
J.-M. Bruel (Ed.): MoDELS 2005 Workshops, LNCS 3844, pp. 128 – 138, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Transforming Models with ATL*

Frédéric Jouault and Ivan Kurtev

ATLAS Group (INRIA & LINA, University of Nantes)
{frederic.jouault, ivan.kurtev}@univ-nantes.fr

Abstract. This paper presents ATL (ATLAS Transformation Language): a
hybrid model transformation language that allows both declarative and
imperative constructs to be used in transformation definitions. The paper
describes the language syntax and semantics by using examples. ATL is
supported by a set of development tools such as an editor, a compiler, a virtual
machine, and a debugger. A case study shows the applicability of the language
constructs. Alternative ways for implementing the case study are outlined. In
addition to the current features, the planned future ATL features are briefly
discussed.

1 Introduction

Model transformations play an important role in Model Driven Engineering (MDE)
approach. It is expected that writing model transformation definitions will become a
common task in software development. Software engineers should be supported in
performing this task by mature tools and techniques in the same way as they are
supported now by IDEs, compilers, and debuggers in their everyday work.

One direction for providing such a support is to develop domain-specific languages
designed to solve common model transformation tasks. Indeed, this is the approach
that has been taken recently by the research community and software industry. As a
result a number of transformation languages have been proposed. We observe that,
even though the problem domain of these languages is common, they still differ in the
employed programming paradigm. Current model transformation languages usually
expose a synthesis of paradigms already developed for programming languages
(declarative, functional, object-oriented, imperative, etc.). It is not clear if a single
approach will prevail in the future. A deeper understanding and more experience
based on real and non-trivial problems is still necessary. We believe that different
approaches are suitable for different types of tasks. One class of problems may be
easily solved by a declarative language, while another class is more amenable to an
imperative approach.

In this paper we describe a transformation language and present how different
programming styles allowed by this language may be applied to solve different types
of problems. The language is named ATL (ATLAS Transformation Language) and is
developed as a part of the AMMA (ATLAS Model Management Architecture)
platform [2]. ATL is a hybrid language, i.e. it is a mix of declarative and imperative
constructs.

* Work partially supported by ModelWare, IST European project 511731.

 Transforming Models with ATL 129

We present the syntax and semantics of ATL informally by using examples. Space
limit does not allow presenting the full ATL grammar and a detailed description of its
semantics. A simple case study illustrates the usage of the language.

The paper is organized as follows. Section 2 gives an overview of the context in
which ATL is used. Section 3 presents the language constructs on the base of
examples. Section 4 presents a case study that shows the applicability of ATL.
Section 5 describes the tool support available for ATL: the ATL virtual machine, the
ATL compiler, the IDE based on Eclipse, and the debugger. Section 6 presents a brief
comparison with other approaches for model transformations and outlines directions
for future work. Section 7 gives conclusions.

2 General Overview of the ATL Transformation Approach

ATL is applied in a transformational pattern shown in Fig. 1. In this pattern a source
model Ma is transformed into a target model Mb according to a transformation
definition mma2mmb.atl written in the ATL language. The transformation definition
is a model. The source and target models and the transformation definition conform to
their metamodels MMa, MMb, and ATL respectively. The metamodels conform to the
MOF metametamodel [8].

Fig. 1. Overview of ATL transformational approach

ATL is a hybrid transformation language. It contains a mixture of declarative and
imperative constructs. We encourage a declarative style of specifying transformations.
However, it is sometimes difficult to provide a complete declarative solution for a
given transformational problem. In that case developers may resort to the imperative
features of the language.

ATL transformations are unidirectional, operating on read-only source models and
producing write-only target models. During the execution of a transformation the
source model may be navigated but changes are not allowed. Target model cannot be
navigated. A bidirectional transformation is implemented as a couple of
transformations: one for each direction.

conformsTo

transformation

mma2mmb.atl

ATL

source target

executes MMbMMa

MOF

Ma Mb

130 F. Jouault and I. Kurtev

3 Presentation of ATL

In this section we present the features of the ATL language. The syntax of the
language is presented based on examples (sections 3.1-3.4). Then in section 3.5 we
briefly describe the execution semantics of ATL.

