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Abstract. This paper presents ATL (ATLAS Transformation Language): a 
hybrid model transformation language that allows both declarative and 
imperative constructs to be used in transformation definitions. The paper 
describes the language syntax and semantics by using examples. ATL is 
supported by a set of development tools such as an editor, a compiler, a virtual 
machine, and a debugger. A case study shows the applicability of the language 
constructs. Alternative ways for implementing the case study are outlined. In 
addition to the current features, the planned future ATL features are briefly 
discussed. 

1   Introduction 

Model transformations play an important role in Model Driven Engineering (MDE) 
approach. It is expected that writing model transformation definitions will become a 
common task in software development. Software engineers should be supported in 
performing this task by mature tools and techniques in the same way as they are 
supported now by IDEs, compilers, and debuggers in their everyday work. 

One direction for providing such a support is to develop domain-specific languages 
designed to solve common model transformation tasks. Indeed, this is the approach 
that has been taken recently by the research community and software industry. As a 
result a number of transformation languages have been proposed. We observe that, 
even though the problem domain of these languages is common, they still differ in the 
employed programming paradigm. Current model transformation languages usually 
expose a synthesis of paradigms already developed for programming languages 
(declarative, functional, object-oriented, imperative, etc.). It is not clear if a single 
approach will prevail in the future. A deeper understanding and more experience 
based on real and non-trivial problems is still necessary. We believe that different 
approaches are suitable for different types of tasks. One class of problems may be 
easily solved by a declarative language, while another class is more amenable to an 
imperative approach. 

In this paper we describe a transformation language and present how different 
programming styles allowed by this language may be applied to solve different types 
of problems. The language is named ATL (ATLAS Transformation Language) and is 
developed as a part of the AMMA (ATLAS Model Management Architecture) 
platform [2]. ATL is a hybrid language, i.e. it is a mix of declarative and imperative 
constructs.   
                                                           
* Work partially supported by ModelWare, IST European project 511731. 
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We present the syntax and semantics of ATL informally by using examples. Space 
limit does not allow presenting the full ATL grammar and a detailed description of its 
semantics. A simple case study illustrates the usage of the language. 

The paper is organized as follows. Section 2 gives an overview of the context in 
which ATL is used. Section 3 presents the language constructs on the base of 
examples. Section 4 presents a case study that shows the applicability of ATL. 
Section 5 describes the tool support available for ATL: the ATL virtual machine, the 
ATL compiler, the IDE based on Eclipse, and the debugger. Section 6 presents a brief 
comparison with other approaches for model transformations and outlines directions 
for future work. Section 7 gives conclusions. 

2   General Overview of the ATL Transformation Approach 

ATL is applied in a transformational pattern shown in Fig. 1. In this pattern a source 
model Ma is transformed into a target model Mb according to a transformation 
definition mma2mmb.atl written in the ATL language. The transformation definition 
is a model. The source and target models and the transformation definition conform to 
their metamodels MMa, MMb, and ATL respectively. The metamodels conform to the 
MOF metametamodel [8]. 

 

 

 

 

 

 

Fig. 1. Overview of ATL transformational approach 

ATL is a hybrid transformation language. It contains a mixture of declarative and 
imperative constructs. We encourage a declarative style of specifying transformations. 
However, it is sometimes difficult to provide a complete declarative solution for a 
given transformational problem. In that case developers may resort to the imperative 
features of the language. 

ATL transformations are unidirectional, operating on read-only source models and 
producing write-only target models. During the execution of a transformation the 
source model may be navigated but changes are not allowed. Target model cannot be 
navigated. A bidirectional transformation is implemented as a couple of 
transformations: one for each direction.  
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3   Presentation of ATL 

In this section we present the features of the ATL language. The syntax of the 
language is presented based on examples (sections 3.1-3.4). Then in section 3.5 we 
briefly describe the execution semantics of ATL. 

3.1   Overall Structure of Transformation Definitions 

Transformation definitions in ATL form modules. A module contains a mandatory 
header section, import section, and a number of helpers and transformation rules. 

Header section gives the name of the transformation module and declares the 
source and target models. Below we give an example header section: 

module SimpleClass2SimpleRDBMS; 
create OUT : SimpleRDBMS from IN : SimpleClass; 

The header section starts with the keyword module followed by the name of the 
module. Then the source and target models are declared as variables typed by their 
metamodels. The keyword create indicates the target models. The keyword from 
indicates the source models. In our example the target model bound to the variable 
OUT is created from the source model IN. The source and target models conform to 
the metamodels SimpleClass and SimpleRDBMS respectively. In general, more than 
one source and target models may be enumerated in the header section. 

Helpers and transformation rules are the constructs used to specify the 
transformation functionality. They are explained in the next two sections. 

