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Abstract 

Background: Transforming spatial data from one scale to another is a challenge in geographic analysis. As part of a 

larger, primary study to determine a possible association between travel barriers to pediatric cancer facilities and ado-

lescent cancer mortality across the United States, we examined methods to estimate mortality within zones at varying 

distances from these facilities: (1) geographic centroid assignment, (2) population-weighted centroid assignment, (3) 

simple areal weighting, (4) combined population and areal weighting, and (5) geostatistical areal interpolation. For the 

primary study, we used county mortality counts from the National Center for Health Statistics (NCHS) and popula-

tion data by census tract for the United States to estimate zone mortality. In this paper, to evaluate the five mortality 

estimation methods, we employed address-level mortality data from the state of Georgia in conjunction with census 

data. Our objective here is to identify the simplest method that returns accurate mortality estimates.

Results: The distribution of Georgia county adolescent cancer mortality counts mirrors the Poisson distribution of 

the NCHS counts for the U.S. Likewise, zone value patterns, along with the error measures of hierarchy and fit, are 

similar for the state and the nation. Therefore, Georgia data are suitable for methods testing. The mean absolute value 

arithmetic differences between the observed counts for Georgia and the five methods were 5.50, 5.00, 4.17, 2.74, and 

3.43, respectively. Comparing the methods through paired t-tests of absolute value arithmetic differences showed 

no statistical difference among the methods. However, we found a strong positive correlation (r = 0.63) between 

estimated Georgia mortality rates and combined weighting rates at zone level. Most importantly, Bland–Altman plots 

indicated acceptable agreement between paired arithmetic differences of Georgia rates and combined population 

and areal weighting rates.

Conclusions: This research contributes to the literature on areal interpolation, demonstrating that combined popula-

tion and areal weighting, compared to other tested methods, returns the most accurate estimates of mortality in 

transforming small counts by county to aggregated counts for large, non-standard study zones. This conceptually 

simple cartographic method should be of interest to public health practitioners and researchers limited to analysis of 

data for relatively large enumeration units.

Keywords: Areal interpolation, Areal weighting, Population weighting, Disaggregation, Geographic scale, Adolescent 

cancer, Compressed Mortality File
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Background
�e challenge of transforming spatial data collected at 

one scale to another scale, often referred to as areal inter-

polation or cross-area estimation, has long been recog-

nized in spatial analysis [1]. In many cases, geographic 

boundaries, such as counties, are unsuitable in terms of 

the units needed for meaningful data analysis. �is spa-

tial misalignment of data is referred to as the change-of-

support problem, which is concerned with inferences 

about the value of any particular variable at an enumera-

tion unit different from that at which data were collected 

[2, 3]. Researchers and practitioners sometimes require 

estimates for non-standard geographic areas, i.e. target 

zones, to be derived from existing source zones, i.e. the 

zones from which the data are obtained. For example, 

an analyst who requires data for a non-standard enu-

meration unit, say a zone surrounding a U.S. hospital 

(target zone), must transform data collected at another 

zone level, such as a group of U.S. census tracts (source 

zones), to match the boundaries of the zone surround-

ing the hospital. With the growth of available data and 

geographic information systems that can integrate these 

data, there has been a parallel increase in the develop-

ment of methods to address this problem.

Geospatial techniques, well documented in texts and 

the literature, are widely used to deal with transforma-

tion between scales [1–8]. Examples of methods include 

centroid assignment, areal weighting, dasymetric, regres-

sion, and geostatistical (or surface-generating).

For simple geographic centroid assignment, counts of 

some phenomenon are summed for a source zone, and 

allocated to the geographic centroid, that is, the areal 

center of gravity of the zone [9, 10]. Values assigned to 

zone centroids that fall within a target zone are then 

summed to estimate a count for the target zone. �e 

binary nature of this technique means centroid assign-

ment is either completely in or out of the zone, in other 

words, an all-or-nothing operation. Additionally, the 

geometry of the zone’s polygon affects the positioning of 

the geographic centroid. Automated centroid placement 

is likely to be different depending upon the selection of 

input zone polygons.

Areal weighting, often used to disaggregate populations, 

is a cartographic overlay method that preserves volume, 

meaning subdivided populations sum to the original pop-

ulation. Weights are determined from the size of the over-

lapping source and target zone areas. For example, if a 

source zone (e.g., a census tract) with a population of 4000 

is split so that 25% of the area falls in target zone A, and 

75% falls in target zone B, 1000 individuals are allocated 

to target zone A and 3000 individuals to target zone B. A 

limitation is that areal weighting assumes an even distri-

bution of population within each source zone [6, 8].

Methods exist to estimate prospective error in areal 

weighting and, as they are relevant to this paper, are dis-

cussed here. Simpson describes two measures to express 

the amount of estimation involved in the transformation 

from source to target zones: the degree of hierarchy, and 

the degree of fit [11]. �e degree of hierarchy, or nesting, 

for an entire study area is the proportion of all source 

zones that fall completely within any of the target zones. 

�e degree of hierarchy for an individual target zone is 

the proportion of source zones that fall completely within 

that target zone. Degree of hierarchy is calculated as:

where: H is the degree of hierarchy; s is a source zone; t 

is a target zone; and wst is the areal overlap of the source 

zone with the target zone.

