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Abstract

Image completion is an important photo-editing task which involves synthetically

filling a hole in the image such that the image still appears natural. State-of-the-art im-

age completion methods work by searching for patches in the image that fit well in the

hole region. Our key insight is that image patches remain natural under a variety of trans-

formations (such as scale, rotation and brightness change), and it is important to exploit

this. We propose and investigate the use of different optimisation methods to search for

the best patches and their respective transformations for producing consistent, improved

completions. Experiments on a number of challenging problem instances demonstrate

that our methods outperform state-of-the-art techniques.

1 Introduction

Image completion is an important photo-editing task which involves synthetically filling a

user-marked region (also called a hole) in an image, such that the image still appears nat-

ural to the user. The definition of the problem hints at its difficulty: successful comple-

tion involves reasoning about which textures and appearance look more natural and how a

user defines a plausible completion. State-of-the-art image completion methods search for

patches in the image that overlap consistently with existing nearby regions, locally match

other image patches and produce an overall appearance that does not deviate much from

regions elsewhere in the same image [5, 6, 9, 13] or different images [7].

However, in many cases, the unknown region may never have been observed. For exam-

ple, the part of the clock in the hole of Fig. 1 is not repeated in the image. However, it can

be filled by rotating other parts of the clock. Similarly, noise, shading, perspective distor-

tion and texture irregularities may force us to expand our training set by considering source
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Image with hole Wexler et al. [13] [13] + rotation

Figure 1: Image completion with transformations can lead to much improved results over previous

state of the art. As with all results we show, the red area shows the hole.

patches in the larger space of natural transformations (scale, rotation, brightness change etc.)

of the training set. Our contribution is to extend image completion using the state-of-the-art

method of Wexler et al. [13] to include transformations, and to investigate the best way to

search for the best image patches and the optimal transformations to produce natural com-

pletions. We evaluate our work quantitatively as well as qualitatively in terms of the quality

of results obtained.

2 Related Work

In [5], texture synthesis (a special case of image completion) is addressed using a simple

greedy algorithm. Hole pixels are iteratively filled by patches most similar to their support

region. Though greedy, this algorithm produces good results with few parameters. Subse-

quent methods such as [6, 10] predict and merge patch chunks over the hole, while ensuring

smoothness at the seams; this allows larger changes and flexibility. In greedy approaches,

once a few pixels are set, the fate of most others is sealed, making the pixel traversal order

critical. A number of user-driven [12] and intelligent [3] heuristics have been proposed for

achieving structural image coherence. An attempt to formulate and solve the global problem

was first made in [8], where a modified message passing algorithm efficiently and approxi-

mately optimises the model. Differently from the MRF approach, Wexler et al. [13] formu-

lated the energy as a sum of terms which capture agreement of patches over the filled hole,

iteratively searching and filling to yield a consistent image. Though also approximate, this

method is easy to implement and shows very promising results. The computational expense

was reduced to real time speeds with the patch sampling methods of Patch Match [1].

Most previous work tries to improve the optimisation. The underlying model remains the

same, exploiting image redundancy by completing hole regions such that they are similar to

the training regions. Most methods consider training regions only in their original form. We

also consider transforming these regions, to exploit additional redundancy. Some previous

methods also use transformations, by augmenting their datasets with discrete transformations

[4, 14] or using invariant features [15]. The former fundamentally limits the resolution of the

search, and the latter can be unstable for small patches and holes. Generalized Patch Match

[2] extends [1] to search for transformation parameters by random sampling and propagation,

but few results are shown. However, as the number of parameters increases, the training set

can be large and difficult to search. In addition to exploring optimisation for transformations,

we perform a thorough investigation of how using transformations can affect results.

3 Problem Statement

Given an image S with a hole, we want to produce a completed target image T . A binary

visibility map V takes a value 1 when a pixel is filled and 0 otherwise, as illustrated in Fig. 2.
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Figure 2: Our notation. For each patch in the target image T , we find matching patches in the source

image S under transformations, e.g. rotation. The pixels still to be completed are specified in the binary

visibility map V .

