Z w

Z C O
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(a): side view (b): top view
Figure 7. Coordinate frames.

6We assumeXC is parallel to the ground plane. Violation of such assumption
will only introduce a constant bias in the rotation around the camera axis, which
cancels out when computing the relative ego-motion among the views.

7Assumed to be at the image center.


