
Transforming

Linear Context–Free Rewriting Systems

into Minimalist Grammars⋆

Jens Michaelis

Universität Potsdam, Institut für Linguistik, PF 601553, 14415 Potsdam, Germany
michael@ling.uni-potsdam.de

Abstract. The type of a minimalist grammar (MG) as introduced by
Stabler [11, 12] provides an attempt of a rigorous algebraic formaliza-
tion of the new perspectives adopted within the linguistic framework of
transformational grammar due to the change from GB–theory to mini-
malism. Michaelis [6] has shown that MGs constitute a subclass of mildly
context–sensitive grammars in the sense that for each MG there is a
weakly equivalent linear context–free rewriting system (LCFRS). How-
ever, it has been left open in [6], whether the respective classes of string
languages derivable by MGs and LCFRSs coincide. This paper completes
the picture by showing that MGs in the sense of [11] and LCFRSs in fact
determine the same class of derivable string languages.

1 Introduction

The type of a minimalist grammar (MG) as introduced in [11, 12] provides an
attempt of a rigorous algebraic formalization of the new perspectives adopted
within the linguistic framework of transformational grammar due to the change
from GB–theory to minimalism. As shown in [6], MGs expose a subclass of
mildly context–sensitive grammars in the sense that for each MG there is a
weakly equivalent linear context–free rewriting system (LCFRS). More recently,
in [1] it has been pointed out how the method to convert an MG into a weakly
equivalent LCFRS can be employed to define a agenda–driven, chart–based rec-
ognizer for minimalist languages solving the recognition problem as to a given
MG and an input string in deterministic polynomial time. Nevertheless, it has
been left open until now, whether the respective classes of string languages deriv-
able by MGs and LCFRSs coincide. This paper completes the picture by proving
each LCFRS to necessarily generate a string language which, indeed, is also an
MG–definable string language. Hence, one of the interesting outcomes is that
MGs, beside LCFRSs, join to a series of formalism classes—among which there
is e.g. the class of multicomponent tree adjoining grammars (MCTAGs) in their
set–local variant of admitted adjunction (cf. [16])—all generating the same class

⋆ This work has been carried out funded by DFG–grant STA519/1-1. I especially wish
to thank Kai–Uwe Kühnberger and Ed Stabler for inspiring discussions.



of string languages, which is known to be a substitution–closed full AFL. Fur-
thermore, another consequence, type specific of the MG–formalism, arises from
our particular construction of a weakly equivalent MG for a given LCFRS. The
crucial point implied is that each MG can be transformed into a weakly equiv-
alent MG that does not employ any kind of head movement or covert phrasal
movement. This does not only prove a quite simpler formal setting for MGs to
have the same weak generative capacity as the original one, but this also chimes
in with current developments within the linguistic framework.

2 Linear Context–Free Rewriting Systems

The class of linear context–free rewriting systems (LCFRSs) [15, 16] constitutes
a proper subclass of the class of multiple context–free grammars (MCFGs) [10]
where in terms of derivable string languages both classes have identical gen-
erative power. MCFGs in their turn expose a special subtype of generalized
context–free grammars (GCFGs) as introduced in [8].

Definition 2.1 ([8]). A five–tuple G = 〈N,O, F, R, S〉 for which (G1)–(G5)
hold is called a generalized context–free grammar (GCFG).

(G1) N is a finite non–empty set of nonterminal symbols.

(G2) O is a set of (linguistic) objects.

(G3) F is a finite subset of
⋃

n∈IN Fn\{∅}, where Fn is the set of partial functions
from 〈O〉n into O, i.e. F0 \ {∅} is the set of all constants in O.1

(G4) R ⊆
⋃

n∈IN(F ∩ Fn)×Nn+1 is a finite set of (rewriting) rules.2

(G5) S ∈ N is the distinguished start symbol.

A rule r = 〈f, A0A1 · · ·An〉 ∈ (F ∩ Fn)×Nn+1 for some n ∈ IN is generally
written A0 → f(A1 , . . . , An), and also just A0 → f() in case n = 0. If the
latter, i.e. f() ∈ O, then r is terminating, otherwise r is nonterminating. For
each A ∈ N and each k ∈ IN the set Lk

G(A) ⊆ O is given recursively in the
following sense:

(L1) θ ∈ L0
G(A) for each terminating rule A→ θ ∈ R.

(L2) θ ∈ Lk+1
G (A), if θ ∈ Lk

G(A), or if there is a rule A → f(A1 , . . . , An) ∈ R

and there are θi ∈ Lk
G(Ai) for 1 ≤ i ≤ n such that 〈θ1, . . . , θn〉 ∈ Dom(f)

and f(θ1 , . . . , θn) = θ.3

1 IN denotes the set of all non–negative integers. For n∈ IN and any sets M1, . . . , Mn,∏n

i=1
Mi is the set of all n–tuples 〈m1, · · · ,mn〉 with i–th component mi ∈Mi, where

∏0

i=1
Mi = {∅},

∏1

i=1
Mi = M1, and

∏
j

i=1
Mi =

∏
j−1

i=1
Mi ×Mj for 1 < j ≤ n. We

write 〈M〉n instead of
∏n

i=1
Mi if for some set M , Mi = M for 1 ≤ i ≤ n.

2 For any set M and n ∈ IN, Mn+1 is the set of all finite strings in M of length n+1.
M∗ is the Kleene closure of M , including ǫ, the empty string. Mǫ is the set M ∪{ǫ}.

3 For each partial function g from some set M1 into some set M2, Dom(g) denotes the
domain of g, i.e. the set of all x ∈M1 for which g(x) is defined.



We say A derives θ (in G) if θ ∈ Lk
G(A) for some A ∈ N and k ∈ IN. In this

case θ is called an A–phrase (in G). For each A ∈ N the language derivable from
A (by G) is the set LG(A) of all A–phrases (in G), i.e. LG(A) =

⋃
k∈IN L

k
G(A).

The set LG(S), also denoted by L(G), is the language derivable by G.

Definition 2.2. An GCFG G1 and G2 are weakly equivalent if L(G1) = L(G2).

Definition 2.3 ([10]). For m ∈ IN \ {0} an m–multiple context–free grammar
(m–MCFG) is a GCFG G = 〈N,OΣ, F, R, S〉 which satisfies (M1)–(M4).

(M1) OΣ =
⋃m

i=1〈Σ
∗〉i for some finite non–empty set Σ of terminal symbols

with Σ ∩N = ∅. Hence OΣ, the set of objects, is the set of all non–empty,
finite tuples of finite strings in Σ such that each tuple has at most m
components.

(M2) For each f ∈ F let n(f) ∈ IN be the rank of f , the number of components
of an argument of f , i.e. f ⊆ 〈OΣ〉n(f) × OΣ. Then for each f ∈ F there
exists a number ϕ(f) ∈ IN \ {0}, called the fan–out of f , and there are
numbers di(f) ∈ IN \ {0} for 1 ≤ i ≤ n(f) such that f is a (total) function

from
∏n(f)

i=1 〈Σ
∗〉di(f) into 〈Σ∗〉ϕ(f) for which (f1) and, in addition, the

anti–copying condition (f2) hold.