Notation: Our model is based on image patches, each containing P pixels. The relative

position of each pixel in the patch is given by ip for all p ∈ {1 . . .P} such that a patch centred

at n contains pixels n+ ip. We express the patch in S around n compactly in vector form as

sn =
{

S (n+ ip) |p ∈ {1 . . .P}
}

, and similarly for patches tn and vn in T and V respectively.

For non-integer pixel positions, the pixel value is found by bilinear interpolation.

Model: We use the model of [13], in which the completed image is defined as having global

visual coherence with the source image if every patch in the completed image is contained

within the visible region of the source image. Their model can be simply written as:

E0 = ∑
n

min
xn

‖ [tn − sxn ] ·vn‖
2
, (1)

where xn is the location of the best matching source patch for the target patch around pixel n.

We consider all feasible source patches i.e. those that do not go over the edge of the image.

Model with transformations: For a transform parametrised by a set θ , the source patch

becomes sθn
=

{

fθn
(S (gθn

(ip))) |p ∈ {1 . . .P}
}

, where fθn
is the photometric transforma-

tion function acting on image pixel colours and gθn
is the geometric transformation function

acting on patch indices. Therefore, the energy now becomes:

E1 = ∑
n

min
θn

‖ [tn − sθn
] ·vn‖

2
. (2)

The overall problem is to find the optimal completed image T ∗ by the energy minimisation

T ∗ = argmin
T

(

∑
n

min
θn

‖ [tn − sθn
] ·vn‖

2

)

subject to V (i) = 1 ∀i . (3)

Note the two levels of optimisation. Firstly, in order to calculate the energy of a com-

pleted image T , a minimisation over the parameters θn of the best matching source patch

for each target patch is performed. Secondly, in order to find the optimal completed image,

minimisation is performed over the completed image T .

Transformation functions: We consider the following geometric transformation:

gθn
(ip) = αnR−φn ip +xn , (4)

where ip is a pixel in a patch around n, φn is the rotation, αn the scale and xn is the translation

as defined above. A rotation of the source image by φn is equivalent to rotating the patch

indices by −φn, hence the indices are rotated by rotation matrix R−φn . Images are captured
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at a fixed resolution, and hence the full scale space of patches is not available. We consider

only αn ≥ 1, such that the patch is never increased in resolution. To aid the optimisation,

we further limit the possible scale range to 2 ≥ αn ≥ 1. These parameters form part of the

parameter set θ that is optimised over.

The general photometric transformation we consider is

fθn
(s) = s+βn , (5)

where s is the value of one colour channel of a pixel and βn is a brightness shift, which

completes the parameter set θ .

Note that to ‘turn off’ a transformation, we can simply fix the appropriate parameter to

its default value: φn = 0, αn = 1 and βn = 0.

Patch shape: Our definition is independent of the patch shape. As a default, we use square

patches, as in most previous work. However, when we consider the rotation transformation,

we use (discretised) circular patches, for ease of interpolation at different angles.

4 Optimisation

Finding a globally optimal completion is intractable in general, given the large solution space

and the cost of evaluating the energy of one solution. The Wexler et al. algorithm [13] is one

approximate optimisation scheme. The optimisation iterates between two steps, which we

refer to as search and filling.

1. Search: For each patch in the current target image, the nearest neighbour patch in the

source image is found, thus performing the minimisation of Equation 2. The result is

a set of parameters θn for target patches around each pixel n, which we refer to as in

[1] as the nearest neighbour field.

2. Filling: A new target image is generated from the nearest neighbour field.

These two steps are iterated until the target image converges. Note that in the search

step, we always first propose a matching patch location xn and then search for the other

transformation parameters to minimise the energy of this match.