3.1 Overall Structure of Transformation Definitions

Transformation definitions in ATL form modules. A module contains a mandatory
header section, import section, and a number of helpers and transformation rules.

Header section gives the name of the transformation module and declares the
source and target models. Below we give an example header section:

module SimpleClass2SimpleRDBMS;
create OUT : SimpleRDBMS from IN : SimpleClass;

The header section starts with the keyword module followed by the name of the
module. Then the source and target models are declared as variables typed by their
metamodels. The keyword create indicates the target models. The keyword from
indicates the source models. In our example the target model bound to the variable
OUT is created from the source model IN. The source and target models conform to
the metamodels SimpleClass and SimpleRDBMS respectively. In general, more than
one source and target models may be enumerated in the header section.

Helpers and transformation rules are the constructs used to specify the
transformation functionality. They are explained in the next two sections.

3.2 Helpers

The term helper comes from the OCL specification ([9], section 7.4.4, p11), which
defines two kinds of helpers: operation and attribute helpers.

In ATL, a helper can only be specified on an OCL type or on a source metamodel
type since target models are not navigable. Operation helpers define operations in the
context of a model element or in the context of a module. They can have input
parameters and can use recursion. Attribute helpers are used to associate read-only
named values to source model elements. Similarly to operation helpers they have a
name, a context, and a type. The difference is that they cannot have input parameters.
Their values are specified by an OCL expression. Like operation helpers, attribute
helpers can be recursively defined with constraints about termination and cycles.

Attribute helpers can be considered as a means to decorate source models before
transformation execution. A decoration of a model element may depend on the
decoration of other elements. To illustrate the syntax of attribute helpers we consider
an example.

1. helper context SimpleClass!Class def : allAttributes :
2. Sequence(SimpleClass!Attribute) = self.attrs->union(
3. if not self.parent.oclIsUndefined() then
4. self.parent.allAttributes->select(attr |
5. not self.attrs->exists(at | at.name = attr.name))
6. else Sequence {} endif -- Terminating case for the recursion
7.)->flatten();

The attribute helper allAtributes is used to determine all the attributes of a given
class including the defined and the inherited attributes. It is associated to classes in the

 Transforming Models with ATL 131

source model (indicated by the keyword context and the reference to the type in the
source metamodel SimpleClass!Class) and its values are sequences of attributes (line
2). The OCL expression used to calculate value of the helper is given after the ‘=’
symbol (lines 2-7). This is an example of a recursive helper (line 4).

3.3 Transformation Rules

Transformation rule is the basic construct in ATL used to express the transformation
logic. ATL rules may be specified either in a declarative style or in an imperative
style. In this section we focus on declarative rules. Section 3.4 describes the
imperative features of ATL.

Matched Rules. Declarative ATL rules are called matched rules. A matched rule is
composed of a source pattern and of a target pattern. Rule source pattern specifies a
set of source types (coming from source metamodels and the set of collection types
available in OCL) and a guard (an OCL Boolean expression). A source pattern is
evaluated to a set of matches in source models.

The target pattern is composed of a set of elements. Every element specifies a
target type (from the target metamodel) and a set of bindings. A binding refers to a
feature of the type (i.e. an attribute, a reference or an association end) and specifies an
initialization expression for the feature value. The following snippet shows a simple
matched rule in ATL.

1. rule PersistentClass2Table{
2. from
3. c : SimpleClass!Class (c.is_persistent and c.parent.oclIsUndefined())
4. to
5. t : SimpleRDBMS!Table (name <- c.name)
6. }

The rule name PersistentClass2Table is given after the keyword rule (line 1). The
rule source pattern specifies one variable of type Class (line 3). The guard (line 3)
specifies that only persistent classes without superclasses will be matched.

The target pattern contains one element of type Table (line 5) assigned to the
variable t. This element has one binding that specifies an expression for initializing
the attribute name of the table. The symbol ‘<-‘ is used to delimit the feature to be
initialized (left-hand side) from the initialization expression (right-hand side).