(f1) Define IDom(f) by {〈i, j〉 ∈ IN × IN | 1 ≤ i ≤ n(f), 1 ≤ j ≤ di(f)} and
take Xf = {xij | 〈i, j〉 ∈ IDom(f)} to be a set of pairwise distinct variables.
For 1 ≤ i ≤ n(f) let xi = 〈xi1, . . . , xidi(f)〉. For 1 ≤ h ≤ ϕ(f) let fh be

the h–th component of f , i.e. the function fh from
∏n(f)

i=1 〈Σ
∗〉di(f) into Σ∗

such that f(θ) = 〈f1(θ), . . . , fϕ(f)(θ)〉 for all θ ∈
∏n(f)

i=1 〈Σ
∗〉di(f). Then, for

each 1 ≤ h ≤ ϕ(f) there is an lh(f) ∈ IN such that fh can be represented
by

(cfh) fh(x1, . . . , xn(f)) = ζ(fh0) z(fh1) ζ(fh1) · · · z(fhlh(f)) ζ(fhlh(f))

with ζ(fhl) ∈ Σ∗ for 0 ≤ l ≤ lh(f) and z(fhl) ∈ Xf for 1 ≤ l ≤ lh(f).

(f2) Define IRange(f) by {〈h, l〉 ∈ IN × IN | 1 ≤ h ≤ ϕ(f), 1 ≤ l ≤ lh(f)}
and let gf denote the binary relation on IDom(f) × IRange(f) such that
〈〈i, j〉, 〈h, l〉〉 ∈ gf iff xij = z(fhl). Then gf is a partial function from
IDom(f) into IRange(f),

4 i.e. there is at most one occurrence of each xij ∈ Xf

within all righthand sides of (cf1 )–(cfϕ(f)
).

(M3) There is a function dG from N to IN such that, if A0 → f(A1 , . . . , An) ∈ R

for some n ∈ IN then ϕ(f) = dG(A0) and di(f) = dG(Ai) for 1 ≤ i ≤ n,
where ϕ(f) and di(f) for 1 ≤ i ≤ n are as in (M2).

(M4) dG(S) = 1 for the start symbol S ∈ N .

4 Note that this implies that gf is an injective, but not necessarily total, function from
IDom(f) onto IRange(f).



The rank of G, denoted by rank(G), is defined as max{rank (f) | f ∈ F }. Note
that L(G) ⊆ Σ∗ by (M4). In case that m = 1 and that each f ∈ F \ F0 is the
concatenation function from 〈Σ∗〉n+1 to Σ∗ for some n ∈ IN, G is a context–free
grammar (CFG) and L(G) a context–free language (CFL) in the usual sense.

Definition 2.4. Each L ⊆ Σ∗ for some set Σ such that there is an m–MCFG
G with L = L(G) is an m–multiple context–free language (m–MCFL).

Definition 2.5 ([15]). For m ∈ IN \ {0} an m–MCFG G = 〈N,OΣ, F, R, S〉
according to Definition 2.3 is called an m–linear context–free rewriting system
(m–LCFRS) if for each f ∈ F the non–erasure condition (f3) holds in addition
to (f1) and (f2).

(f3) The function gf from (f2) is total, i.e. each xij ∈ Xf has to appear in one
of the righthand sides of (cf1 )–(cfϕ(f)

).

Definition 2.6. Each L ⊆ Σ∗ for some set Σ such that there is an m–LCFRS
G with L = L(G) is an m–linear context–free rewriting language (m–LCFRL).

For each m ∈ IN\{0}, a givenm–MCFG, m–MCFL, m–LCFRS, orm–LCFRL is
likewise referred to simply as an MCFG, MCFL, LCFRS, or LCFRL, respectively.

The class of all MCFGs and the class of all LCFRSs are essentially the same. The
latter was first described in [15] and has been studied in some detail in [16].5 The
MCFG–definition technically generalizes the LCFRS–definition by omitting the
non–erasure condition (f3). But this bears no consequences as to matters of weak
generative capacity as is fixed by Lemma 2.2 in [10]. Looking at the construction
that Seki et al. [10] propose in order to end up with a weakly equivalent LCFRS
for a given MCFG, it becomes clear that the following holds:

Corollary 2.7. For each m–MCFG G = 〈N,OΣ , F, R, S〉 with m ∈ IN \ {0}
there exists a weakly equivalent m–LCFRS G′ = 〈N ′, OΣ, F

′, R′, S′〉 such that
rank (G′) ≤ rank (G).

Combining this result with Theorem 11 in [9] we get

Corollary 2.8. For every MCFG G there is an LCFRS G′ with rank (G′) ≤ 2
deriving the same language as G.

5 In particular, Weir [16] carefully develops the leading idea to come up with the
definition of LCFRSs: the specific aim of the LCFRS–formalism is to provide a per-
spective under which several types of grammar formalisms, that all can be restated
(in terms of weak equivalence) as specific GCFG–types dealing with more or less
distinct types of objects, become directly comparable. This is achieved by taking the
functions of the respective GCFGs to be simply function symbols rather than con-
crete operators applying to corresponding (tuples of) objects. Then, these function
symbols are interpreted as unique yield functions which map the derived objects to
tuples of terminal strings.



3 Minimalist Grammars

Throughout this section we let ¬Syn and Syn be a set of non–syntactic features
and a set of syntactic features, respectively, according to (F1)–(F3).

(F1) ¬Syn is a finite set partitioned into a set Phon of phonetic features and a
set Sem of semantic features.

(F2) Syn is a finite set disjoint from ¬Syn and partitioned into a set Base of
(basic) categories, a set Select of selectors, a set Licensees of licensees and
a set Licensors of licensors. For each x ∈ Base, usually typeset as x, the
existence of three pairwise distinct elements in Select , respectively denoted
by =

x, =
X and X

=, is possible. For each x ∈ Licensees , usually depicted in
the form -x, the existence of two distinct elements in Licensors , denoted
by +x and +X, is possible. Selectors and licensors of the form =

X, X= or +X

are said to be strong, those of the form =
x or +x are said to be weak.

(F3) c is a distinguished element from Base, the completeness category.

We take Feat to be the set defined by ¬Syn ∪ Syn .

Definition 3.1. A tree domain is a non–empty set Nτ ⊆ IN∗ which is prefix
closed and left closed, i.e. for all χ ∈ IN∗ and i ∈ IN it holds that χ ∈ Nτ if
χχ′ ∈ Nτ for some χ′ ∈ IN∗, and χi ∈ Nτ if χj ∈ Nτ for some j ∈ IN with i < j.

