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E
lectromagnet-

ic metamateri-

als are artifi -

cially structured 

media with un-

usual electromagnetic prop-

erties that can be engineered 

from the radio-frequency (RF) 

and microwave range all the way 

up to optical frequencies. In its 

present form, the fi eld of metama-

terials is just over ten years old but 

has already attracted intense interest 

from many research groups around 

the globe. Suddenly, classical electro-

magnetism took on a fresh and excit-

ing perspective, revealing that there are 

fascinating phenomena still waiting to 

be discovered and corresponding applica-

tions to be invented. In particular, all this 

excitement is associated with the notion of 

the macroscopic constitutive parameters, 

such as the permittivity and permeability. 

What would be possible if we were able to 

synthesize electromagnetic materials with 
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 arbitrarily valued constitutive parameters? The richness of this possibil-

ity becomes more evident when we recall that material parameters can be 

anisotropic (varying with direction) or spatially inhomogeneous (varying 

from point to point). Moreover, they can attain values previously not con-

sidered (i.e., negative or close to zero), and they can even mix together 

the electric and magnetic response of a material (chirality). 

Artificial Dielectrics and Metamaterials
Typically, metamaterials are periodic structures consisting of metal-

lodielectric scatterers having a periodicity that is much smaller 

than the impinging and dominant Bloch wavelengths. Here it 

should be noted that a wave in a periodic structure [one-dimen-

sional (1-D) for clarity] can be described by

f 1x1 d 2 5 f 1x 2e2jbBloch x, (1)

where d is the periodicity and bBloch is defined as the Bloch 

propagation constant [1]. These constituent scatterers behave like 

artificial molecules that scatter an incident electromagnetic wave. The cor-

responding interaction can be represented with macroscopic effective material param-

eters such as the permittivity, the permeability, and the refractive index. Although the term 

“metamaterial” now used to describe such structures is relatively new, the basic concept has been around 

since at least the late 1940s under the name “artificial dielectric.” Specifically at that time, Winston E. Kock of Bell 

Laboratories introduced the concept of the artificial dielectric in order to realize lightweight lenses at microwave 

frequencies (in the 3–5 GHz range), where the wavelength is long (several centimeters) and the corresponding 

natural dielectric lenses are bulky and heavy [2]. The corresponding artificial molecules were electrically small 

metallic disks periodically arranged in a concave lens shape. When a plane wave impinges on such an artificial lens 

with the electric field polarized along the disks, charges separate on the disks thus creating small dipoles, similar 

to the molecular dipoles induced in nonpolar dielectrics by an impressed field. Kock used simple Lorentz theory 

to describe his artificial dielectrics summarized by eeff5 eo1Na, where eo is the permittivity of free space, eeff is 

the effective permittivity, N  is the number of disks per volume, and a is the polarizability of the disks. Using this 

approach, broadband effective permittivities could be obtained due to the nonresonant nature of the (small) disks 

(the polarizability is fairly constant with frequency). A comprehensive review of artificial dielectrics, including a 

rigorous mathematical treatment, from that era can be found in [3]. Moreover, it is worth mentioning some early 

relevant work on effective media, such as that by Bose, who in 1898 used man-made twisted fibers (jute) to rotate 

the polarization of electromagnetic waves, thus emulating naturally occurring chiral media such as sugar [4]. In a 

related effort, Lindman in 1914 studied artificial chiral media formed by an ensemble of small wire helices [5]. It 

could also be mentioned that in the 1950s, Von Hippel utilized a lumped resistor-inductor-capacitor (RLC resonant-

circuit model for characterizing the Lorentzian response of dielectric media [6].

In this context, metamaterials can be defined as a superset of artificial dielectrics with electromagnetic prop-

erties, including those that are inaccessible in nature or are difficult to obtain. Perhaps the most representative 

metamaterial is the so-called left-handed (LH) one (also known as a “negative-refractive-index (NRI)” or a “dou-

ble negative” medium), which is characterized by a simultaneously negative permittivity and permeability, thus 

implying a negative index of refraction. These media were theoretically studied by Victor Veselago in the 1960s [7]. 

To access these unusual material parameters, the constituent unit cells need to be resonant, which leads to disper-

sion. Consequently, unlike Kock’s artificial dielectrics, today’s metamaterials are usually dispersive in nature. 

The Split-Ring-Resonator/Wire Left-Handed Metamaterial
In his visionary paper, Veselago demonstrated that a hypothetical medium with a negative permittivity and per-

meability is compatible with Maxwell’s equations and described the electromagnetic properties of such media. For 

example, he pointed out that in such media, the electric field E, the magnetic field H, and the propagation vector 

k would follow an LH rule (hence the designation “LH media”) and that the phase and group velocities would be 
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antiparallel, implying a negative index of refraction. 