�e degree of fit, or overlap, for the entire study area 

sums the maximum proportion, or weight, of each source 

zone as a proportion of all source zones. �e degree of fit 

for a single target zone sums the weights of each source 

zone as a proportion of all source zones within the target 

zone. Degree of fit is calculated as:

where: F is the degree of fit; s is a source zone; t is a target 

zone; and wst is the areal overlap of the source zone with 

the target zone.

Degree of hierarchy and degree of fit are usually mul-

tiplied by 100 to be expressed as percentages. �e closer 

the output of these measures to 100%, the better the 

transformation estimate; accuracy increases as nesting 

increases and as the number of target zones decreases 

[12]. Researchers and practitioners, particularly in popu-

lation geography, have used Simpson’s measures to esti-

mate potential error in cartographic areal interpolation 

[13, 14].

Dasymetric techniques use various ancillary data, 

such as cadastral, land cover, remotely-sensed, or fine 

resolution population data, to inform data disaggrega-

tion [15–22]. Applying a process conceptually similar 

to a dasymetric approach in the first step of their pop-

ulation-weighted interpolation, Wilson and Mansfield 

transformed county-level mortality rates to congressional 

districts (CDs) [18]. �ey used ancillary population data 

at census block level, census blocks nesting completely 

within both counties and CDs. For each county, the 

researchers first assigned the same mortality rate to each 

of the census blocks within the county. �ey then multi-

plied each block rate by block population count as a pro-

portion of the total CD population and finally summed 

all the population-weighted block rates to estimate a CD 

(1)H =

(

∑

s,t (wst = 1)
∑

s
(1)

)

(2)F =

(
∑

s
(maxwst)
∑

s
(1)

)
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mortality rate. As well as improving area-to-area trans-

formation, ancillary data can, for instance, also be applied 

to point-level data to generate population-weighted 

centroids.

�e cartographic methods described above have gener-

ally been used to transform large populations and rates. 

However, regression and geostatistical methods can 

accommodate small counts as well. Global or regional 

regression approaches use ancillary data as explana-

tory variables to develop models that predict popula-

tion distribution in the source zones to better estimate 

populations in the target zones. �ese models assume a 

relationship exists among the population and other vari-

ables, such as land cover or parcel data [6, 8, 23]. Regres-

sion models offer the ability to refine estimates with the 

incorporation of covariates and to measure uncertainty. 

However, they also introduce complexity [22], require 

transformation of covariate geography, and generally do 

not handle changing relationships across space, i.e., non-

stationarity, as well as do dasymetric methods, for which 

estimates are locally fitted to each source zone [6].

Geostatistical methods are used to model spatial data 

to produce estimates where data are unavailable [2, 

24–26]. Either a smooth prediction surface or a prob-

ability surface, created from points derived from source 

polygons, is aggregated back to target polygons. As with 

simple areal weighting, geostatistical analysis assumes 

smooth distribution changes across the landscape, which 

is not usually the case. In addition, building a valid model 

can be difficult, as complex geostatistical techniques are 

often applied inappropriately [27].

�e analysis discussed in this paper is part of a larger 

ecologic research project to determine a possible asso-

ciation between distance to pediatric cancer facilities and 

cancer mortality among adolescents, ages 15 through 19. 

Children’s Oncology Group (COG) institutions provide 

specialized cancer care for children through clinical tri-

als and research. Whereas most children 14 years of age 

and younger are treated in a COG, the majority of ado-

lescents are referred to adult oncology centers that have 

less access to clinical trials and thus less improvement in 

survival [28–30]. To examine mortality rates by sex, race, 

and ethnicity within zones at varying distances from these 

facilities we needed to estimate adolescent cancer mortal-

ity rates for four, multipart zones surrounding 191 COG 

facilities across the United States (Fig. 1). In this paper, we 

used Georgia adolescent cancer mortality data, examining 

mortality rates by sex by zone, to test the methods.

�e four zones represent an effort to define each COG 

institution’s city core, an inner suburban ring, an outer 

State of Georgia -
Data used for validation

C: >25 to 50 mi

D: > 50 mi

B: >10 to 25 mi

A: 0 to 10 mi

Zone

Children's
Oncology

Group
Facility
(N=191)

Fig. 1 Children’s Oncology Group Institutions and Zones. The primary study encompasses the entire United States. This paper focuses on the 

validation of methods using Georgia adolescent cancer mortality data
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suburban/exurban ring, and the balance of land beyond. 

Zone A encircles an area within 10 miles of any COG. 

Zones B and C are concentric rings with distances from a 

COG of >10 to 25 miles and >25 to 50 miles, respectively. 

Zone D comprises the remaining United States. Data 

available for the primary study included census tract level 

demographic data for rate denominators and U.S.-wide, 

county-level National Center for Health Statistics (NCHS) 

Compressed Mortality File (CMF) data for rate numera-

tors. Although the tracts aggregate to counties, the four 

zones coincide with neither tracts nor counties. For this 

methods paper, we used residential address-level mortality 

data from the state of Georgia along with tract population 

data to evaluate methods to transform county mortalities 

(source zones), to the four study zones (target zones).

We sought to identify the simplest interpolation 

method that returned satisfactory mortality estimates. 