The original algorithm suggests a hierarchical approximation to speed up the algorithm

and provide increased robustness to the chosen patch size, but for simplicity we do not con-

sider this extension in this work.

4.1 Search

4.1.1 Discrete Search

For discrete variables, such as location, we can perform exhaustive search over all possible

values. Approximate discrete search such as Patch Match [1, 2] can maintain high accuracy

at a fraction of the cost.

We also consider discrete search for approximate search over continuous variables. This

method was considered in previous work for optimising over transformations [4, 14]. The

number of discrete values must be chosen to trade-off speed and accuracy.
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Figure 3: Continuous search with Levenberg-Marquadt (φLM) guarantees finding a local minimum,

unlike discrete search (φdiscrete), and in some cases finds the global minimum.

4.1.2 Continuous Search

For the best accuracy, continuous variables must be optimised by continuous optimisation

methods. However, even for relatively simple transformations such as rotation, the problem

is non-linear and non-convex. For continuous variables, we use the Levenberg-Marquadt

algorithm. To achieve robustness, we use multiple starting points over the range of transfor-

mation parameters. A typical example is shown in Fig. 3. We use our own implementation

of Levenberg-Marquadt based on [11]. In order to speed up the search, we constrain the

parameters to lie within an appropriate region around the current starting point.

Jacobian calculation: The Jacobian with respect to the transformation parameters is re-

quired by Levenberg-Marquadt. The function that is squared and summed over in our model

(Eqn. 2) is given by

ep = T (ip)−S (gθn
(ip)) . (6)

Hence the Jacobian for pixel p with rotation φn varying is given by the chain rule as

∂ep

∂φn

=

(

∂ep

∂gθn
(ip)

)T ∂gθn
(ip)

∂φn

=−αn∇S (gθn
(ip))

T ∂R−φn

∂φn

ip . (7)

For scale, the element of the Jacobian for pixel p is derived similarly as

∂ep

∂αn

=−∇S (gθn
(ip))

T
R−φn ip . (8)

4.1.3 Closed-Form Solution

For some transformations it is possible to determine the closed form optimal transformation

parameter. This is possible for the brightness change transformation we consider (Eqn. 5).

The contribution to the energy of matching one target patch with a source patch is given by

En = min
θn

|| [tn − sθn
] ·vn||

2 = min
θn

∑
k

∑
p

(

[

tpk − spk −βn

]2
vpk

)

, (9)

where indices pk give the value at pixel p and colour channel k. Differentiating, we find

β ∗
n =

∑k ∑p

([

tpk − spk

]

vpk

)

∑k ∑p vpk

. (10)
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Image Translation Rotation Scaling Similarity Brightness All

(a)

0.0,0.0,0.15 0.0,0.0,0.27 0.0,0.0,7.22 0.0,0.0,52.8 0.0,0.0,0.24 0.0,0.0,64.0

(b)

57.7,86.3,0.57 2.9,0.7,126 81.8,112,27.3 2.0,0.7,460 51.8,91.6,1.16 3.6,12.3,239

(c)

17.7,85.2,0.44 11.6,81.1,62.3 11.6,13.6,17.2 4.0,26.8,133 17.5,101,1.2 4.3,24.3,141

(d)

81.0,255,0.17 115,255,2.39 128,255,2.8 140,255,11.1 35.2,0.0,0.39 27.3,0.0,65.9

Figure 4: Ex+c, toy images. These results demonstrate clearly the effectiveness of our method when

redundancy exists only under a transformation. In most cases, the error is minimised when only the

required transformation is used; the error when using all transformations increases. For the input image

(left column), the red area shows the hole and the green box illustrates the patch width. For each result

we give the energy, error with respect to the ground truth and the processing time in minutes.