Definition 3.2. A five–tuple τ = 〈Nτ , ⊳
∗
τ ,≺τ , <τ , labelτ 〉 fulfilling (E1)–(E4) is

called an expression (over Feat).

(E1) 〈Nτ , ⊳
∗
τ ,≺τ 〉 is a finite, binary (ordered) tree defined in the usual sense,

where Nτ is the finite, non–empty set of nodes, and where ⊳
∗
τ and ≺τ

are the binary relations of dominance and precedence on Nτ , respectively.
Thus, ⊳

∗
τ is the reflexive–transitive closure of ⊳τ ⊆ Nτ ×Nτ , the relation of

immediate dominance, and each non–leaf in 〈Nτ , ⊳
∗
τ ,≺τ 〉 has exactly two

children.6

(E2) <τ⊆ Nτ ×Nτ is the asymmetric relation of (immediate) projection (in τ)
that holds for any two siblings in 〈Nτ , ⊳

∗
τ ,≺τ 〉, i.e. each node different from

the root either (immediately) projects over its sibling or vice versa.

(E3) labelτ is the leaf–labeling function (of τ) which assigns an element from
Syn∗Phon∗Sem∗ to each leaf of 〈Nτ , ⊳

∗
τ ,≺τ 〉, i.e. each leaf–label is a finite

sequence of features from Feat .

(E4) 〈Nτ , ⊳
∗
τ ,≺τ 〉 is a subtree of some natural tree domain interpretation.7

6 Up to an isomorphism 〈Nτ , ⊳
∗

τ ,≺τ 〉 is the natural (tree) interpretation of some tree
domain. In other words, up to an isomorphism Nτ is a tree domain such that for all
χ, ψ ∈ Nυ it holds that χ ⊳τ ψ iff ψ = χi for some i ∈ IN, and χ ≺τ ψ iff χ = ωiχ′

and ψ = ωjψ′ for some ω, χ′, ψ′ ∈ IN∗ and i, j ∈ IN with i < j.
7 That is, there is some tree domain Nυ with Nτ ⊆ Nυ such that, as to the natural tree

interpretation 〈Nυ , ⊳
∗

υ ,≺υ 〉 of Nυ , the root rτ of 〈Nτ , ⊳
∗

τ ,≺τ 〉 meets the condition
that for each x ∈ Nυ it holds that x ∈ Nτ iff rτ ⊳

∗

υ x. Moreover it holds that
⊳
∗

υ = ⊳
∗

τ ↾Nυ×Nυ
and ≺υ=≺τ ↾Nυ×Nυ

.



The set of all expressions over Feat is denoted by Exp(Feat).

Let τ = 〈Nτ , ⊳
∗
τ ,≺τ , <τ , labelτ 〉 ∈ Exp(Feat).

For each x ∈ Nτ , the head of x (in τ), denoted by headτ (x), is the (unique)
leaf of τ such that x ⊳

∗
τ headτ (x), and such that each y ∈ Nτ on the path from

x to headτ (x) with y 6= x projects over its sibling. The head of τ is the head of
τ ’s root. τ is said to be a head (or simple) if Nτ consists of exactly one node,
otherwise τ is said to be a non–head (or complex).

A subexpression of τ is a five–tuple υ = 〈Nυ , ⊳
∗
υ ,≺υ , <υ , labelυ 〉 such that

〈Nυ , ⊳
∗
υ ,≺υ 〉 is a subtree of 〈Nτ , ⊳

∗
τ ,≺τ 〉, and such that <υ=<τ ↾Nυ×Nυ

and
labelυ = labelτ ↾Nυ

. Thus, υ is an expression over Feat . The set of all subexpres-
sions of τ is denoted by Subexp(τ ).

An expression υ ∈ Subexp(τ ) is a maximal projection (in τ) if υ’s root is a
node x ∈ Nτ such that x is the root of τ , or such that siblingτ (x) <τ x.8 Thus,
the number of maximal projections in τ and the number of leaves of τ coincide,
and two maximal projections in τ are identical in case they share the same head.
We take MaxProj (τ ) to be the set of all maximal projections in τ . Note that for
each subexpression υ ∈ MaxProj (τ ) it holds that MaxProj (υ) ⊆ MaxProj (τ ).

compτ ⊆ MaxProj (τ ) × MaxProj (τ ) is the binary relation such that for all
υ, φ ∈ MaxProj (τ ) it holds that υ compτ φ iff headτ (rυ) <τ rφ, where rυ and rφ
are the roots of υ and φ, respectively. If υ compτ φ for some υ, φ ∈ MaxProj (τ )
then φ is a complement of υ (in τ). comp

+

τ is the transitive closure of compτ .
Comp+(τ ) is the set {υ | τ comp

+

τ υ}.
specτ ⊆ MaxProj (τ ) × MaxProj (τ ) is the binary relation such that for all

υ, φ ∈ MaxProj (τ ) it holds that υ specτ φ iff rφ = siblingτ (x) for some x ∈ Nτ

with rυ ⊳
+

τ x⊳
+

τ headτ (rυ), where rυ and rφ are the roots of υ and φ, respectively.
If υ specτ φ for some υ, φ ∈ MaxProj (τ ) then φ is a specifier of υ (in τ). spec

∗
τ

is the reflexive–transitive closure of specτ . Spec(τ ) and Spec∗(τ ) are the sets
{υ | τ specτ υ} and {υ | τ spec

∗
τ υ}, respectively.

An υ ∈ MaxProj (τ ) is said to have feature f or, likewise, to be with feature f
if for some f ∈ Feat the label assigned to the head of υ by labelτ is non–empty
and starts with an instance of f .

τ is complete if its head–label is in {c}Phon∗Sem∗ and each other of its leaf–
labels is in Phon∗Sem∗. Hence, a complete expression over Feat is an expression
that has category c, and this instance of c is the only instance of a syntactic
feature within all leaf–labels.

The yield of τ , denoted by Y (τ ), is defined as the string which results
from concatenating in “left–to–right–manner” the labels assigned to the leaves
of 〈Nτ , ⊳

∗
τ ,≺τ 〉 via labelτ . The phonetic yield (of τ), denoted by YPhon(τ ), is

the string which results from Y (τ ) by replacing all instances of non–phonetic
features in Y (τ ) with the empty string.

An expression υ = 〈Nυ , ⊳
∗
υ ,≺υ , <υ , labelυ 〉 ∈ Feat(Exp) is (labeling preserv-

ing) isomorphic to τ if there exists a bijective function i from Nτ onto Nυ such
that x ⊳τ y iff i(x) ⊳υ i(y), x ≺τ y iff i(x) ≺υ i(y), and x <τ y iff i(x) <υ i(y)

8 siblingτ (x) denotes the (unique) sibling of a given x ∈ Nτ different to τ ’s root



for all x, y ∈ Nτ , and such that labelτ (x) = labelυ (i(x)) for all x ∈ Nτ . This
function i is an isomorphism (from τ to υ).