However, Veselago did not conclusively prescribe any 

specific structure that would exhibit these properties. 

He recognized that plasmas could be used to obtain 

a negative permittivity, and he speculated that some 

kind of a magnetic plasma (not available naturally) 

would be needed to obtain a negative permeability. 

The solution to the problem of realizing such an LH or 

NRI medium was solved three decades later by Shelby, 

Smith, and Schultz [8], inspired by the work of John 

Pendry. The structure that was used consisted of an 

array of strip wires to synthesize a negative permittiv-

ity and a structure called the “split-ring resonator,” a 

capacitively loaded loop, to synthesize a negative per-

meability, as shown in Figure 1. The use of an array 

of inductive wires to synthesize artificial dielectrics 

with plasma-like behavior was previously reported by 

Walter Rotman [9] (although Rotman never explored 

the e , 0 region) and independently by John Pendry, 

who boldly put forward the idea that the wires can 

exhibit a negative permittivity [10]. The use of split-

ring resonators to synthesize negative permeability 

media was also suggested by John Pendry in a semi-

nal paper published in IEEE Transactions on Microwave 

Theory and Techniques [11]. Nevertheless, it should be 

noted that artificial media made of capacitively loaded 

loops were also suggested by Sergei Schelkunoff in 

1952 [12]. However, Schelkunoff suggested these par-

ticles as a means of synthesizing a large positive per-

meability (and not a negative one), but he recognized 

that such magnetic artificial materials would be quite 

dispersive. 

The Negative-Refractive-Index 
Transmission-Line Metamaterial
An alternative method for realizing LH metamateri-

als consists of loading a host transmission-line (TL) 

medium with reactive elements [13]–[15]. For example, 

for synthesizing an LH metamaterial in two dimen-

sions, a host microstrip line network can be loaded 

periodically with series capacitors and shunt induc-

tors, as shown in Figure 2. Such loaded lines support 

backward waves. More precisely, the fundamental 

spatial harmonic is a backward one and becomes dom-

inant near the Gamma point, i.e., for small phase-shifts 

per unit cell [16].
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Figure 2. (a) Unit cell for the 2-D NRI-TL metamaterial. 
A host TL is loaded periodically with series capacitors 
and shunt inductors. (b) In the limit bd S 0, the 
interconnecting TLs can be replaced by an equivalent series 
inductance Lx d and shunt capacitance Cx d. This yields a 
band-pass filter type of a unit cell, which contains both an 
LH and an RH response. A modified version of this 1-D 
equivalent circuit can be used to represent axial propagation 
in the 2-D NRI-TL medium (see [13] for details).

In its present form, the field of 
metamaterials is just over ten years 
old but has already attracted intense 
interest from many research groups 
around the globe. 

Figure 1. The split-ring resonator and wire medium.   
The electric field is polarized along the wires 1e , 0 2  
while the magnetic field permeates the split-ring resonators 1m , 0 2  [18].
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A typical dispersion diagram for a 1-D NRI-TL 

medium is shown in Figure 3. See [17] and [18] for 

the complete two-dimensional (2-D) dispersion 

 characterization. 

As shown in Figure 3, the lower band is LH (back-

ward wave), in which the phase velocity is negative 

(the wavefronts move toward the source), but the 

group velocity (slope) is positive (the power moves 

away from the source). In this lower band, the load-

ing elements Co and Lo dominate, whereas at higher 

frequencies, the underlying TL dominates, yielding 

a right-handed (RH) (forward-wave) band. Typi-

cally, these two bands are separated by a stopband, 

which is delimited by two plasma frequencies fc
m and 

fc
e. These are the frequencies that correspond to the 

series and shunt resonance in Figure 2(b) (i.e., the 

effective permeability meff 1v 2  and permittivity eeff 1v 2  
vanish). These cutoff frequencies are readily deter-

mined to be 

 fc
m5

1

2p"Lx Co d
, (2)

 fc
e5

1

2p"Lo 
Cx d

, (3) 

where the characteristic impedance of the host TL 

is Zx5"Lx/Cx. By equating fc
m and fc

e, the stopband 

in Figure 3(a) can be closed, thus allowing access of 

phase shifts around the zero mark, as shown in Fig-

ure 3(b) (i.e., a zero index of refraction but with the 

medium still remaining matched). The condition for a 

closed stopband is therefore determined to be 

 Zx5Å Lo

Co

. (4)

This closed stopband condition (4) was derived in [13, 

(29)] and [14]. Under this condition, the effective prop-

agation constant can be approximated by 

 bBloch < v"Lx Cx2
1

v"1Lod 2 1Cod 2 . (5)

This expression can be interpreted as the sum of the 

phase incurred by the host TL (forward wave) and 

a uniform backward wave line. Likewise, the cor-

responding effective index of refraction would be 

n5 cbBloch/v. Because there is both a backward (LH) 

and a forward (RH) frequency response in the domi-

nant Bloch propagation constant as given by (5), in 

the microwave literature, the TL media of Figure 2 are 

also known by the name “composite-right-left-handed 

(CRLH)” [14] media. 