Execution Semantics of Matched Rules. Matched rules are executed over matches
of their source pattern. For a given match the target elements of the specified types
are created in the target model and their features are initialized using the bindings.

Executing a rule on a match additionally creates a traceability link in the internal
structures of the transformation engine. This link relates three components: the rule,
the match (i.e. source elements) and the newly created target elements.

The feature initialization uses a value resolution algorithm, called ATL resolve
algorithm. The algorithm is applied on the values of binding expressions. If the value
type is primitive, then the value is assigned to the corresponding feature. If its type is
a metamodel type or a collection type there are two possibilities:

• if the value is a target element it is assigned to the feature;
• if the value is a source element it is first resolved into a target element

using internal traceability links. The resolution results in an element from

132 F. Jouault and I. Kurtev

the target model created from the source element by a given rule. After
the resolution the target model element becomes the value of the feature;

Thanks to this algorithm, target elements can be linked together using source
model navigation.

Kinds of Matched Rules. There are several kinds of matched rules differing in the
way how they are triggered.

• Standard rules are applied once for every match that can be found in
source models;

• Lazy rules are triggered by other rules. They are applied on a single match
as many times as it is referred to by other rules, every time producing a
new set of target elements;

• Unique lazy rules are also triggered by other rules. They are applied only
once for a given match. If a unique lazy rule is triggered later on the same
match the already created target elements are used;

The ATL resolution algorithm takes care of triggering lazy and unique lazy rules
when a source element is referred to within an initialization expression.

Rule Inheritance. In ATL rule inheritance can be used as a code reuse mechanism
and also as a mechanism for specifying polymorphic rules.

A rule (called subrule) may inherit from another rule (parent rule). A subrule
matches a subset of what its parent rule matches. The source pattern types in the
parent rule may be replaced by their subtypes in the subrule source pattern. The guard
of a subrule forms a conjunction with the guard of the parent rule.

A subrule target pattern extends its parent target pattern using any combination of
the following: by subtyping target types, by adding bindings, by replacing bindings,
and by adding new target elements.

3.4 Imperative Features of ATL

The declarative style of transformation specification has a number of advantages. It is
usually based on specifying relations between source and target patterns and thus
tends to be closer to the way how the developers intuitively perceive a transformation.
This style stresses on encoding these relations and hides the details related to selection
of source elements, rule triggering and ordering, dealing with traceability, etc.
Therefore, it can hide complex transformation algorithms behind a simple syntax.

However, in some cases complex source-domain or target-domain specific
algorithms may be required and it may be difficult to specify a pure declarative
solution for them. There are several possible approaches to this issue. We consider
two of them:

• allow native operation calls to modules written in an arbitrary language.
This solution has the drawback that it moves the control flow out of the
transformation language semantics;

• offer an imperative part in the transformation language. In that way the
control flow remains in the transformation language semantics but the
developer must encode this control flow explicitly;

 Transforming Models with ATL 133

ATL has an imperative part based on two main constructs:

• called rules. A called rule is basically a procedure: it is invoked by name
and may take arguments. Its implementation can be native or specified in
ATL;

• action block. An action block is a sequence of imperative statements and
can be used instead of or in a combination with a target pattern in matched
or called rules. The imperative statements available in ATL are the well
known constructs for specifying control flow such as conditions, loops,
assignments, etc. We do not give their syntax in this paper;

If either a called rule or an action block is used in an ATL program, this program is
no longer fully declarative.

3.5 Execution of Transformation Definitions

In this section we briefly sketch some aspects of the execution algorithm of ATL
transformations. The execution starts by invoking an optional called rule marked as
entry point. This rule, in turn, may invoke other called rules. Then the algorithm
executes the standard matched rules (some of them may contain an action block).
Rule matching and rule application are separated in two phases. In the first phase all
patterns of the rules are matched against the source model(s). For every match the
target elements are created. Traceability links are also created in this phase. In the
second phase all the bindings for the created target elements are executed. ATL
resolution algorithm and execution of lazy rules are applied if necessary.