Definition 3.3. For each given τ = 〈Nτ , ⊳
∗
τ ,≺τ , <τ , labelτ 〉 ∈ Exp(Feat) with

Nτ = rτNυ for some rτ ∈ IN∗ and some tree domain Nυ , and for each given
r ∈ IN∗, the expression shifting τ to r, denoted by (τ )r , is the expression
〈Nτ(r) , ⊳

∗
τ(r) ,≺τ(r) , <τ(r) , labelτ(r)〉 ∈ Exp(Feat) with Nτ(r) = rNυ such that the

function iτ(r) from Nτ onto Nτ(r) with iτ(r)(rτ x) = rx for all x ∈ Nυ constitutes
an isomorphism from τ to (τ )r .9

Introducing a related notational convention, we assume υ and φ to be expressions
over Feat , and consider the expressions (υ)0 and (φ)1 shifting υ to 0 and φ to
1, respectively. We write [<υ, φ ] (respectively, [>υ, φ ]) in order to refer to the
complex expression χ = 〈Nχ , ⊳

∗
χ,≺χ , <χ, labelχ〉 over Feat with root ǫ such that

(υ)0 and (φ)1 are the two subexpressions of χ whose roots are immediately
dominated by ǫ, and such that 0 <χ 1 (respectively, 1 <χ 0).

We next introduce a type of MGs strongly in line with the definition given in
[11]. But different to there, we do so by demanding all selection features of an
MG to be weak, and all licensor features to be strong. In this sense, we only
define a subtype of MGs as introduced in [11]. For this subtype there is no need
to explicitly define what is meant by (overt) head movement or covert (phrasal)
movement, respectively, since there are no features which potentially trigger
these kinds of movement (cf. [11]). Moreover, this subtype will be sufficient to
prove the class of LCFRSs to be weakly embeddable into the class of MGs.

Definition 3.4. A five–tuple G = 〈¬Syn , Syn,Lex , Ω, c〉 that obeys (N0)–(N2)
is called a minimalist grammar (MG).

(N0) All syntactic features from Select are weak, while all syntactic features
from Licensors are strong.

(N1) Lex is a lexicon (over Feat), i.e. a finite subset of Exp(Feat) such that
for each τ = 〈Nτ , ⊳

∗
τ ,≺τ , <τ , labelτ 〉 ∈ Lex the set of nodes, Nτ , is a tree

domain and the leaf–labeling function, labelτ , maps each leaf of τ onto an
element from Select ∗LicensorsǫSelect∗BaseǫLicensees∗Phon∗Sem∗.

(N2) The set Ω consists of the structure building functions merge and move
defined w.r.t. ¬Syn ∪ Syn as in (me) and (mo) below, respectively.

(me) The operator merge is as a partial mapping from Exp(Feat) × Exp(Feat)
into Exp(Feat). A pair 〈υ, φ〉 of some expressions υ and φ over Feat belongs
to Dom(merge) if for some x ∈ Base conditions (i) and (ii) are fulfilled.

(i) υ has selector =
x, and

(ii) φ has category x.

9 Hence, 〈Nτ(ǫ) , ⊳
∗

τ(ǫ) ,≺τ(ǫ) 〉 is identical to the natural tree interpretation of the tree

domain Nυ . Note that by (E4), for every τ = 〈Nτ , ⊳
∗

τ ,≺τ , <τ , labelτ 〉 ∈ Exp(Feat)
there do exist an rτ ∈ IN∗ and a tree domain Nυ with Nτ = rτNυ .



Thus, there are κυ, κφ ∈ Syn∗ νυ, νφ ∈ Phon∗Sem∗ such that =
xκυνυ and

xκφνφ are the head–labels of υ and φ, respectively. The value of 〈υ, φ〉
under merge is subject to two distinct subcases.

(me.1) merge(υ, φ) = [<υ
′, φ′ ] if υ is simple,

where υ′ and φ′ are the expressions resulting from υ and φ, respectively, by
replacing the head–labels: the head–label of υ becomes κυνυ in υ′, that of φ
becomes κφνφ in φ′. Hence, υ′ and φ′ respectively result from υ and φ just
by deleting the instance of the feature that the corresponding head–label
starts with.

(me.2) merge(υ, φ) = [>φ
′, υ′ ] if υ is complex,

where υ′ and φ′ are defined the same way as in (me.1).

(mo) The operator move is a partial mapping from Exp(Feat) into Exp(Feat).
An υ ∈ Exp(Feat) belongs to Dom(move) if for some -x ∈ Licensees
conditions (i) and (ii) are true.

(i) υ has licensor feature +X, and

(ii) there is exactly one maximal projection φ in υ that has feature -x.

Thus, there are κυ, κφ ∈ Syn∗, νυ, νφ ∈ Phon∗Sem∗ such that +Xκυνυ and
-xκφνφ are the head–labels of υ and φ, respectively. The outcome of the
application of move to υ is defined as

move(υ) = [>φ
′, υ′ ] ,

where the expression υ′ results from υ by canceling the instance of +X the
head–label of υ starts with, while the subtree φ is replaced by a single node
labeled ǫ. φ′ is the expression arising from φ just by deleting the instance
of -x that the head–label of φ starts with.

For each MG G = 〈¬Syn , Syn,Lex , Ω, c〉 the closure of Lex (under the functions
in Ω), briefly referred to as the closure of G and denoted by CL(G), is defined
as

⋃
k∈IN CLk(G), a countable union of subsets of Exp(Feat), where for k ∈ IN

the sets CLk(G) are inductively given by

(C1) CL0(G) = Lex

(C2) CLk+1(G) = CLk(G)

∪ {merge(υ, φ) | 〈υ, φ〉 ∈ Dom(merge) ∩ CLk(G) ×CLk(G)}

∪ {move(υ) | υ ∈ Dom(move) ∩ CLk(G)}

Recall that the functions merge and move are structure building by strict
feature consumption. Thus, since CL0(G) = Lex , each application of merge or
move deriving some τ ∈ CL(G) can be seen as “purely lexically driven.”

Every τ ∈ CL(G) is an expression of G. The (string) language derivable by
G is the set {YPhon(τ ) | τ ∈ CL(G) such that τ is complete}, denoted by L(G).

Definition 3.5. Each L ⊆ Phon ∗ for some set Phon such that there is an MG
G with L = L(G) is called a minimalist language (ML).



Just in order to complete the picture in terms of a formal definition we give

Definition 3.6. An MG G and an MCFG G′ are weakly equivalent if they derive
the same (string) language, i.e. if L(G) = L(G′).

4 MCFLs as MLs

In this section we take G = 〈N,OΣ , F, R, S〉 to be an arbitrary, but fixed m–
MCFG for some m ∈ IN \ {0}. In order to prepare the construction of a weakly
equivalent MG we start by considering the functions from F of the MCFG G in
some more detail.