As mentioned previously, NRI-TL-based metamate-

rials enjoy wide LH (backward-wave) passbands and 

low insertion losses. The origin of these advantages 

stems from the fact that their constituent capacitor-

inductor (C-L) resonators are tightly coupled together 

through their electrical connections [19]. 

Negative Refraction
One of the most striking phenomena associated with 

metamaterials is negative refraction, which is sup-

ported by LH isotropic metamaterials that are charac-

terized by a negative index of refraction. One way to 

Figure 3. Sample dispersion diagrams for a 1-D NRI-
TL. (a) Open stopband case. The interconnecting line is 
characterized by a phase shift of u 5 0.25 rad at 3 GHz 
and Zx5 50 V, whereas the series loading capacitors 
are Co5 4.24 pF and the shunt loading inductors are 
Lo5 5.3 nH. The lower band is LH (backward wave, 
negative index), whereas the upper one is right handed 
(forward wave, positive index). The stopband between 
these two bands is delimited by the two plasma frequencies 
fc1, fc2. The size of this stopband is determined by the 
degree of mismatch between the constituent forward and 
backward lines: fc2 / fc15Zx/"Lo /Co. (b) Closed stopband 
case. The interconnecting line is characterized by a phase 
shift of u 5 0.25 rad at 3 GHz and Zx5 50 V whereas 
the series loading capacitors are Co5 4.24 pF and the 
shunt loading inductors are Lo5 10.6 nH such that the 
closed stopband condition Zo5 !Lo/Co is satisfied. Note 
that this case gives access to a zero index of refraction 
at fc15 fc2 > 1/ 1Co Zx u 2  where the artificial medium is 
matched (nonzero group velocity). 
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understand negative refraction is through the notion 

of phase matching, as explained in Figure 4. Since 

Snell’s law is a manifestation of phase matching of the 

transverse propagation vector at the interface between 

two dielectrics, Figure 4 readily suggests that the LH 

medium should be characterized by a negative refrac-

tive index. 

Based on negative refraction, a new class of lenses 

can be envisioned. Perhaps the most celebrated one is 

the Veselago-Pendry lens, which is shown in Figure 5. 

As shown, this lens can achieve point-to-point focus-

ing through negative refraction, despite the fact that its 

two surfaces are flat. Moreover, the lens can overcome 

the diffraction limit, as explained in the next section.

The Veselago-Pendry Superlens
One of the most exciting propositions in metamate-

rial research has been that of imaging beyond the dif-

fraction limit. This excitement was stirred when John 

Pendry, in his ground-breaking work [20], proposed 

that the Veselago lens of Figure 5 could be consid-

ered to act as a perfect lens. This proposition should 

be understood in the context of operating the Vese-

lago lens as a microscope. In this setting, what limits 

the resolution is the lost transverse wave vectors kx 

(assuming 2-D propagation for simplicity). The propa-

gating waves kx , ko, corresponding to large propaga-

tion angles with the optical axis, will not be collected 

by the lens aperture and will be lost. However, if the 

diameter of the lens is large enough, all these propagat-

ing waves will be collected and focused at the image 

plane according to the ray diagram of Figure 5. How-

ever, even in this case, the resolution of a conventional 

lens would be limited because the evanescent waves 

kx . ko (near field) will not make it to the image plane 

because of their strong exponential attenuation with 

distance. Therefore, at best, the resolution of a conven-

tional lens/microscope will 

be limited by 2p/ko5lo, i.e., 

by the wavelength of the elec-

tromagnetic wave used for 

imaging. 

For the Veselago-Pendry 

lens, the propagating waves, 

kx , ko are perfectly restored 

at the image plane according 

to the ray diagram of Figure 5. 

In this case, there is perfect 

matching (no reflections) for all 

kx components, which is ben-

eficial given that refraction at 

oblique incidence on a conven-

tional (positive index) dielec-

tric leads to reflections (even 

if the dielectric were matched 

at normal incidence). What is 

even more surprising though 

is the fact that the evanescent-

wave components, kx . ko 

are also matched and the 

 corresponding  transmission 
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Figure 5. A Veselago-Pendry lens made out of a slab of an NRI medium. As shown, 
negative refraction is utilized in order to focus a point to a point. This leads to a lens with 
flat surfaces and no optical axis. The rays (defined with respect to the Poynting vector, i.e., 
power flow, in this figure) converge to the same point when the relative index is n=21, 
thus leading to aberration-free focusing. The thickness of the lens d is half the distance 
from the source to the image [57]. 
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Figure 4. Negative refraction of a plane wave incident 
from a regular dielectric to another regular dielectric (Case 
1) or an NRI medium (Case 2). The arrows on the rays 
represent the propagation vectors; observe the underlying 
phase matching of the tangential components of these 
vectors in Case 2. Another implied principle is that the 
Poynting Vector S should point away from the interface in 
the second medium (from [13]). 