Given the large geographic scope of the primary research, 

i.e., zones encompassing the entire U.S., we aimed for 

straightforward methods with workable data require-

ments. In other words, we required a conceptually sim-

ple technique with readily available, statistically robust, 

nationwide data.

In this paper, we examine and discuss the results of 

five interpolation methods. Commonly used in research 

and practice, we explored geographic and population-

weighted centroid assignment, simple areal weighting, 

and geostatistical areal interpolation. We also developed 

and tested a conceptually simple technique, combined 

population and areal weighting, which merges a dasymet-

ric population weighting with areal weighting. We chose 

not to examine regression to estimate mortality because 

the sole intent of the primary study was to examine the 

association between adolescent cancer mortality and dis-

tance to a COG and we wanted to avoid the complexities 

of U.S.-wide regression models using multiple covariates. 

We believe cartographically-focused estimation tech-

niques are more appropriate for this methods paper.

Methods
Data sources for the primary study included U.S. Census 

2000 and 2010 100% population counts at the tract level 

as well as 1999–2011 county-level cancer mortality data 

for those aged 15 through 19 from the NCHS CMF, 

which are compiled from individual state death certifi-

cates [31–33]. To preserve confidentiality, NCHS pro-

vides mortality data at the county level only, upon a 

substantiated request and signed data use agreement.1 

1 Although NCHS CMF users are permitted to estimate sub-national 
counts and rates for their own analyses, they cannot report any sub-national 
count or rate based on totals less than 10. NCHS CMF users, as well as 
users of any confidential data sets, must ensure they comply with data use 
agreements.

However, some states consider death certificates public 

record and share residence-level point data. We therefore 

obtained point-level, adolescent cancer mortality data 

from Georgia, a state that releases mortality data for 

research, also upon a substantiated request and signed 

data use agreement, to assess the accuracy of our meth-

ods in this paper [34].

Inasmuch as the four COG study zones, A, B, C, and D, 

are independent of any standard enumeration unit, we 

estimated numerators and denominators for each zone. 

Numerator and denominator estimation were tied to 

census year because of the differing 2000 and 2010 geog-

raphies, particularly at the tract level. �ough the census 

years fell at equal positions along the study’s time span 

of years 1999 through 2011, we could not “split” mortal-

ity data for the study’s mid-point year, 2005, because we 

did not have month of death. For that reason, we chose 

to use 7 years (1999 through 2005) of mortality data with 

Census 2000 geographies and populations and 6  years 

(2006 through 2011) of mortality data with Census 2010 

geographies and populations. �e mortality rate was cal-

culated as the number of deaths over the 13-year study 

period for a specified population subgroup, such as 

males (numerator), divided by the total population, or 

person-years at risk, of that specific subgroup (denomi-

nator). We weighted the denominator population by 

census year:

Denominator (population count) estimation

For our testing, we estimated Georgia mortality for 

males, females, and the total population, aged 15 through 

19. To approximate population for study zones surround-

ing a COG (i.e. zone A, B, C, and D) for the denomina-

tor, we used the Population Estimator tool, developed by 

CDC’s Geospatial Research, Analysis, and Services Pro-

gram (GRASP), which performs simple areal weighting 

[35]. �e area of overlap of the census tract (source zone) 

with the study zone was divided by the area of the entire 

census tract to obtain the proportion, or areal weight, 

of the tract area within the study zone. �e population 

of interest for each tract (male, female, or overall) was 

then multiplied by the areal weight for that study zone as 

follows:

where: Ept is the areal-weighted population estimate for 

the tract, or tract portion, within the study zone; Azt is 

the geographic overlap area of the tract and study zone; 

At is the geographic area of the entire tract; and Pt is the 

tract population.

(3)
13−year death total/((2000 population ∗ 7)

+(2010 population ∗ 6))

(4)Ept =

(

Azt

At

)

∗ Pt
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�e resulting areal-weighted populations were summed 

to estimate a population total for the study zone for cen-

sus years 2000 and 2010 (Fig.  2). We then calculated a 

weighted sum, as expressed in (3) above, to estimate a 

total 13-year population for the denominator. �is pro-

cess was repeated for each study zone, A, B, C, and D.

Numerator (death count) estimation

Source zones for the numerator were counties with small 

numbers of deaths relative to the denominator popula-

tions. We tested five numerator estimation methods: (1) 

geographic centroid assignment, (2) population-weighted 

centroid assignment, (3) simple areal weighting, (4) 

combined population and areal weighting, and (5) geo-

statistical areal interpolation. For all five methods, we 

used Esri’s ArcGIS 10.3.1™ software. For the geostatisti-

cal method, we also used Esri’s Geostatistical Analyst 

extension in ArcMap.