Let f ∈ F . We first choose non–negative integers n(f), 1 ≤ ϕ(f) ≤ m and
1 ≤ di(f) ≤m for 1 ≤ i ≤ n(f), existing according to (M2) such that

f is a (total) function from
∏n(f)

i=1 〈Σ
∗〉di(f) into 〈Σ∗〉ϕ(f).

Next we define

IDom(f) = {〈i, j〉 | 1 ≤ i ≤ n(f), 1 ≤ j ≤ di(f)},

we let Xf = {xij |〈i, j〉 ∈ IDom(f)} be a set of pairwise distinct variables, and
we set xi = 〈xi1, . . . , xidi(f)〉 for 1 ≤ i ≤ n(f). Then, for 1 ≤ h ≤ ϕ(f) we
take fh to be the h–th component of f , i.e. f(θ) = 〈f1(θ), . . . , fϕ(f)(θ)〉 for all

θ ∈
∏n(f)

i=1 〈Σ
∗〉di(f), and we fix lh(f) ∈ IN, ζ(fhl) ∈ Σ∗ for 0 ≤ l ≤ lh(f), and

z(fhl) ∈ Xf for 1 ≤ l ≤ lh(f), existing by (f1), such that fh is represented by

fh(x1, . . . , xn(f)) = ζ(fh0) z(fh1) ζ(fh1) · · · z(fhlh(f)) ζ(fhlh(f)) .

Proceeding for each f ∈ F we let

IRange(f) = {〈h, l〉 | 1 ≤ h ≤ ϕ(f), 1 ≤ l ≤ lh(f)} ,

and we take gf to be the injective partial function from IDom(f) onto IRange(f)

which exists according to (f2) such that

gf (i, j) = 〈h, l〉 iff xij = z(fhl) for each 〈i, j〉 ∈ Dom(gf).

Sticking to a further notational convention introduced in Section 2, we take

dG to denote the function from N into IN

existing due to (M3) and (M4). Thus 1≤dG(A)≤m for A∈N , where dG(S) = 1.

We now define an MG GMG = 〈¬Syn , Syn ,Lex , Ω, c〉 according to (N0)–(N2)
and prove it to be weakly equivalent to the MCFG G afterwards. To do so
successfully, we assume w.l.o.g. G to be an LCFRS with rank (G) = 2, what is
possible according to Corollary 2.8.

Let us start with a motivation of the concrete construction we suggest below.
For that, we consider some r = A→ f(A1 , . . . , An(f)) ∈ R and let ph ∈ LG(Ah)



for 1 ≤ h ≤ n(f). Thus we have p = f(p1 , . . . , pn(f)) ∈ LG(A) ⊆ 〈Σ∗〉dG(A). Our
aim is to define GMG such that we are able to derive an expression τ ∈ CL(GMG)
from existing expressions υ1, . . . , υn(f) ∈ CL(GMG), thereby successively “cal-

culating” the ϕ(f)–tuple p in n(f) + 3ϕ(f) +
∑ϕ(f)

h=1 2lh(f) steps. Recall that
we have dG(A) = ϕ(f). Each υi for some 1 ≤ i ≤ n(f) will be related to Ai

and pi, and the resulting expression τ to A and p in a specific way (cf. Def-
inition 4.1). Roughly speaking, as for τ , for each 1 ≤ h ≤ dG(A) there will
be some τh ∈ MaxProj (τ ) provided with a particular licensee instance. Up to
those proper subtrees of τh which are themselves maximal projections with some
licensee feature, the component ph will be the phonetic yield of τh.

• • • First we let Phon = Σ and Sem = ∅.

• • • Defining the sets Licensees and Licensors , for 1 ≤ h ≤ m and 0 ≤ n ≤ 2
we take -l〈h, n〉 to be a licensee and +L〈h, n〉 to be a corresponding strong licensor
such that Licensees and Licensors both are sets of cardinality 3m.

• • • In order to define the sets Base and Select , for each A ∈ N we intro-
duce new, pairwise distinct basic categories a〈h, n〉 as well as corresponding weak
selection features of the form =

a〈h, n〉 with 1 ≤ h ≤ dG(A) and 1 ≤ n ≤ 2.
Furthermore, for each A→ f(A1 , . . . , An(f)) ∈ R we introduce new, pairwise

distinct basic categories a〈f, ϕ(f)+1, 0〉 and a〈f, h, l〉 as well as corresponding weak
selection features of the form =

a〈f, ϕ(f)+1, 0〉 and =
a〈f, h, l〉, where 1 ≤ h ≤ ϕ(f)

and 0 ≤ l ≤ lh(f). Recall that ϕ(f) = dG(A) by choice of dG.

Finally, we let c ∈ Base be the completeness category and assume it to be
different from every other element in Base .

• • • Next we define the set Lex , the lexicon over ¬Syn ∪ Syn . While doing so,
we identify each lexical item with its (unique) head–label, taking such an item
to be a simple expression with root ǫ. First of all we define one entry which is
the only one that will allow “to finally derive” a complete expression of GMG.

αc = =
s〈1, 1〉 +L〈1, 1〉 c ,

where s〈1, 1〉 ∈ Base is the corresponding category arising from S ∈ N , the start
symbol in G. The form of all other entries in Lex depends on the production
rules belonging to R. Since G is of rank 2, we distinguish three cases.

Case 1 . A → f(B,C) ∈ R for some A, B, C ∈ N and f ∈ F . In this case
ϕ(f) = dG(A), n(f) = 2, d1(f) = dG(B) and d2(f) = dG(C). Then, the following
element belongs to Lex :

α〈A, f, B, C〉 = =
c〈1, 2〉

=
b〈1, 1〉 a〈f, ϕ(f)+1, 0〉

Case 2 . A → f(B) for some A,B ∈ N and f ∈ F . In this case ϕ(f) = dG(A),
n(f) = 1 and d1(f) = dG(B). Then, as an element of Lex we take

α〈A, f, B,−〉 = =
b〈1, 1〉 a〈f, ϕ(f)+1, 0〉



Case 3 . A → f() for some A ∈ N and f ∈ F . In this case ϕ(f) = dG(A)
and n(f) = 0. Since f is a constant in 〈Σ∗〉ϕ(f), we have lh(f) = 0 for each
1 ≤ h ≤ ϕ(f), i.e. f() = 〈ζ(f10), . . . , ζ(fϕ(f)0)〉. The following entry is in Lex :

α〈A, f,−,−〉 = a〈f, ϕ(f)+1, 0〉

Moreover, in all three cases for each 1 ≤ h ≤ ϕ(f) further entries are added to
Lex depending on whether lh(f) = 0 or not.

For each 1 ≤ h ≤ ϕ(f) with lh(f) = 0 we just add

α〈A, f, h, 0〉 = =
a〈f, h+1, 0〉 a〈f, h, 0〉 -l〈h, 0〉 ζ(fh0) .