The algorithm does not suppose any order in rule matching, target elements
creation for a match, and target elements initialization. Action block (if present) must,
however, be executed after having applied the declarative part of the rule.

Attribute helpers may be initialized in a pass performed before running the rest of
the transformation. They may also be lazily evaluated when the helper value is read
for the first time. Since the source models are read-only, the attribute helper values
may be cached. Lazy evaluation and caching improve the performance.

As long as lazy rules and called rules are not used, the execution algorithm
terminates and is deterministic. Although the order of execution of rules is non-
deterministic, different execution orders produce the same result for a given source
model. This is a consequence of the fact that source models are read-only: the
execution of a rule cannot change the set of matches. In addition, target models are
write-only: the initialization of a target element cannot impact the initialization of
another. It is possible to have recursive helpers that do not terminate. In this case the
transformation does not terminate either. Called rules use imperative constructs and
the termination is not guaranteed. Lazy rules may introduce circular references to
each other thus causing non-termination.

4 Case Study: Transforming Class to Relational Models

Because of the lack of space we present a rather simplified version of the case study
given in the call for papers of the workshop. For the full version the reader is referred
to [5]. The case study requires transformation of simple class models to relational
models. The source and target metamodels are shown in Fig. 2.

134 F. Jouault and I. Kurtev

Fig. 2. Source and target metamodels

Classes in the source model have names and a number of attributes. They may be
declared as persistent (attribute is_persistent). The type of an attribute is a classifier:
either a primitive data type or a class. Attributes may be defined as primary (attribute
is_primary). Every relational model contains a number of tables. Each table has a
number of columns, some of them form a primary key. A table may be associated to
zero or more foreign keys. We will focus only on two transformation rules:

• Persistent classes that are roots of an inheritance hierarchy are transformed to
tables;

• Table columns are derived from the attributes of a class. Attributes of a
primitive type are transformed to a single column. If the attribute is primary it
results in a column from the primary key. Attributes of a non-primitive type
are transformed to a set of columns derived from the type attributes. This rule
is applied recursively until a set of primitive attributes is obtained (flattening);

Below we give the transformation definition for the case study.

1. module SimpleClass2SimpleRDBMS;
2. create OUT : SimpleRDBMS from IN : SimpleClass;
3.
4. helper context SimpleClass!Class def :
5. flattenedAttributes : Sequence(Sequence(SimpleClass!Attribute)) =
6. self.attrs->collect(a |
7. if a.type.oclIsKindOf(SimpleClass!PrimitiveDataType) then Sequence {a}
8. else a.type.flattenedAttributes->collect (t | t->prepend(a))
9. endif
10.)->flatten();
11.
12. rule PersistentClass2Table{
13. from
14. c : SimpleClass!Class (c.is_persistent and c.parent.oclIsUndefined())
15. to t : SimpleRDBMS!Table (
16. name <- c.name,
17. cols <- c.flattenedAttributes,
18. pkey <- c.flattenedAttributes->select(t | t->last().is_primary)
19.)
20. }
21.
22. unique lazy rule AttributeTrace2Column {
23. from trace : Sequence(SimpleClass!Attribute)
24. to col : SimpleRDBMS!Column (
25. name <- trace->iterate(a; acc : String = '' |
26. acc + if acc = '' then '' else '_' endif + a.name),
27. type <- trace->last().type
28.)
29. }

 Transforming Models with ATL 135

The transformation specification may be split into two logical parts. The first part
performs decoration of the source model and the second part contains the actual
transformation rules. The decoration part is based on the helper flattenedAttributes. In
the helper every class generates a sequence of traces derived from its attributes. Every
trace is a sequence of attributes and will be transformed to a column. If an attribute is
of a primitive type then the trace is the attribute itself (line 7). If an attribute is of a
non-primitive type then it results in a set of traces derived from the traces of its type
by prepending the attribute to every trace (line 8). The traces represent the paths to the
primitive attributes for a given class after application of flattening.