One of the most exciting propositions 
in metamaterial research has been 
that of imaging beyond the 
diffraction limit.
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 coefficient from the source to the image plane is one (e.g., 

see [18, pp. 85–87]). Therefore, at least under ideal condi-

tions, the Veselago lens restores a perfect image. 

The first experimental demonstration of such imag-

ing beyond the diffraction limit with a Veselago-Pendry 

lens has been reported in [21] using a 2-D in-plane lens 

made out of a 2-D NRI-TL metamaterial. Moreover, the 

first volumetric Veselago-Pendry superlens using TL 

metamaterials was reported in [22] using a layer-by-

layer NRI-TL. The resulting structure is isotropic for 

waves having their magnetic fields polarized perpen-

dicularly to the layers. The corresponding structure is 

shown in Figure 6 and consists of layers of NRI copla-

nar-strip TLs. In order to reduce the losses, high-Q 

chip capacitors and inductors are used for loading the 

underlying printed TLs. Experimental results of sub-

diffraction focusing and simulated wave propagation 

in the lens are also shown in Figure 6.

In an important new development, a fully isotropic 

Veselago-Pendry lens for microwaves has been con-

structed using stereolithography as reported in [23]. 

The main drawback of the Veselago-Pendry 

superlens is that the achieved superresolution is 

very sensitive to material losses [24]. A notable 

example for solving this problem is the so-called 

hyperlens, which utilizes anisotropic metamateri-

als that are characterized by a hyperbolic spatial 

dispersion diagram [25]–[26]. These hyperbolic 

media support tightly confined beams (akin to res-

onance cones in anisotropic plasmas), which have 

been demonstrated earlier at microwaves using TL 

metamaterials [27]. When these hyperbolic meta-

materials are shaped into a cylindrical (or spheri-

cal) lens, then the beams that emanate from an 

object fan out, thus magnifying the subwavelength 

features; when they are separated by l/2 or more, 

they can be observed using conventional far-field 

microscopy. Experimental demonstrations of this 

concept at optical frequencies using layered sliver/

dielectric structures to synthesize the required 

hyperbolic metamaterials has been reported in [28] 

and [29]. Furthermore, it could be noted that, at 

microwave frequencies, hyperlenses have been built 

using a wire medium (parallel wires) as explained 

in [30]. Using this approach, it was demonstrated 

that the hyperlens acts as a translation device, mov-

ing an image and its subwavelength features from 

one plane to another. By making the wires diverg-

ing from each other with distance, this translation 

can be associated with a magnification at the image 

plane. The ability to obtain a magnified image 

along with a reduced sensitivity to material losses, 

 highlights the potential benefits of using the hyper-

lens as an imaging device. However, the one draw-

back is that the working distance between the object 

and the lens must be very small compared to the 

free-space wavelength l. 
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Figure 6. (a) A free-space Veselago-Pendry NRI-TL 
superlens. Embedded chip capacitors and inductors are used 
to minimize losses. The slab consists of 5 cells 3 21 cells 3 
43 layers (w 3 h 3 t5 150 mm 3 150 mm 3 35.7 mm, 
period d5 7 mm). (b) Super-resolving two sources that 
are spaced 40 mm apart at 2.4 GHz (lo5 125 mm). The 
sources are magnetic dipoles (small current loops) having 
their axes perpendicular to the layers of the lens and placed 
at a distance t/25 17.85 mm from the lens.(c) Refraction of 
a plane-wave obliquely incident on the NRI-TL slab (full-
wave simulations). Note the clear demonstration of negative 
refraction associated with the fundamental spatial harmonic 
bBloch (higher spatial harmonics bn5 bBloch1 2pn/d, 
n561, 62, 63, care all present in principle but they 
are weakly excited) [22].

At microwave frequencies, 
hyperlenses have been built using a 
wire medium (parallel wires).
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Another approach to alleviate the loss problems 

associated with the classical Veselago-Pendry lens has 

been developed in the past couple of years based on 

the so-called metascreens or meta-arrays and near-

field plates, which can be thought of as superdirec-

tive arrays in the near field. For recent reviews, see 

[31] and [32]. In fact, the meta-array approach has the 

additional benefit that can alleviate the working dis-

tance constraint [31].