Method 1: Geographic centroid assignment

For geographic centroid assignment, we attributed Geor-

gia Department of Public Health (GADPH) mortality 

counts to each county’s geographic centroid. County 

deaths assigned to centroids that fall within a study zone 

were summed, by sex and year, to estimate the number of 

deaths for that zone (Fig. 3).
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93

1

0.808

0.798

0.258

0.122

0.304

1
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0.086

1

1
1

0.742

0.917

0.914

0.696

0.192

0.202

0.752

Tract boundary

County boundary

Zone A

Zone B

Propor on of tract 
in zone A, i.e. areal weight
(Azt / At)

Tract popula on of
interest (Pt)

0.798

292

Areal weight Tract popula on Es mate

Azt / At * Pt = Ept

0.083 * 258 = 21.41

0.086 * 220 = 18.92

0.122 * 191 = 23.30

0.258 * 196 = 50.57

0.304 * 142 = 43.17

0.798 * 292 = 233.02

0.808 * 227 = 183.42

1.000 * 93 = 93.00

1.000 * 109 = 109.00

1.000 * 114 = 114.00

1.000 * 152 = 152.00

1.000 * 195 = 195.00

Total es mate: 1,236.80

Fig. 2 Denominator estimation for a hypothetical part of study zone A. The population for those aged 15 through 19 for each tract (Pt) is multiplied 

by the proportion of the tract, or areal weight (Azt/At), in the study zone. The output for each tract (Ept) in the entire zone is summed to obtain a 

population estimate for the study zone. Note: For graphic simplicity, only a subset of zones are shown in the figures. Methods are the same for each 

of the four study zones, A, B, C, and D
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Method 2: Population‑weighted centroid assignment

For population-weighted centroid assignment, we attrib-

uted census tract populations of males and females 

aged 15 through 19, for years 2000 and 2010, to tract 

centroids. For each of Georgia’s 159 counties, we used 

the tract centroids to calculate mean centers, weighted 

by the tract-level population of interest, for each year. 

County deaths assigned to population-weighted cen-

troids that fall within a study zone were summed, by sex 

and year, to estimate the number of deaths for that zone 

(Fig. 4).

Method 3: Simple areal weighting

Simple areal weighting, is the same technique used for 

the denominator estimates, as described above. In this 

case, the area of overlap of the county source zone with 

the COG target zone was divided by the area of the 

entire county to obtain the proportion, or areal weight, 

2

0

0

0

0

2

0
0

0

1

1

1

1

0

County deaths2

Tract boundary

County boundary

Zone A

Zone B

Zone C

Zone D

County
geographic centroid

Fig. 3 Geographic centroid assignment. Each county centroid is attributed a county mortality count for the population of interest. Mortality counts 

for centroids falling within each study zone are summed to estimate mortality, as a whole number, by zone. In this hypothetical example, zones A 

and B are assigned zero deaths, despite the overlap of three counties on zone A (two potential deaths) and five on zone B (four potential deaths). 

Zone C is assigned four deaths, but has the possibility of more
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of the county area within the study zone. �e number 

of deaths for each county was then multiplied by the 

corresponding areal weight for that county. �e result-

ing areal-weighted mortalities were summed to esti-

mate the number of deaths for the study zone. Figure 2 

illustrates the method, with deaths by county source 

zones instead of population by tract source zones as 

shown.

Method 4: Combined population and areal weighting

To estimate numerators for each COG study zone we 

(1) used population weighting, a conceptually dasymet-

ric approach similar to that of Wilson and Mansfield, to 

disaggregate mortality from county level counts to tract 

level estimates; then (2) weighted each tract mortality 

estimate by its geographic area within the study zone; 

and finally (3) aggregated the combined population- and 

2

0

0

0

0

2

0

0

1
1

1

0

Zone A

Zone B

Zone C

Zone D

Tract boundary

County boundary

Tract centroid

County
popula on-weighted
centroid

County deaths2

Fig. 4 Population-weighted centroid assignment. Each tract centroid is attributed the population of interest. County centroids are placed using the 

mean center of tract centroids weighted by the tract population. Mortality counts for centroids falling within each study zone are summed to esti-

mate mortality by zone. Results for zones A and B in this example, zero deaths for both, are the same as those for geographic centroid assignment. 

Zone C is assigned five deaths because the centroid in the northeast, with a value of “1,” is now positioned within zone C
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areal-weighted tract mortality estimates for each zone. 

In contrast to Wilson and Mansfield, who used popula-

tion-weighted interpolation to estimate rates for stand-

ard enumeration units (CDs), we estimated mortality 

counts using population subgroup proportions for non-

standard study zones. In addition, unlike Wilson and 

Mansfield who transformed census blocks with 100% 

hierarchy and fit both from county and to CD, we per-

formed the second step, areal weighting, because our 

non-standard COG target study zones split the source 

census tracts.

We detail the combined population and areal weight-

ing process here. Because we had numbers of deaths by 

county-level only, we took advantage of the county/tract 

hierarchy and assigned each tract a population-weighted 

mortality estimate as follows:

where: Emt is the population-weighted mortality estimate 

for the tract; Pt is the tract population; Pc is the county 

population; and Mc is the number of deaths in the county.