4.1.4 Constraints

In some cases, we wish to constrain a transformation parameter to lie between lower and

upper thresholds. It can be shown that if the problem is convex, the new optimum parameter

lies at either the unconstrained optimum or at one of the thresholds. Our objective functions

are non-convex, but are modelled locally as convex by the Levenberg-Marquadt algorithm.

If we reach a threshold during the optimisation, we stop and take the threshold value. We

find in practice this makes our optimisation faster with no discernable loss of accuracy.

4.2 Filling

The hole is filled by combining the nearest neighbour source patches specified by the nearest

neighbour field. Wexler et al. [13] formulate this as a weighted voting scheme. We use a

similar scheme that we found to work well, in which the pixel colour taken is the median of

all votes, with the median found independently for each colour channel.

Table 1: Search method nomenclature. Bold text shows novel search methods and transformations.
Name Translation Geometric Brightness

Ex Exhaustive (none) Closed form

PM* Patch Match with * iterations (none) Closed form

Ex+c Exhaustive Continuous Closed form

Ex+d6 Exhaustive Discrete, 6 values Closed form

PM*+c Patch Match with * iterations Continuous Closed form

PM*+d6 Patch Match with * iterations Discrete, 6 values Closed form

GPM* Generalized Patch Match with * iterations
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(a) (b) (c) (d)

Method Brightness Ex Brightness Ex Brightness Ex Scale Ex+c

Image

Translation

only

6.01 49.9,1.46 5.64 37.2,9.85

Transformation

(as specified

at the top)

8.62 16.4,4.48 5.93 27.7,407

Figure 5: Using transformations can improve results on real images qualitatively and quantitatively.

For the input image (top row), the red area shows the hole and the green box illustrates the patch width.

The numbers under the images give the error and the time in minutes.

5 Experiments

We perform many experiments to evaluate the results when using our various search methods

and transformations. Our nomenclature is given in Table 1. Note that we always search over

translation i.e. different patches from the source image, and for each proposed translation

then search over other transformation parameters where specified.1

The true objective of image completion is to find a completion satisfactory to the user.

Visual inspection is the natural test (see Figs. 4–9). We also present quantitative results: the

final energy of the result (Eqn. (2)) and the RMS pixel colour error with respect to the ground

truth, where possible.2 Though not the objective of image completion, this error is a suit-

able measure of plausibility when the completion problem is sufficiently well constrained.

Note that the energy function depends on the source database, transformations considered

and patch size, and hence energies calculated when changing these factors are not directly

comparable. However, we can always make comparisons with the ground truth error, where

the ground truth is available.

5.1 Evaluating the Model

We investigate the use of transformations on toy images (Fig. 4) and realistic images (Figs. 5,9).

We tested many combinations of translation, rotation, scale and brightness. In general, rota-

tion and brightness shift showed the most influence on output quality, but all transformations

show the ability to improve the results when used appropriately. We observe a positive cor-

relation between the energy and error for the methods over many images and patch widths,

as shown in Fig. 7. These observations validate our belief that the inclusion of transforma-

tions has improved our model of the problem. Note though that we observe that the use of

additional transformations must be sensibly constrained to prevent degeneracies (see Fig. 6).

5.2 Evaluating the Optimisation

Overall optimisation: Our overall optimisation algorithm guarantees only a local mini-

mum be reached. This can be seen from our results most clearly in Fig. 7, where in general,

1All results were created with our implementations, which are available under GNU General Public License at

http://www.vision.ee.ethz.ch/~mansfiea/transformic/
2Note that in order to aid intuition, for all given energy and error values in the paper, we average over each

colour channel and pixel, and square root. Hence all lie within the range [0,255].

http://www.vision.ee.ethz.ch/~mansfiea/transformic/
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(a) (b) (c) (d) (e) (f)