Application of a Superlens to MRI
An interesting application of metamaterials is to 

magnetic resonance imaging (MRI) where RF fields 

are crucial to the imaging process. During the image 

acquisition process, near-field signals are strongly 

prevalent as the various coils used in the imaging pro-

cess all transmit and receive signals in the near field. 

MRI represents a potentially interesting application 

for metamaterials since metamaterial devices such 

as the Veslago-Pendry superlens are quite adept at 

manipulating near-field signals through restoring eva-

nescent fields. One such interesting research thrust in 

applying metamaterials to MRI involves manipulating 

the near field of the surface with volumetric metama-

terial lenses [33], [34]. In particular, this application 

involves the use of a negative permeability lens made 

out of split-ring resonators, which acts like a perfect 

lens in the quasistatic limit. From [20], it is noted that 

in the quasistatic limit, a slab of material with only a 

negative permittivity or a negative permeability will 

act like a perfect lens. Since the RF signals in MRI are 

sensed through a magnetic 

field and the field itself has a 

very long wavelength relative 

to the dimensions at hand, a 

quasistatic negative perme-

ability lens may help in sig-

nal detection as it can restore 

the evanescent signals before 

they pass below the noise-

floor. The setup used in [34] 

involves inserting a negative 

permeability lens made of 

split-ring resonators, shown 

in Figure 7(a), between a sur-

face coil and the patient, as 

shown in Figure 7(b). This 

allows the surface coil and 

metamaterial to image fur-

ther than what the surface 

coil by itself would accom-

plish. This is demonstrated 

in the MRI image shown in 

Figure 7(b), where the nega-

tive permeability lens placed 

between the ankles of the 

patient allows the surface coil 

to image both ankles, unlike the surface coil alone. 

Other research being carried out in this area includes 

using a wire-grid medium to channel MRI signals to 

ease detection of the signals from outside the MRI 

machine, as shown in [35]. 

Transformation Electromagnetics
At the beginning of this article, we posed the ques-

tion “What would be possible if we were able to 

synthesize materials with user-defined constitutive 

parameters?” A definitive step toward answering 

this question has been provided by the development 

of transformation optics, which was first introduced 

in the seminal works [36] and [37]. In this article, we 

will instead use the term “transformation electromag-

netics (TREM),” which is more general since it covers 

both microwaves and optics. In particular, TREM is 

based on the invariance of Maxwell’s equations with 

respect to coordinate transformations. The beauty 

of TREM is that it enables a user-defined coordinate 

transformation to be translated into electric and mag-

netic material parameters, as will be outlined below 

following [38].

Lens

Coil

Coil

Lens

(a) (b)

Figure 7. (a) A negative permeability Veselago-Pendry lens made up of split-ring 
resonators used for MRI. (b) A diagram of the MRI experiment using the negative 
permeability lens. Without the lens, the RF fields far away from the lens cannot be seen by 
the surface coil. This result is demonstrated in an MRI of two ankles (cross section). With 
the lens the RF near fields are restored by the negative permeability lens allowing for both 
ankles to be imaged. (Images from [34], used with permission from Elsevier.)

The beauty of TREM is that it 
enables a user-defined coordinate 
transformation to be translated 
into electric and magnetic 
material parameters.
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Geometry in Maxwell’s Equations and its 
Relationship to Metamaterials 
To understand the relationship between geometry and 

materials in Maxwell’s equations, we consider two dif-

ferent spaces (See Figure 8):

 •  Maxwell’s equations in free space referred to an 

arbitrary coordinate system. We will call this our 

transformed space.

 •  Maxwell’s equations in an electric and magnetic 

medium referred to an arbitrary coordinate sys-

tem. We will call this our material space.

In our first case, the transformed space, we are looking 

at an arbitrary coordinate system in free space. In such 

a context, the metric tensor is introduced, denoted by 

G, and it defines how distance in the corresponding 

arbitrary co-ordinate system is measured,

 ds25 a
3

i51
a

3

j51
 gij dxi dx j,  (6)

where dxi are the differential lengths of the coordinate 

system and gij are the entries of G. This is a second-

order tensor that has a determinant given by det(G). 

The inverse of the metric tensor is denoted by G21. The 

metric tensor characterizes all the geometrical proper-

ties of an arbitrary coordinate system [38]. When we 

write Maxwell’s equations in a coordinate system with 

some metric tensor G, we find that the equations have 

an explicit dependence on the metric tensor. This is 

something that is hidden in the usual Cartesian frame 

of reference where the metric tensor is simply the iden-

tity matrix. 