Transformation rules use the result of the decoration part to create the elements in
the target model. Rule PersistentClass2Table transforms persistent root classes to
tables. The interesting part of this rule is the initialization of the features of the
created tables. The code in line 17 initializes the cols slot of the table. The value of
this slot is a collection of all the columns of the table. Columns are created from
traces contained in the flattenedAttributes helper. The value of the helper is resolved
according to the ATL resolution algorithm. The resolution requires finding a rule that
transforms the value of the expression into target model elements. In this case we
have an implicit invocation of a transformation rule. The only suitable rule is
AttributeTrace2Column unique lazy rule. This rule transforms traces to columns.

Furthermore the slot pkey contains the primary key of the table. Primary key is a
subset of all the columns of the table. The columns in the key are created from the
traces whose last element is a primary attribute (line 18). Similarly to the previous slot
we have an implicit invocation of AttributeTrace2Column rule. This rule may be
triggered multiple times over the same source. Since it is a unique lazy rule the
invocations after the first time will return the same result.

It must be noted that this implementation relies on features of ATL that are not
implemented yet. Current compiler does not fully support lazy rules, rules with
multiple source elements, and source elements that are of OCL types (e.g. sequences).
A working solution is available on the Eclipse GMT project site [5].

5 ATL Tools

ATL is accompanied by a set of tools that include the ATL transformation engine, the
ATL integrated development environment (IDE) based on Eclipse, and the ATL
debugger. ATL transformations are compiled to programs in specialized byte-code.
Byte-code is executed by the ATL virtual machine. The virtual machine is specialized
in handling models and provides a set of instructions for model manipulation.

The architecture of ATL execution engine is shown in Fig. 3. The virtual machine
may run on top of various model management systems. To isolate the VM from their
specifics an intermediate level is introduced called Model Handler Abstraction Layer.
This layer translates the instructions of the VM for model manipulation to the
instructions of a specific model handler. Model handlers are components that provide
programming interface for model manipulation. Some examples are Eclipse Modeling
Framework (EMF) [4] and MDR [7]. Model repository provides storage facilities for
models.

136 F. Jouault and I. Kurtev

Fig. 3. The architecture of the ATL execution engine

The current ATL IDE is built on top of Eclipse platform. It includes an editor that
provides view of the text with syntax highlighting, outline (view of the model
corresponding to the text), and error reporting. The IDE uses the Eclipse interface to
the ATL debugger.

Table 1 presents a summary of the features of the current ATL compiler and some
features planned for future extensions. Stars indicate the supported features. An
explanation of some of the features is given after the table.

Table 1. ATL features summary

ATL feature Current version Future extensions
metamodel types,
OCL primitive and
tuple types,
transformation module
(i.e. static)

*
OCL helpers

operations and
attributes in the
context of

OCL collection types *

helpers libraries * Code reuse
rule libraries (importable modules) *

standard *
lazy *
unique lazy *
rule inheritance *

Matched rules

multiple source elements *
standard *
with rule inheritance *

ATL resolve
algorithm

with lazy rules *

Refining mode (1) *(basic) *(improved)

Traceability internal external

ATL called rules *
native called rules *

Imperative
part

action blocks *

OCL type checking Dynamic
Static (following the

specification)

(1) In ATL, source models are read-only and target models are write-only; this prohibits in-place
transformations. However, such transformations are quite common in certain domains. ATL provides
a mechanism to answer this need: refining mode. This mode can be used for transformations having
the same source and target metamodel. Unmatched source elements are automatically copied into the
target model, as if a default copying rule was present.

Model Handler Abstraction Layer

EMF MDR …

ATL VM

ATL Compiler

Model repository
XMI 2.0

XMI 1.2

ATL programs

 Transforming Models with ATL 137

6 Related and Future Work

In the last couple of years we observed a number of proposals for model
transformation languages. Some of them are a response to the QVT RFP issued by
OMG [10]. As we explained in Section 2 ATL is applicable in QVT transformation
scenarios where transformation definitions are specified on the base of MOF
metamodels [8]. However, ATL is designed to support other transformation scenarios
going beyond QVT context where source and target models are artifacts created with
various technologies such as databases, XML documents, etc. In that way ATL serves
the purpose of the AMMA platform as a generic data management platform. A
comparison between ATL and the last QVT proposal may be found in [6].