For each 1 ≤ h ≤ ϕ(f) with lh(f) > 0 we add

α〈A, f, h, 0〉 = =
a〈f, h, 1〉 a〈f, h, 0〉 -l〈h, 0〉 ζ(fh0) , and

α〈A, f, h, lh(f)〉 = =
a〈f, h+1, 0〉 +L〈j, i〉 a〈f, h, lh(f)〉 ζ(fhlh(f)) ,

where 1 ≤ i ≤ n(f) and 1 ≤ j ≤ di(f) with z(fhlh(f)) = xij.

For each 1 ≤ h ≤ ϕ(f) and for each 1 ≤ l < lh(f) we add

α〈A, f, h, l〉 = =
a〈f, h, l+1〉 +L〈j, i〉a〈f, h, l〉 ζ(fhl) ,

where 1 ≤ i ≤ n(f) and 1 ≤ j ≤ di(f) with z(fhl) = xij.

Finally, in all three cases for 1 ≤ n ≤ 2 we take as an element of Lex

α〈A, ϕ(f), n〉 = =
a〈f, 1, 0〉 +L〈ϕ(f), 0〉 a〈ϕ(f), n〉-l〈ϕ(f), n〉 ,

and for 1 ≤ h < ϕ(f) we take

α〈A, h, n〉 = =
a〈h+1, n〉 +L〈h, 0〉 a〈h, n〉 -l〈h, n〉 .

Definition 4.1. For every given A ∈ N , p = 〈π1, . . . , πdG(A)〉 with πi ∈ Σ∗ for
1 ≤ i ≤ dG(A), and 1 ≤ n ≤ 2 an expression τ ∈ CL(GMG) is said to correspond
to the triple 〈A, p, n〉 if (Z1)–(Z4) are fulfilled, where τ〈1,n〉 = τ .

(Z1) The head–label of τ is of the form a〈1, n〉 -l〈1, n〉 π〈1, n〉 for some π〈1, n〉 ∈ Σ∗.

(Z2) For each 2 ≤ h ≤ dG(A) there is exactly one τ〈h, n〉 ∈ Comp+(τ ) whose
head–label is of the form -l〈h, n〉 π〈h, n〉 for some π〈h, n〉 ∈ Σ∗.

(Z3) For each 1 ≤ h ≤ dG(A) it holds that

{υ ∈ MaxProj (τ〈h, n〉) \ {τ〈h, n〉} | υ has some licensee feature}

= {τ〈i, n〉 | h < i ≤ dG(A)},

i.e. for each 1 ≤ h < dG(A) the subexpression τ〈h+1, n〉 is the unique
maximal maximal projection in τ〈h, n〉 that has some licensee feature.



(Z4) For each 1 ≤ h ≤ dG(A) the string πh is the phonetic yield of υ〈h, n〉. Here
we have υ〈dG(A), n〉 = τ〈dG(A), n〉, and for 1 ≤ h < dG(A) the expression
υ〈h, n〉 results from τ〈h, n〉 by replacing the subtree τ〈h+1, n〉 with a single
node labeled ǫ.

Proposition 4.2. Let τ ∈ CL(GMG) such that τ has category feature a〈1, n〉

for some A ∈ N and 1 ≤ n ≤ 2. Then there is some p ∈ LG(A) such that τ
corresponds to 〈A, p, n〉.

Proof (sketch). In order to avoid the trivial case we assume that there is some
expression τ ∈ CL(GMG) such that τ has category a〈1, n〉 for some A ∈ N and
1 ≤ n ≤ 2. Then there is a smallest K ∈ IN for which CLK(GMG) includes such
a τ . According to the definition of Lex we have K > 0. The proof follows from
an induction on k ∈ IN with k + 1 ≥ K.

For some k ∈ IN with k + 1 ≥ K consider some arbitrary, but fixed expression
τ ∈ CLk+1(GMG) \ CLk(GMG) such that τ has category a〈1, n〉 for some A ∈ N

and 1 ≤ n ≤ 2. Taking into account the definition of Lex it turns out that the
procedure to derive τ as an expression of GMG is deterministic in the following
sense: there are some r = A → f(A1 , . . . , An(f)) ∈ R, some k0 ∈ IN with

k0 = k + 1 − 3ϕ(f) −
∑ϕ(f)

h=1 2lh(f) and some χ0 ∈ CLk0(GMG) such that χ0

serves to derive τ in GMG. χ0 has category feature a〈f, ϕ(f)+1, 0〉 and is of one of
three forms depending on r:

Case 1 . There is some r = A → f(B,C) ∈ R, and there are υ, φ ∈ CLk0(GMG)
such that υ and φ have category feature b〈1, 1〉 and c〈1, 2〉, respectively, and

χ0 = merge(υ,merge(α〈A, f, B, C〉, φ).

By induction hypothesis there are some pB ∈ LG(B) and pC ∈ LG(C) such that
υ and φ correspond to 〈B, pB, 1〉 and 〈C, pC, 2〉, respectively. In this case we
define p ∈ LG(A) by p = f(pB , pC).

Case 2 . There are some r = A → f(B) ∈ R and υ ∈ CLk0(GMG) such that υ
has category feature b〈1, 1〉, and such that

χ0 = merge(α〈A, f, B,−〉, υ).

By induction hypothesis there is some pB ∈ LG(B) such that υ corresponds to
〈B, pB, 1〉. Let p = f(pB ) ∈ LG(A).

Case 3 . There is some r = A→ f() ∈ R and χ0 is a lexical item,

χ0 = α〈A, f,−,−〉.

In this case we simply let p = f() ∈ LG(A).

Note that, if k + 1 = K (constituting the base case of our induction) then χ0 is
necessarily of the last form by choice of K. In any case, it turns out that the given



τ ∈ CLk+1(GMG)\CLk(GMG) corresponds to 〈A, p, n〉. The single derivation steps
to end up with τ starting from χ0 are explicitly given by the following procedure.

Procedure (derive τ from χ0).