We now turn our attention to our second space, the 

material space, where we examine Maxwell’s equations in 

a space filled with an electric and magnetic material e and 

m. Let us assume that this sec-

ond space is defined by a coor-

dinate system with a metric 

tensor given by G and a deter-

minant given by det(G). We 

may recall that when we write 

Maxwell’s equations in a space 

filled with an electric and mag-

netic material, we introduce 

the electric and magnetic flux 

densities. These flux densities 

are related to the fields through 

the constitutive relations. If we 

proceed to compare the two 

sets of Maxwell’s equations in 

either space, as done in detail in 

[36], we can make an interest-

ing observation: The two sets of 

equations can be made equiva-

lent if the relative values of the 

electric and magnetic medium 

filling our second space have 

the following form:

 e 5 m5
!det 1G 2!det 1G 2  G21. (7)

This allows us to state the following: Maxwell’s equa-

tions in an arbitrary coordinate system in free space 

and Maxwell’s equations in an electric and magnetic 

medium are equivalent if the material takes the form 

given in (7). Thus from the point of view of the fields, 

there is no difference between an arbitrary geometry 

as described by its metric tensor G and a material 

described by (7), as both sets of equations are describ-

ing the same fields. 

Coordinate Transformations
If geometry and material parameters can be thought 

of as equivalent in Maxwell’s equations, the next ques-

tion to ask is what happens if we apply a coordinate 

transform to Maxwell’s equations. We can look at how 

to interpret Maxwell’s equations when transformed 

from one coordinate system to another, more specifi-

cally, interpreting the coordinate transform through 

the material parameters. 

In the previous section, we introduced the trans-

formed space. This space can be described via a 

Coordinate

Transform

Virtual Space-G′

Same

Coordinate

System

Find

Material

Parameters

Material Space-ε, μ, Γ
Transformed Space-G

Figure 8. The virtual space, the transformed space and the equivalent material space 
filled with an anisotropic material given by e and m.

If geometry and material parameters 
can be thought of as equivalent 
in Maxwell’s equations, the next 
question to ask is what happens if 
we apply a coordinate transform to 
Maxwell’s equations.
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coordinate transformation from a simpler space (e.g., 

Cartesian, cylindrical, spherical). We refer to this 

simpler space as the virtual space. This virtual space 

is set in free space with a set of coordinates given by 5xir, i r5 1, 2, 36 and a metric tensor G r. We can then 

transform from the virtual space to the transformed 

space through a coordinate transform. Note that our 

transformed space is described by a set of coordinates 5xi, i5 1, 2, 36 and, as stated previously, has a metric 

tensor G. To go from the virtual space to the trans-

formed space, we formulate a coordinate transform 

given by 5xi5 xi 1xir 2 , i5 1, 2, 36. This gives rise to the 

transformation matrix, L, whose entries are given by 

Li’
i 5 1'xi 2 / 1'xir 2 . 

Now using this transformation matrix, we can write 

the inverse metric tensor of our transformed space in 

terms of the inverse metric tensor of the virtual space

 G215LG r21 LT. (8)

Using the equivalence between geometry and material 

parameters that we established in the previous section, 

we can substitute (8) into (7), and with further simpli-

fication we get

 e 5 m5
!det 1G 2!det 1G 2  LG r21LT

det 1L 2 , (9)

which is a set of material parameters that describe a 

corresponding coordinate transform. This well-known 

formula for TREM was first reported in [34] and estab-

lishes the connection between the coordinate transfor-

mation and the material parameters.

Note again what we have done. We started in our 

virtual space and used a coordinate transform to 

describe our transformed space. This allowed us to 

write the metric tensor of our transformed space in 

terms of our virtual space. We then wrote Maxwell’s 

equations in our transformed space and interpreted the 

geometry of our transformed space as a set of material 

parameters. This takes us from our transformed space 

to our material space as given by (9), an expression 

which now depends on the transformation matrix of 

the coordinate transform. Recall also that our material 

space is situated in a coordinate system described by a 

metric tensor G. As it turns out, the coordinate system 

of our material space is of the same form as the coor-

dinate system of our virtual space (Cartesian, cylindri-

cal, spherical). See Figure 8 for a complete diagram.

Thus the set of material parameters in (9) allows 

us to implement the underlying coordinate transform 

without actually transforming the geometry! Instead, 

we simply use a material given by (9) and the fields 

will be transformed as they would have been if the 

geometry were actually transformed. This is what is 

referred to as the “material interpretation” [36]. Note 

that the material required to implement the coordinate 

transform is, in general, electrically and magnetically 

anisotropic (with off-diagonal tensor components) as 

well as inhomogeneous.