�e output of Eq. (5) was multiplied by the geographic 

proportion of the tract that falls within the study zone, 

in other words, the areal weight (Fig.  5). �is process-

ing assumes an even distribution of tract population. We 

summed the resulting population and areal-weighted 

mortalities, by sex and year, to estimate the number of 

deaths for the zone. Expressed in its entirety, the study 

zone death count is estimated as:

(5)Emt =

(

Pt

Pc

)

∗ Mc

(6)Mz =

∑n

t=1

(

Azt

At

∗ Emt

)

261

215

0.525

0.798 0.122

0.304

0.626

0.992

0.846

0.328

0.696
0.829

0.202

0.021

0.002

307

191

292

164
234

142

165

190

4,979

2

3,135

2

0

0

Areal weight Tract Popula on County Popula on Deaths in County Mortality count

Azt / At * Pt / Pc * Mc = es mate

0.798 * 292 / 4,979 * 2 = 0.094

0.304 * 142 / 4,979 * 2 = 0.017

0.122 * 191 / 4,979 * 2 = 0.009

0.120

0.202 * 292 / 4,979 * 2 = 0.024

0.696 * 142 / 4,979 * 2 = 0.040

0.626 * 191 / 4,979 * 2 = 0.048

0.992 * 164 / 4,979 * 2 = 0.065

0.328 * 307 / 4,979 * 2 = 0.040

0.846 * 234 / 4,979 * 2 = 0.080

0.002 * 165 / 4,979 * 2 = 0.000

0.829 * 190 / 4,979 * 2 = 0.063

0.021 * 261 / 4,979 * 2 = 0.002

0.525 * 215 / 3,135 * 2 = 0.072

0.434

Por on of zone A es mate:

Por on of zone B es mate:

Emt

Tract boundary

County boundary

Zone A

Zone B

Zone C

Zone D

Propor on of tract
in zone A, i.e. areal weight
(Azt / At)

0.798

Propor on of tract
in zone B, i.e. areal weight
(Azt / At)

0.202

Deaths in county (Mc)2

Tract popula on
of interest (Pt)

292

County popula on
of interest (Pc)

4,979

Fig. 5 Combined population and areal weighting. The geographic area of the tract within the zone, the areal weight (Azt/At), is multiplied by 

population-weighted mortality estimate for the tract (Emt). The output for each tract is then summed to estimate the number of deaths for the 

zone. We demonstrate, in this example, how estimates for portions of zones A and B are calculated. Note: As illustrated in Figs. 3 and 4, except for 

two counties, with two deaths each, the remaining counties within zones A and B recorded zero deaths for the population of interest; to simplify 

the illustration, we omitted counties with zero deaths. Also, because we show only portions of zones A and B, the estimates are technically only a 

portion of Mz for zones A and B
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where: Mz is the study zone mortality count estimate; ∑
n

t=1
 sums results for all tracts, or tract portions; Azt is 

the geographic overlap area of the tract and study zone; 

At is the geographic area of the entire tract; and Emt is the 

population-weighted mortality estimate for the tract.

Method 5: Geostatistical areal interpolation

To determine how geostatistical methods of interpolation 

compared to the cartographic methods described above, 

Georgia mortality counts were interpolated from county 

level data using one geostatistical interpolation model 

from among multiple explored, over-dispersed Poisson 

areal kriging, as described by Krivoruchko et  al. [26], 

and implemented in ArcMap 10.3.1’s Geostatistical Wiz-

ard. We interpolated mortality count data for adolescent 

males and females separately. Using visual variography, 

we fitted a stable kriging interpolation model to a plot of 

empirical covariance versus distance, creating a continu-

ous surface depicting the probability of event occurrence 

in the study area. �e geostatistical method we used pro-

duced standardized root mean square error values of 1.02 

for females and 1.12 for males, for which an ideal value 

would be 1.0. During variography we used a lattice spac-

ing of 1000 m, a lag size of 5000 m, and 18 lags. �e con-

tinuous probability surface was then used to estimate the 

mortality event counts for the COG zones, providing a 

numerator to determine a mortality rate for each zone 

based on the previously calculated population.

Statistical analyses to assess the methods included: (1) 

the distribution of county mortality counts, (2) meas-

ures of potential transformation error among numerator, 

denominator, and zones in terms of degrees of hierarchy 

and fit, and (3) absolute value arithmetic differences from 

observed Georgia mortality counts, t-tests on absolute 

value arithmetic differences among the five methods to 

check for statistical difference, Pearson’s r correlations 

between Georgia rates and estimated rates, and Bland–

Altman plots depicting 95% level of agreement between 

Georgia mortality rates and those of the five methods 

[36–39].

Results
Distribution of adolescent cancer county mortality counts: 

Georgia versus the U.S

Histograms of the distribution of county mortality 

counts reveal a pattern in Georgia similar to that of the 

U.S. (Fig.  6). �e histogram of the Georgia mortality 

counts (N =  238) demonstrates a Poisson distribution, 

strongly right skewed. Of 159 counties, 80 (50%) record 

zero mortalities for the 13-year period. Seventy-two 
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counties (45%) report between one and five deaths and 

fewer than 5% of counties (n  =  7) record more than 

five deaths. �e mean number of deaths by county for 

Georgia is 1.50. �e histogram of the U.S. mortality 

counts (N = 7687) demonstrates a Poisson distribution, 

strongly right skewed. Of 3143 counties, 1478 (47%) 

record zero mortalities for the 13-year period. Forty-

four percent of counties (1374) report between one and 

five deaths and 9% of counties record more than five 

deaths (n = 291). �e mean number of deaths by county 

for the U.S. is 2.45.