For 0 ≤ h < ϕ(f)

ψ〈h+1, 0〉 = χh

for 0 ≤ l < lϕ(f)−h(f)

step 2l+ 1 + h+
∑h−1

h′=0 2lϕ(f)−h′ (f)

ψ〈h+1, 2l+1〉 = merge(α〈A, f, ϕ(f)−h, lϕ(f)−h(f)−l〉 , ψ〈h+1, 2l〉)

step 2l+ 2 + h+
∑h−1

h′=0 2lϕ(f)−h′ (f)

ψ〈h+1, 2l+2〉 = move(ψ〈h+1, 2l+1〉)

[ checks licensee -l〈j, i〉

with gf(i, j) = 〈ϕ(f) − h, lϕ(f)−h(f) − l〉 ]

step h+ 1 +
∑h

h′=0 2lϕ(f)−h′ (f)

χh+1 = merge(α〈A, f, ϕ(f)−h, 0〉, ψ〈h+1, 2lϕ(f)−h(f)〉)

For 0 ≤ h < ϕ(f)

step 2h+ 1 + ϕ(f) +
∑ϕ(f)

h′=1 2lh′ (f)

χϕ(f)+2h+1 = merge(α〈A,ϕ(f)−h, n〉, χϕ(f)+2h)

step 2h+ 2 + ϕ(f) +
∑ϕ(f)

h′=1 2lh′ (f)

χϕ(f)+2h+2 = move(χϕ(f)+2h+1)

[ checks licensee -l〈ϕ(f)−h, 0〉 ]

τ = χ3ϕ(f)



An embedded induction on 0 ≤ h < ϕ(f) and 0 ≤ l < lϕ(f)−h(f) yields that τ
indeed corresponds to 〈A, p, n〉, which shows that the proposition is true. The
reader is encouraged to verify the details. One crucial point that we like to
stress here concerns Case 1 and 2: since G is an LCFRS, the injective function
gf from IDom(f) onto IRan(f) is total, i.e. gf is bijective. This guarantees that
each instance of a licensee feature appearing within the yield of χ0 gets checked
off by some derivation step 2l+ 2 + h +

∑h−1
h′=0 2lϕ(f)−h′ (f) with 0 ≤ h < ϕ(f)

and 0 ≤ l ≤ lϕ(f)−h(f). �

At this point it seems to be suitable to emphasize the reason for a specific pe-
culiarity intrinsic to GMG by definition of Lex : assume τ ∈ CL(GMG) to have
category feature a〈1, n〉 for some A ∈ N and 1 ≤ n ≤ 2. Consider the derivation
process from appropriate χ0 ∈ CL(GMG) to τ as given above, showing that τ
corresponds to 〈A, p, n〉 according to Definition 4.1 for the respective p ∈ LG(A).
The question that might arise is, why, by virtual means of GMG, each component
ph+1 of p for some 0 ≤ h < dG(A) is first related to some maximal projection
that has licensee -l〈h+1, 0〉 and not directly to some maximal projection that has
licensee -l〈h+1, n〉. The answer is straightforward: the corresponding instance of
-l〈h+1, n〉 becomes potentially subject to the move–operator exactly after the
expression χdG(A)−h has been selected by a lexical head under an application of
merge. To put it differently, the resulting expression χ contains a maximal pro-
jection χ′

dG(A)−h that has licensee -l〈h, 0〉. Namely, χ′
dG(A)−h is the complement

of χ, i.e. the right co–constituent of the head of χ. If we now look at the represen-
tations of the components of the involved function f ∈ F by means of variables
and constants from Σ∗, we see that it is possible that the variable xnh occurs
within such a representation of some component fh′ of f with 1 ≤ h′ < h. This
means that we have to be aware of the fact that, beside χ′

dG(A)−h
, χ may include

a further maximal projection χ′′
dG(A)−h

that has licensee -l〈h, n〉. If χ′
dG(A)−h

and

χ′′
dG(A)−h

had the same licensee, we would never be able to check off one of both
respective instances due to the definition of move. Therefore, a derivation of a
complete expression of G would unavoidably be blocked.

Proposition 4.3. Let A ∈ N , p ∈ 〈Σ∗〉dG(A) and 1 ≤ n ≤ 2. If p ∈ LG(A) then
there is some τ ∈ CL(GMG) such that τ corresponds to 〈A, p, n〉.

Proof (sketch). Once more an induction will do the job to prove the proposition.
Let A ∈ N , p ∈ 〈Σ∗〉dG(A) and 1 ≤ n ≤ 2. Assume that p ∈ LG(A). Then,
w.l.o.g. we are concerned with one of three possible cases.

Case 1 . There is some r = A→ f(B,C) ∈ R, and for some k ∈ IN there are some
pB ∈ Lk

G(B) and pC ∈ Lk
G(C) such that p = f(pB , pC) ∈ Lk+1

G (A) \ Lk
G(A). By

hypothesis on k there exist some υ, φ ∈ CL(GMG) such that υ and φ correspond
to 〈B, pB , 1〉 and 〈C, pC, 2〉, respectively. Therefore, we can define χ0 ∈ CL(GMG)
by

χ0 = merge(υ,merge(α〈A, f, B, C〉, φ).



Case 2 . There is some r = A → f(B,C) ∈ R, and for some k ∈ IN there is
some pB ∈ Lk

G(B) such that p = f(pB ) ∈ Lk+1
G (A) \ Lk

G(A). Here, by induc-
tion hypothesis we can choose some υ ∈ CL(GMG) such that υ corresponds to
〈B, pB, 1〉. Then we define χ0 ∈ CL(GMG) by

χ0 = merge(α〈A, f, B,−〉, υ).

Case 3 . There is some r = A → f() ∈ R such that p = f() ∈ L0
G(A). In this

case we take χ0 to be a particular lexical item. We set

χ0 = α〈A, f,−,−〉.

In all three cases the respective derivation procedure from the proof of the last
proposition shows that χ0 serves to derive a τ ∈ CL(GMG) that has the demanded
properties. �

Corollary 4.4. π ∈ L(G) iff π ∈ L(GMG) for each π ∈ Σ∗.

Proof. First suppose that τ ∈ CL(GMG) is complete such that π ∈ Σ∗ is the
phonetic yield of τ . Then, due to the definition of Lex , there is some expression
τ ′ ∈ CL(GMG) which has category s〈1, 1〉 such that τ = move(merge(αc, τ

′)). By
Proposition 4.2 there is some p′ ∈ LG(S) = L(G) such that τ ′ corresponds to
〈S, p′, 1〉. Because dG(S) = 1, this implies that p′ is not only the phonetic yield
of τ ′, but also the phonetic yield of the specifier of τ . Since the phonetic yield
of αc is empty, we conclude that p′ = π.

Now assume that π ∈ L(G) = LG(S) for some π ∈ Σ∗. By Proposition 4.3
there is some τ ′ ∈ CL(GMG) such that τ ′ corresponds to 〈S, π, 1〉. Then, because
dG(S) = 1, π is the phonetic yield of τ ′. Moreover, τ = move(merge(αc, τ

′)) is
defined and complete, and π is the phonetic yield of τ . �

5 Conclusion

We have shown that each LCFRS can be transformed into a weakly equivalent
MG as defined in [11]. As shown in [6], the converse holds, as well. Hence, com-
bining these results crucially implies that MGs fit in within a series of different
formal grammar types, each of which constituting a class of generating devices
that have the same weak generative power as LCFRSs, respectively MCFGs.10

The presented result, therefore, also provides an answer to several questions as to
the properties of MLs that have been left open so far, and that can be subsumed
under a more general question: does the class of MG–definable string languages
constitute an abstract family of languages (AFL)? The answer to this question
is now known to be positive; even a stronger property is true for this language
class, since it is provably a substitution–closed full AFL (cf. [10]).