How to Make Something Disappear
We can formulate the aforementioned into a proce-

dure, similar to [40], to give a framework for design-

ing TREM devices. This framework uses three 

different spaces, as discussed previously, a virtual 

space, a transformed space, and a material space as 

follows:

1) We start with our virtual space, which we define 

with a coordinate system having a metric tensor 

G r. Usually it is a well-known coordinate system 

such as the Cartesian, cylindrical, or spherical 

systems. 

2) We then formulate a coordinate transform to take 

us from our virtual space to our transformed space. 

We choose this coordinate transformation to imple-

ment the functionality of the device. For example, 

stretching or compressing space to control how 

electromagnetic waves will propagate through 

space or transforming a curved surface to a planar 

surface to alter the phase fronts of a wave. 

3) We then use (9) to find a set of material param-

eters that we use to fill the material space, which 

is described by a coordinate system with a metric 

tensor G. This coordinate system is of the same 

form as in step 1 (Cartesian, cylindrical, spheri-

cal). Note that, as stated above, our material 

and transformed spaces are electromagnetically 

equivalent. 

Example–The Cloak 
The most popular transformation optics device is per-

haps the cloak [36], [37]. The following uses the above 

procedure to design a cylindrical cloak: 

1) Our virtual space is a cylindrical coordinate sys-

tem given by 5xir5 r r, u r, z r6. The metric tensor of 

this space is given by G r5 diag51, r r2, 16 with a 

determinant det 1G r 2 5 r r2. A picture of our vir-

tual space is shown in Figure 9(a) .

2) We must now synthesize a cloak through a 

coordinate transform that describes the cloak’s 

behavior. The purpose of the cloak is to guide 

electromagnetic waves around an object without 

scattering off the object itself. One way to do this 

is to compress the volume inside a cylinder of 

radius b into an annular region between a cylin-

der of radius b and a cylinder of radius a, where

a , b. This is depicted in Figure 9(b). Any object 

placed inside the annular region between a and b 

in the transformed space is now protected from 

an impinging electromagnetic wave. This incom-

ing electromagnetic wave, which would have 

traveled to the origin in the virtual space, trav-

els instead around a cylinder of radius a. This is 

because the origin itself has been transformed to 
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a cylinder of radius a. Mathematically, this trans-

formation and its inverse are expressed as 

 x i5 e r 1r’ 2 5 r’
b2 a

b
1 a, u 5 u’,  z5 z’f ,

 xi’5 e r’ 1r 2 5 b 1r2 a 2
b2 a

, u 5 u’, z5 z’f ,  (10)

 and the transformation matrix, Li’
i 5 1'xi 2 / 1'xir 2 , 

is given as L5 diag5 11b2a 2 / 1b 22 , 1, 16.
3) Finally, we find the required material param-

eters using (9). For the cylindrical cloak, we will 

express the material parameters in a cylindrical 

coordinate system, the same system used in step 

1. The metric tensor of this system is given by 

G5 diag51, r2, 16. The parameters are then found 

to be 

  e 5 m5 e r2a

r
, 

r

r2a
,¢ b

b2a
b2

 
r2a

r
f . (11)

 Note that the material parameters for the cloak 

are different from free space only in the annular 

region where the space has been transformed. 

Outside and inside the cloak, there is just free 

space. An example of the ideal fields inside the 

cloak can be seen in Figure 9(c) for the case of 

plane-wave incidence. 

Building a Cloak 
With the material parameters defined in (9), the next 

question that arises is implementation. How can one 

implement the material parameters given by a TREM 

device that require anisotropy and inhomogeneity? 

We can recognize that metamaterials are uniquely 

suited to this task as they can achieve the anisotropy 

and inhomogeneity required by the TREM material 

parameters. For the example of the cloak, this was first 

accomplished using split-ring resonators to construct a 

2-D cylindrical cloak [39]. Approximations were made 

in the design to minimize the anisotropy of the device, 

whereas the inhomogeneity of the device was imple-

mented by varying the dimensions of the split-ring 

resonators across the radius of the device, as shown in 

Figure 10. A plot of the measured field is also shown 

in Figure 10. 
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Figure 9. (a) The virtual space for the cloak transformation, (b) the transformed space for the cloak (note how the space is 
compressed at the center), and (c) a plane wave traveling through the material space showing the functionality of the cloak.
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Figure 10. (a) A fabricated cloak using split-ring 
resonators. (b) A plot of the measured fields of the cloak 
built using split-ring resonators. (Both images from [39], 
with permission from the AAAS.)
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TL metamaterials have also been proposed to 

design TREM devices such as cloaks. Because of the 

grid-like nature of TL metamaterials, novel unit cells 

with additional loading are needed to implement the 

anisotropy of the material parameters in Cartesian 

coordinates [40], [41]. Examples of these unit cells 

and the cloaks designed using them are shown in 

 Figure 11. As was pointed out earlier, TL metamateri-

als in general lead to broader bandwidths and smaller 

transmission losses [19].