Transformation error: degrees of hierarchy and �t

As discussed above, the degree of hierarchy (nesting) and 

the degree of fit (overlap) are two measures to express the 

amount of estimation, or error, involved in the transfor-

mation from source to target zones, particularly affect-

ing the cartographic methods. �e closer the output of 

either of these measures to 100%, the better the trans-

formation estimate should be. Table 1 shows the degrees 

of hierarchy and fit, in percentages, for both the Georgia 

and U.S. denominators, which use census tract source 

zones for populations, and numerators, which use county 

source zones for numbers of deaths. Denominator per-

centages for hierarchy, and particularly for fit, are high, 

with overall hierarchy at 81.7% for Georgia and 83.7% 

for the U.S., and overall fit at 96.6% for Georgia and 97% 

for the U.S. Numerator percentages for all measures are 

much lower than those for denominators, meaning the 

error is higher for numerator estimation. Overall hierar-

chy is 52.2% for Georgia and 45.1% for the U.S. Overall 

fit is 88.7% for Georgia and 87.2% for the U.S. Of note is 

the zone A degree of hierarchy for Georgia; a zero value 

means that none of the counties nest completely within 

zone A. Patterns of zone values are roughly similar for 

Georgia and the U.S. For example, most zone D measures 

indicate less potential for error than those of the other 

zones, because it is large relative to other zones, with lit-

tle change-of-support.

Comparisons between observed and estimated mortality 

measures

Table  2 shows comparisons between observed 1999–

2011 Georgia adolescent cancer mortality and estimated 

mortality, by method and zone. For the death counts 

(i.e., numerators), the “Georgia total” row illustrates 

the concept of volume preservation. �at is, each of the 

four cartographic methods maintained overall counts, 

unlike the geostatistical method. �e arithmetic differ-

ences between the observed counts and those for the 

methods become apparent in the zone estimations. �e 

mean absolute value arithmetic differences between 

the observed Georgia mortality counts and their paired 

count estimates, were 5.50, 5.00, 4.17, 2.84, and 3.43 for 

each of the five methods, respectively. Standard devia-

tions of these means decrease progressively for the car-

tographic methods 1 through 4. Geostatistical method 5, 

however, has a standard deviation higher than method 

4, but slightly lower than method 3. �e largest absolute 

arithmetic difference for method 4 was less than five, 

whereas for methods 1, 2, 3, and 5, the largest arithmetic 

differences were much greater, at 16, 11, 8.59, and 7.85, 

respectively. Comparing the methods through paired 

t-tests of absolute value arithmetic differences, however, 

showed no statistical difference among the methods, with 

no method a statistically significantly closer estimator 

than any other method.

Table  2 also displays the robust denominator esti-

mates as well as rates by method and zone. �e mean of 

arithmetic differences from paired Georgia death rates 

are −0.12, −0.10, 0.10, 0.01, and 0.15 for the methods, 

1 through 5, with method 4 closest to zero and method 

5 furthest from zero. As with the counts, the standard 

deviations of these means decrease progressively for 

the cartographic methods, with method 4 the lowest 

at 0.33. For method 5, however, the standard deviation 

of the mean of the arithmetic differences from paired 

Georgia rates, at 0.42, falls between those of methods 

3 and 4.

Table 1 Measures of potential error: degrees of hierarchy and �t

Degree of hierarchy (nesting) and degree of �t (overlap) between source and target study zones. The higher the percentage, the better the estimate
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We calculated the Pearson product moment correla-

tion coefficients (Pearson’s r) for the rates. For methods 

1 through 5, the r values were 0.184, 0.191, 0.327, 0.627, 

and 0.413 respectively. In social science research, meth-

ods 1 and 2 demonstrate weak positive correlations, 

methods 3 and 5 suggest moderate positive correlations, 

and method 4 a strong positive correlation with the 

Georgia rates.

For each of the five methods, we used Bland–Altman 

plots, a tool to compare methods estimating the same 

variable, to visualize the agreement between arithmetic 

differences of paired Georgia and method rates (Fig. 7). 

Usually Bland–Altman plots measure equipment perfor-

mance against a known standard. We apply them here 

to assess geographic data processing methods as com-

pared to known data values. �e plots display the means 

of each pair of rate estimates (x value), versus the arith-

metic differences between the paired estimates (y value). 

For example, the estimated Georgia mortality rate for 

males in zone A is 3.371, whereas for method 1 the 

estimated rate is 3.984 (see Table 2). �e mean of these 

values is 3.667 and the difference is −0.613. �is point 

(3.667, −0.613) is displayed as the rightmost square on 

the method 1 plot of Fig.  7. �e plots also display the 

mean of the arithmetic differences between the Geor-

gia estimates and each paired estimate, known as the 

bias, as a red horizontal line. Limits of agreement, confi-

dence intervals at the 95% confidence level, are drawn as 

black lines. For the method to be a good match with the 

Georgia estimated rates, all the plotted points must fall 

within the limits of agreement, close to the bias. Of the 

five plots, method 4 most closely replicates the Georgia 

estimates; all the plotted points are within the limits of 

agreement, which is also the smallest of the five meth-

ods, and the mean of arithmetic differences is closest to 

zero.

Fig. 7 Bland–Altman plots to compare Georgia rates with the five method rates. The Bland–Altman plots compare 1999–2011 Georgia adolescent 

mortality rate estimates to estimated rates for methods 1 through 5. Method 4 demonstrates the greatest agreement
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Discussion
Among the five methods tested for numerator estimation, 

method 4, the combined population and areal weighting 

technique, had the lowest mean absolute value arithmetic 

difference between the estimation and observed Georgia 

death counts. Method 4 also generated the only strongly 

positive correlation with the estimated Georgia rates. 