Method Rot. Ex+c Rot. Ex+c Rot. Ex+c Bright. Ex Rot. Ex+c All Ex+c

Image

No

initialisation

8.3,74.4 8.6,30.9 15.4,35.7 15.4 5.3 6.9,55.2

Initialised at

ground truth
n/a n/a

5.7,10.5 8.0,12.2 11.6,16.5 6.4,6.6

Figure 6: Failure cases. Using a patch size too small to capture the texture (a–c) or too large to

exploit redundancy (d) can lead to poor completion. Allowing for additional transformations can lead

to degenerate solutions (e). Our optimisation can fail for complex textures (f). For the input image (top

row), the red area shows the hole and the green box illustrates the patch width. Results marked (GT)

were initialised at the ground truth. We give the final energy and error with respect to the ground truth.

initialising at the ground truth leads to a lower energy result. This is shown even more clearly

by Fig. 6, where initialising at the ground truth results in a better completion in each case.

Only local minimisation also implies that changing the model, for example the transforma-

tions considered, may lead to a result at a local minimum with higher energy. For example

in Fig. 4, using all transformations does not always lead to the lowest energy.

Despite no guarantees that the energy is reduced at each iteration, this is shown to be the

case in practice as in Fig. 8. After all pixels are filled, or if we initialise with hole pixels

filled from the ground truth, the energy falls until convergence after a few iterations.

Search: We observe that for more approximate search methods, the energy and error of

the final result is higher. This suggests that the search limits the optimisation. This can most

clearly be seen by comparison with the results initialised at the ground truth in Fig. 7, where

energy at convergence is limited then only by the power of the search method.

In many cases, running the most accurate search Ex+c may not be practical due to its

computational expense. However, very approximate schemes are not able to search well in

the transformation space. A good balance is shown by the methods PM+c and GPM1000,

which reach low energies and errors in a time much less than Ex+c.

5 10 15 20
0

5

10

15

20

25

Patch Width

E
n

e
rg

y

5 10 15 20
0

10

20

30

40

50

Patch Width

E
rr

o
r

5 10 15 20
2

4

6

8

10

12

Patch Width

lo
g

 (
ti

m
e

 /
s)

 GPM10

GPM1000

PM10+d6

PM10+c

Ex+d6

Ex+c

GPM10 (GT)

GPM1000 (GT)

PM10+d6 (GT)

PM10+c (GT)

Ex+d6 (GT)

Ex+c (GT)

Figure 7: The average energy, error and running time against patch width for a selected set of 8 images

with rotational redundancy, considering the rotation transformation. A positive correlation between

energy and error is shown, with more approximate search leading to higher energies and errors, though

lower running time. Using a larger patch size can make the energy harder to minimise, but can lead to

even lower error in the final result. Results marked (GT) were initialised at the ground truth.
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Figure 8: The energy throughout iterations of optimisation with the rotation transformation. Note that

when initialising from the hole, 2 iterations are required before all hole pixels are filled. In these first

iterations, as feasibility is reached, the energy may increase. After that, we observe that the energy

decreases. Results marked (GT) were initialised at the ground truth.

Choosing patch size: In all our results, we manually chose an appropriate patch size. We

found using patches too small or too large can lead to failures as in Fig. 6.

6 Conclusions and Future Work

We have shown that including transformations improves a model for completion of images

which exhibit redundancy over such transformations. Optimising this model is difficult, but

the use of continuous search over the transformation parameters brings significant improve-

ment in accuracy compared to previous search methods, with a good approximation achieved

in much less time by the Patch Match based search algorithms. We show that it is advanta-

geous to limit the transformations considered to those that are necessary, to limit the addition

of local minima. Finally, we show that the patch size is an important parameter that must be

chosen in accordance with the problem image and the transformations considered.

In future work we hope to investigate more approximate search methods, such as the use

of transformation invariant patch descriptors. Although we hand-picked the transformations

and patch sizes for different images, we hope to explore automatic methods for choosing

these, for example based on detection of repeating elements and symmetries. Finally, we

would like to test our model in other related application domains, including superresolution,

denoising, retargeting and shape completion.
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