The TREM paradigm for TL networks such as those 

shown in Figure 11 highlights a few salient features. 

1) Metamaterials need not be periodic structures, 

they can be inhomogeneous, and 2) the control of the 

fields (voltages and currents) is achieved in the spa-

tial domain. This brings out an important difference 

between TL metamaterials and traditional electrical 

networks and filters. Unlike electrical networks and 

filters, which primarily control voltage and current 

quantities in the frequency domain, metamaterials 

control the electromagnetic field distribution in the 

spatial domain.

Further Work In Transformation 
Electromagnetics
The introduction of TREM has spurred a lot of work 

into developing further extensions of the main concept 

Figure 11. (a) A TL metamaterial unit cell for implementing full material tensors. Taken from [40]. (b) A plot of the 
simulated fields in the cloak using the unit cell in (a). Taken from [40]. (c) A TL metamaterial unit cell for implementing full 
material tensors. Taken from [41]. (d) A plot of the simulated fields in the cloak using the unit cell in (c). Taken from [41]. 
Using the TL metamaterial approach allows one to achieve better performance than the SRR approach. As shown in [41], the 
TL cloak achieves a total radar cross section reduction of 12.8 dB and a bandwidth of 33%.
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The introduction of TREM has spurred 
a lot of work into developing further 
extensions of the main concept as 
well as further experimental work.
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as well as further experimental work. For example, the 

TREM concept discussed above has given rise to a 

variety of novel designs for electromagnetic devices. 

Using various coordinate transforms, designs have 

been proposed for devices such as beam expanders 

and beam splitters [42]–[44]. Other devices, such as a 

radome, which improves the scan range of a phased 

array [45], and an omnidirectional retroreflector 

(Eaton’s lens) [46], have been designed and also fabri-

cated and tested. 

The theory of TREM has been extended to use dif-

ferent coordinate transformation techniques. One key 

development that improves on the concept is that of 

quasiconformal transformations, discussed in [47]–

[49]. This approach minimizes the anisotropy of the 

material parameters by using transformations that 

keep the transformed grid lines as close to orthogo-

nal as possible. A variety of devices have been pro-

posed that use this quasiconformal transformation 

technique. These include a ground-plane cloak, which 

hides an object placed over a metallic ground plane 

[47], [50], a flat Luneburg Lens [51], and a flat dielectric 

lens [52]. Due to the material simplicity allowed by the 

quasiconformal technique, all of these examples have 

been fabricated and tested.

While this is only a sampling of some current work, 

TREM with metamaterials presents a large opportu-

nity to envision, design and create novel kinds of elec-

tromagnetic devices.

Conclusion
The emerging field of metamaterials can be thought 

of as a rebirth of the field of artificial dielectrics that 

formally originated in the 1940s and 1950s in the 

microwave regime. However, with metamaterials, 

one seeks to synthesize unusual electromagnetic 

properties such as a negative permittivity, a nega-

tive permeability, or nearly zero or very large values 

of those, and so on. Especially in the optical regime, 

such concepts  had never been applied before, and 

they enabled the synthesis of artificial media with 

difficult-to-obtain properties such as a magnetic 

response. These developments are now becoming 

meaningful because of substantial improvements in 

nanofabrication. On the other hand, at microwave 

frequencies, metamaterials opened a new avenue 

for innovation, leading to novel devices and anten-

nas [18], [53]–[55]. For a recent collection of papers on 

the latest developments in metamaterials at both the 

microwave and optical domains, see the October 2011 

issue of Proceedings of the IEEE [56]. 

More recently, the very powerful technique of 

TREM has been developed for designing with meta-

materials. As was explained in this article, TREM can 

be utilized for the total control of the electromagnetic 

fields in materials. Given a valid coordinate transfor-

mation, TREM predicts the required material tensors 

e 1x, y, z 2  and m 1x, y, z 2  to control wave propagation at 

will. A derived application that captured much atten-

tion early on was cloaking, but currently, many more 

novel and useful applications are emerging, some of 

which have been mentioned in this article. 

We finish this article by charting out an interesting 

problem for the microwave field/network engineer: 

TREM prescribes a method for the spatial control of 

the electromagnetic fields (or for the voltages and 

currents in TL metamaterials). However, the funda-

mental issue of the frequency bandwidth of the re-

sulting TREM metamaterials is not explicitly treated. 

Obviously, bandwidth issues are crucial for many ap-

plications, including cloaks, flat and specialty lenses, 

etc. To this end, the marriage of TREM with classical 

network/filter theory may show the way to signifi-

cantly improve TREM theory to enable the develop-

ment of even more practical devices and structures 

in the future. 
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