However, correlation tests, i.e. Pearson’s r, which support 

the selection of method 4 as the best method, are inad-

equate to completely assess the accuracy of an estimation 

method. A strong correlation may exist, but the output 

measurements could, theoretically, be consistently differ-

ent. A more definitive measure of method performance 

is that of agreement. To visualize agreement, we used 

Bland–Altman plots which display the means of each pair 

of estimates—the Georgia rates compared to each of the 

five methods—against the arithmetic difference between 

the estimates. Method 4 again produced the best results, 

with each of the eight plotted points falling within small 

95% limits of agreement.

Examining the other methods, we observe several rea-

sons for their weaker performance. Although method 1 

is easy to perform, the county centroid location is based 

solely upon the county’s geographic center of grav-

ity, with no accounting for the distribution of the study 

populations. �is binary “all or nothing” condition means 

that mortality assignment could be 100% incorrect (or 

100% correct or any percentage in between). Method 1 

therefore returned the least accurate results. Population-

weighted centroid assignment, method 2, improved cen-

troid placement, but was still limited by the binary nature 

of the potential error as exemplified in method 1. �e two 

centroid methods generated the highest absolute arith-

metic differences from the Georgia counts, weak positive 

correlations with the Georgia rates, and displayed—via 

Bland–Altman plots—a lack of agreement with Georgia 

rates. Method 3, simple areal weighting, is superior to the 

centroid methods, indicating an intermediate absolute 

value difference from Georgia counts as well as a moder-

ate positive correlation with the Georgia rates. However, 

method 3 failed the agreement test, most likely because 

the affected population was not taken into account inas-

much as simple areal weighting assumes an evenly dis-

tributed population.

Geostatistical areal interpolation, method 5, showed 

slightly stronger positive correlation with the Georgia 

rates than method 3. However, the geostatistical method 

still failed the agreement test. �is lack of agreement may 

be the result of the nonstationary nature of the source 

data. Mortality count data should vary in a similar way 

to population, which is known to be somewhat nonsta-

tionary. �e violation of the stationarity assumption 

makes fitting model parameters much more difficult, and 

limits the accuracy of the probability surfaces produced. 

In addition, geostatistical areal interpolation does not 

preserve volume, as do the cartographic methods tested.

�ere is also a conceptual problem with method 5. 

Count data are inherently discrete rather than continu-

ous. As geostatistical methods are surface generating, 

i.e. they create continuous data, the use of geostatistics 

to interpolate counts is tenuous. While we would have 

preferred to interpolate mortality rates, the high number 

of counties with zero mortalities (80 of the 159 Georgia 

counties had no adolescent cancer deaths during the time 

of the study) precluded rate interpolation as the model 

invariably assigned a rate of zero across the study region. 

However, in the case of event interpolation, the data 

structure mismatch is solved by producing a continu-

ous probability surface, rather than a prediction surface, 

from which to estimate COG zone counts. �e surface 

generated represents the probability of an event occur-

ring based upon the number of times that event occurred 

in each of the original geographies, mortality count by 

county in this study. �is type of interpolation may be 

problematic if something other than the underlying dis-

tribution of counts affects the probability of observing 

the event, e.g. if different counties had different reporting 

practices.

Method 5 also presented a unique challenge that could 

makes its application difficult for those without expert 

knowledge of geostatistical methods. Aside from the dif-

ficulty associated with the visual variography required 

when using the Geostatistical Wizard in ArcMap, geo-

statistical areal interpolation can be sensitive to data 

structuring. For this project, shapefiles used for the COG 

target zones had to be preprocessed so that aggrega-

tion of the probability surface to the target zones would 

produce accurate results. Specifically zone D, shown in 

Fig.  1, posed a problem. In the state of Georgia zone D 

encompassed an area of roughly 103,000  km2, whereas 

the next largest zone covered only about 15,000  km2. 

Although this large land expanse with little change-

of-support produces good results for the cartographic 

methods, the size disparity led to the over estimation of 

mortality counts and the prediction of a high standard 

error in zone D when the geostatistical probability sur-

face was aggregated to the COG study zones. To reduce 

predicted error, we split zone D into nine smaller poly-

gons, bringing the largest individual polygon down in 

size to roughly 18,000  km2 and reducing the predicted 

standard error for male mortality counts from 40.99 in 

the combined zone D to a mean of 3.62 and sum of 32.59 

for the nine polygons that make up zone D. Female count 

corresponding standard error numbers were 35.68, 3.16, 

and 28.42 respectively. Summing the estimated counts in 

these nine zones provided reasonably accurate results, 
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shown in Table  2, especially as compared to the esti-

mated counts when zone D was not split (77.86 for males, 

56.82 for females). We expect this size disparity between 

zone D and the other study zones to require even more 

preprocessing for a national scale geostatistical analysis.

�e most effective method, method 4, incorporated 

ancillary census tract data to weight deaths by the at-

risk populations to estimate mortality, the intent being 

to reduce the error associated with assuming an evenly 

distributed population across county source zones. In 

essence, disaggregation using population weighting 

is analogous to locally fitting the distribution of each 

source zone. Additionally, in combined population and 

areal weighting, unlike centroid methods or simple areal 

weighting, error is distributed across the target zones by 

allocating “mortality” weighted by population and area. 