Taking into account our specific construction of a weakly equivalent MG for a
given LCFRS, we have moreover shown that each MG in the sense of [11] can

10 For a list of some of such classes of generating devices, beside MCTAGs, see e.g. [9].



be converted into a weakly equivalent one which does not employ any kind of
head movement or covert phrasal movement.11 In fact, it is this subtype of MGs
which Harkema’s recognizer [1] for MLs is actually defined for. But maybe even
more crucially, this implication could be considered to provide some technical
support to Stabler’s proposal of a revised type of an MG given in [13], which, in
particular, completely dispense with those two types of movement motivated by
recent linguistic work which heads in exactly this direction (see e.g. [3], [4], [5]).
The same holds as to the type of a strict MG (SMG), also introduced in [13]
keeping closely to some further suggestions in [4], which likewise banishes any
kind of head movement and covert phrasal movement from the list of possibilities
to “displace material” by means of the structure building functions of an MG.
Furthermore, each lexical item of an MG of revised type as well as an SMG is
by definition a simple expression, i.e. a head, and in case of an SMG the label of
such a head is an element from Select ǫ(Select∪Licensors)ǫBaseLicensees∗¬Syn∗.
This latter property is also common to the MG GMG as it results according to
our construction in Section 4 from a given LCFRS G, i.e. the constructed MG
GMG being weakly equivalent to the LCFRS G. Thus, the creation of multiple
specifiers is avoided during the derivation of an expression of GMG. To put it
differently, whenever, for some τ ∈ CL(GMG) and some υ ∈ MaxProj (τ ), we have
Spec(υ) 6= ∅, Spec(υ) is a singleton set. Indeed, this specific property constitutes
one of the main differences to the construction of a weakly equivalent MG for a
given LCFRS as it is independently developed in [2]. Although quite similar in
some other aspects, within Harkema’s construction the use of multiple specifiers
is rather a constitutive element.12

The last remarks should, certainly, be treated with some care: as demonstrated
in [7], thereby confirming the corresponding conjecture in [13], the revised MG–
type and the SMG–type introduced in [13] determine the same class of deriv-
able string languages. This is an immediate consequence of the fact that both
types are provably weakly equivalent to one and the same particular subtype
of LCFRSs, respectively MCFGs. However, as to our knowledge, it is an open
problem whether this LCFRS–subtype in its turn is weakly equivalent to the
class of all LCFRSs, and thus to the class of MGs in the sense of [11]. Note
that, deviating from the definition in [11], the revised MG–type as well as the
SMG–type does not only dispense with any kind of head movement and covert
phrasal movement, but also an additional restriction is imposed on the move–
operator as to which maximal projection may move overtly.13 Therefore, neither

11 This is still true, if we additionally allow affix hopping to take place within an MG
in the way suggested in [14].

12 Another significant difference between our approach and the one of Harkema is given
by the fact that within our resulting, weakly equivalent MG no maximal projection
moves more than one time in order to check its licensee features, i.e. the (non–trivial)
chains created by applications of the move–operator are all simple.

13 As to an MG of revised type, an υ ∈ Exp(¬Syn ∪ Syn) belongs to the domain of
the move–operator only if, in addition to condition (i) and (ii) of (mo), it holds that
there is some χ ∈ Comp+(υ) with φ = χ or φ ∈ Spec(χ) for the unique maximal



our method to convert a given LCFRS into a weakly equivalent MG in the sense
of [11], nor the method of Harkema does necessarily yield, at the same time, a
weakly equivalent MG or, likewise, SMG in the sense of [13]; and there is no
straightforward adaption of either of both methods in order to achieve this.

References

1. Henk Harkema. A recognizer for minimalist grammars. In Proceedings of the Sixth
International Workshop on Parsing Technologies (IWPT 2000), Trento, pages 111–
122, 2000.

2. Henk Harkema. A characterization of minimalist languages, 2001. This volume.
3. Richard S. Kayne. Overt vs. covert movement. Syntax, 1:128–191, 1998.
4. Hilda Koopman and Anna Szabolcsi. Verbal Complexes. MIT Press, Cambridge,

MA, 2000.
5. Anoop Mahajan. Eliminating head movement. In GLOW Newsletter # 44, pages

44–45, 2000. Abstract of the talk held at the 23rd Generative Linguistics in the
Old World Conference (GLOW 2000), Vitoria–Gasteiz/Bilbao.

6. Jens Michaelis. Derivational minimalism is mildly context–sensitive. In M. Moort-
gat, editor, Logical Aspects of Computational Linguistics (LACL ’98), Lecture
Notes in Artificial Intelligence Vol. 2014. Springer, Berlin, Heidelberg, to appear.
Also available at http://www.ling.uni-potsdam.de/~michael/papers.html.

7. Jens Michaelis. On formal properties of minimalist grammars. Potsdam University,
Potsdam, in preperation.

8. Carl J. Pollard. Generalized Phrase Structure Grammars, Head Grammars, and
Natural Language. PhD thesis, Stanford University, Stanford, CA, 1984.

9. Owen Rambow and Giorgio Satta. Independent parallelism in finite copying par-
allel rewriting systems. Theoretical Computer Science, 223:87–120, 1999.

10. Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. On multiple
context–free grammars. Theoretical Computer Science, 88:191–229, 1991.

11. Edward P. Stabler. Derivational minimalism. In C. Retoré, editor, Logical Aspects
of Computational Linguistics (LACL ’96), Lecture Notes in Artificial Intelligence
Vol. 1328, pages 68–95. Springer, Berlin, Heidelberg, 1997.

12. Edward P. Stabler. Acquiring languages with movement. Syntax, 1:72–97, 1998.
13. Edward P. Stabler. Remnant movement and complexity. In G. Bouma, G.–J. M.

Kruijff, E. Hinrichs, and R. T. Oehrle, editors, Constraints and Resources in Natu-
ral Language Syntax and Semantics, pages 299–326. CSLI Publications, Stanford,
CA, 1999.

14. Edward P. Stabler. Recognizing head movement, 2001. This volume.
15. K. Vijay–Shanker, David J. Weir, and Aravind K. Joshi. Characterizing structural

descriptions produced by various grammatical formalisms. In 25th Annual Meeting
of the Association for Computational Linguistics (ACL ’87), Stanford, CA, pages
104–111. ACL, 1987.

16. David J. Weir. Characterizing Mildly Context–Sensitive Grammar Formalisms.
PhD thesis, University of Pennsylvania, Philadelphia, PA, 1988.

projection φ that has licensee -x. As to an SMG, an υ ∈ Exp(¬Syn ∪ Syn) belongs
to the domain of the move–operator only if, in addition to condition (i) and (ii)
of (mo), it holds that there is a χ ∈ Comp+(υ) with φ ∈ Spec∗(χ) for the unique
maximal projection φ that has licensee -x, and applying the move–operator to υ, it
is the constituent χ that is raised into the specifier position.