Another class of transformation approaches relies on graph transformations theory
[1][11]. ATL is not directly based on the mathematical foundation of these
approaches. An interesting direction for future research is to formalize the ATL
semantics in terms of graph transformation theory. The declarative part of ATL is
especially suitable for this.

In [3] we present an application of ATL by showing how it can be used to check
models if they satisfy given constraints. A simple specific target metamodel is
defined to represent diagnostics resulting from evaluation of these constraints as a
set of problems (i.e. constraint violations). OCL constraints defined on a metamodel
can then be translated into ATL rules generating such problems. Diagnostic models
can subsequently be transformed into any convenient representation. We plan to
extend this work and show how ATL can be used to compute any kind of metrics on
models.

Static type checking of OCL expressions used in ATL programs is not
implemented in current compiler. It is, however, necessary to be closer to OCL 2.0
specification.

7 Conclusions

In this paper we presented ATL: a hybrid model transformation language developed
as a part of the ATLAS Model Management Architecture. ATL is supported by a set
of development tools built on top of the Eclipse environment: a compiler, a virtual
machine, an editor, and a debugger.

The current state of ATL tools already allows solving non-trivial problems. This is
demonstrated by the increasing number of implemented examples and the interest
shown by the ATL user community that provides a valuable feedback.

The applicability of ATL was demonstrated in a case study. We identified
alternative ways for implementing the case study. Alternatives are based of different
programming styles, e.g. declarative and imperative. ATL allows both styles to be
used in transformation definitions depending on the problem at hand. We encourage a
declarative approach for defining transformations whenever possible. We believe that
this approach allows transformation developers to focus on the essential relations
among the model elements and to leave the handling of complex execution algorithms
and optimizations to the ATL compiler and virtual machine.

138 F. Jouault and I. Kurtev

References

[1] Agrawal A., Karsai G., Kalmar Z., Neema S., Shi F., Vizhanyo A.The Design of a
Simple Language for Graph Transformations, Journal in Software and System Modeling,
in review, 2005

[2] Bézivin, J., Jouault, F., and Touzet, D. An Introduction to the ATLAS Model
Management Architecture. Research Report LINA, (05-01)

[3] Bézivin, J., Jouault, F. Using ATL for Checking Models. To appear in the proceedings of
the GraMoT workshop of GPCE 2005 conference in Tallinn, Estonia

[4] Budinsky, F., Steinberg, D., Raymond Ellersick, R., Ed Merks, E., Brodsky, S. A., Grose,
T. J. Eclipse Modeling Framework, Addison Wesley, 2003

[5] Eclipse Foundation, Generative Model Transformer Project, http://www.eclipse.org/gmt/
[6] Jouault, F., Kurtev, I. On the Architectural Alignment of ATL and QVT. Proceedings of

ACM SAC 2006, Track on Model Transformations, Dijon, France, 2006, to appear
[7] Netbeans Meta Data Repository (MDR). http://mdr.netbeans.org
[8] OMG. Meta Object Facility (MOF) Specification, version 1.4, OMG Document

formal/2002-04-03
[9] OMG. Object Constraint Language (OCL). OMG Document ptc/03-10-14

[10] OMG. MOF 2.0 Query/Views/Transformations RFP. OMG document ad/2002-04-10,
2002

[11] Varró, D., Varró, G., Pataricza, A. Designing the automatic transformation of visual
languages. Journal of Science of Computer Programming, vol. 44, pp. 205-227, Elsevier,
2002

	Introduction
	General Overview of the ATL Transformation Approach
	Presentation of ATL
	Overall Structure of Transformation Definitions
	Helpers
	Transformation Rules
	Imperative Features of ATL
	Execution of Transformation Definitions

	Case Study: Transforming Class to Relational Models
	ATL Tools
	Related and Future Work
	Conclusions
	References