Although it is more processing-intensive than the other 

cartographic methods described here, the processing can 

be automated. Further, method 4 is conceptually simple, 

particularly in contrast to the geostatistical techniques of 

method 5.

All spatial disaggregation techniques generate error. 

Because of confidentiality requirements, we were limited 

to county resolution for the NCHS numerator mortality 

data as opposed to tract-level resolution for the denomi-

nator populations. Denominator estimation was straight-

forward and stable because the tract source zones were 

small relative to the larger target zones surrounding the 

COGs, the degrees of hierarchy and fit were large, and 

the populations large.

In contrast, numerator estimation was more challeng-

ing. �e Wilson and Mansfield population-weighting 

technique, which informed the population-weighting 

component of our combined population and areal weight-

ing method, transformed mortality rates from one set 

of standard zones (counties) to another set of standard 

zones (congressional districts) both built from perfectly 

nested census blocks with 100% hierarchy and fit. In 

contrast, we required numerator mortality counts to be 

transformed from counties to non-standard study zones. 

We therefore combined population, in a conceptually 

dasymetric approach, and areal weighting, to estimate 

numbers of deaths for the numerators of our study zones.

Source zones for the numerator were counties within 

which census tracts nest hierarchically. Counties were 

therefore, by definition, larger than the tract source zones 

used for denominator estimation, with the rare exception 

of counties consisting of a single tract. Lower degrees of 

hierarchy and fit reflect this dichotomy between counties 

and tracts. Small numbers of deaths per county also led 

to less stable results for numerator estimation. In sum, 

low hierarchy and fit values for the numerators, along 

with smaller numerator counts, showed greater error in 

numerator estimation, in contrast to the high hierarchy 

and fit measures, as well as much larger counts, for the 

denominators.

Adolescent cancer mortality counts from the GADPH 

were appropriate for testing the methods explored. �e 

distribution of county mortality counts for Georgia mir-

ror those of the U.S. Likewise, patterns of zone values are 

roughly similar for the state and the nation. In terms of 

area, however, medium-sized Georgia has some of the 

smallest counties in the country (N = 159) and therefore 

may not be representative of other U.S. states. As noted, 

the mean number of mortalities per county is 1.50 ver-

sus 2.45 for the U.S. as a whole. It may be that counties 

with smaller geographic areas return better results than 

larger counties for the five tested methods. However, as 

method 4 employs combined weighting, which distrib-

utes error across study zones, we would still expect to 

observe improved estimation over the centroid meth-

ods in regions of the country with larger counties. With 

Georgia’s smaller counties, improvements over the other 

methods in this study should be seen as conservative.

One potential limitation involves the relationship 

between census tract population and geographic area. 

�e optimal population for a tract is 4000, therefore less 

densely populated counties are likely to have fewer tracts, 

though with larger geographic areas. Georgia counties 

have higher population densities and smaller tracts than 

many counties in other states, so error cannot be distrib-

uted at as fine a level of granularity elsewhere as in Geor-

gia. For our own primary research, however, counties 

with small numbers of tracts were not a major concern 

because those counties are located in zone D, which has 

limited change-of-support.

Another limitation was the small number of statisti-

cal data points available, eight (four zones by two sexes) 

for each method. Examining these four methods in other 

states would provide additional data points along with an 

opportunity to study the effects of larger or less densely 

populated counties on estimation methods. Another 

approach to increase statistical data points for method 

validation would be to explore Bland–Altman plots of 

additional zone configurations within the state of Geor-

gia, e.g. random region delineations.

We chose not to examine regression to estimate mortal-

ity because the purpose of the primary study was solely to 

examine the association between adolescent cancer mor-

tality and distance to a COG. Other than population dis-

tribution by sex, we avoided a priori assumptions in our 

estimation of the COG proximity zone mortality patterns. 

We also wanted to avoid the complexities of U.S.-wide 

regression models using multiple covariates. Given the 

satisfactory results we obtained from population and areal 

weighting, simple in concept and practice, we did not see 
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the need to include multivariate regression in our prelimi-

nary analysis. Nonetheless, race, ethnicity, poverty, and lack 

of health insurance, among other factors, influence adoles-

cent cancer mortality distribution. �ese factors vary geo-

graphically and will be considered in future exploration of 

potential explanatory variables in the primary study.

Conclusions
�is research demonstrates that combined population 

and areal weighting, compared to cartographic centroid 

and simple areal weighting methods, and a geostatistical 

method, returns more accurate estimates of mortality in 

transforming small counts by county to aggregated counts 

for large target zones that do not conform to standard 

enumeration units. Weighting by ancillary population 

data to take into account at-risk population, in conjunc-

tion with the allocation of weighted mortalities, which 

eliminates the “all or nothing” problem inherent in cen-

troid methods, distributes error across study zones, thus 

improving estimates. Furthermore, practitioners without 

the resources of geospatial statisticians and software, may 

find this simpler cartographic method more accessible 

and just as effective in transforming county-level source 

zone counts to larger, non-standard target zones. �is 

methodology should be of interest to practitioners and 

researchers limited to analysis of count data for relatively 

large enumeration source units, such as NCHS county-

level mortality counts, among other data sources. We 

expect to observe increased support for using combined 

population and areal weighting estimates, particularly 

over other cartographic overlay methods.
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