3.2   Helpers 

The term helper comes from the OCL specification ([9], section 7.4.4, p11), which 
defines two kinds of helpers: operation and attribute helpers. 

In ATL, a helper can only be specified on an OCL type or on a source metamodel 
type since target models are not navigable. Operation helpers define operations in the 
context of a model element or in the context of a module. They can have input 
parameters and can use recursion. Attribute helpers are used to associate read-only 
named values to source model elements. Similarly to operation helpers they have a 
name, a context, and a type. The difference is that they cannot have input parameters. 
Their values are specified by an OCL expression. Like operation helpers, attribute 
helpers can be recursively defined with constraints about termination and cycles. 

Attribute helpers can be considered as a means to decorate source models before 
transformation execution. A decoration of a model element may depend on the 
decoration of other elements. To illustrate the syntax of attribute helpers we consider 
an example. 

1. helper context SimpleClass!Class def : allAttributes :      
2.   Sequence(SimpleClass!Attribute) = self.attrs->union( 
3.     if not self.parent.oclIsUndefined() then 
4. self.parent.allAttributes->select(attr | 
5.    not self.attrs->exists(at | at.name = attr.name)) 
6.     else Sequence {} endif  -- Terminating case for the recursion  
7.   )->flatten(); 

The attribute helper allAtributes is used to determine all the attributes of a given 
class including the defined and the inherited attributes. It is associated to classes in the 
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source model (indicated by the keyword context and the reference to the type in the 
source metamodel SimpleClass!Class) and its values are sequences of attributes (line 
2). The OCL expression used to calculate value of the helper is given after the ‘=’ 
symbol (lines 2-7). This is an example of a recursive helper (line 4). 

3.3   Transformation Rules 

Transformation rule is the basic construct in ATL used to express the transformation 
logic. ATL rules may be specified either in a declarative style or in an imperative 
style. In this section we focus on declarative rules. Section 3.4 describes the 
imperative features of ATL. 

Matched Rules. Declarative ATL rules are called matched rules. A matched rule is 
composed of a source pattern and of a target pattern. Rule source pattern specifies a 
set of source types (coming from source metamodels and the set of collection types 
available in OCL) and a guard (an OCL Boolean expression). A source pattern is 
evaluated to a set of matches in source models. 

The target pattern is composed of a set of elements. Every element specifies a 
target type (from the target metamodel) and a set of bindings. A binding refers to a 
feature of the type (i.e. an attribute, a reference or an association end) and specifies an 
initialization expression for the feature value. The following snippet shows a simple 
matched rule in ATL. 

 
1. rule PersistentClass2Table{ 
2.   from 
3.     c : SimpleClass!Class (c.is_persistent and c.parent.oclIsUndefined()) 
4.   to 
5.     t : SimpleRDBMS!Table (name <- c.name ) 
6. } 

 

The rule name PersistentClass2Table is given after the keyword rule (line 1). The 
rule source pattern specifies one variable of type Class (line 3). The guard (line 3) 
specifies that only persistent classes without superclasses will be matched. 

The target pattern contains one element of type Table (line 5) assigned to the 
variable t. This element has one binding that specifies an expression for initializing 
the attribute name of the table. The symbol ‘<-‘ is used to delimit the feature to be 
initialized (left-hand side) from the initialization expression (right-hand side).  

Execution Semantics of Matched Rules. Matched rules are executed over matches 
of their source pattern. For a given match the target elements of the specified types 
are created in the target model and their features are initialized using the bindings. 

Executing a rule on a match additionally creates a traceability link in the internal 
structures of the transformation engine. This link relates three components: the rule, 
the match (i.e. source elements) and the newly created target elements. 

The feature initialization uses a value resolution algorithm, called ATL resolve 
algorithm. The algorithm is applied on the values of binding expressions. If the value 
type is primitive, then the value is assigned to the corresponding feature. If its type is 
a metamodel type or a collection type there are two possibilities: 

• if the value is a target element it is assigned to the feature; 
• if the value is a source element it is first resolved into a target element 

using internal traceability links. The resolution results in an element from 
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the target model created from the source element by a given rule. After 
the resolution the target model element becomes the value of the feature; 

Thanks to this algorithm, target elements can be linked together using source 
model navigation. 

Kinds of Matched Rules. There are several kinds of matched rules differing in the 
way how they are triggered. 

• Standard rules are applied once for every match that can be found in 
source models; 

• Lazy rules are triggered by other rules. They are applied on a single match 
as many times as it is referred to by other rules, every time producing a 
new set of target elements; 

• Unique lazy rules are also triggered by other rules. They are applied only 
once for a given match. If a unique lazy rule is triggered later on the same 
match the already created target elements are used; 

The ATL resolution algorithm takes care of triggering lazy and unique lazy rules 
when a source element is referred to within an initialization expression. 

Rule Inheritance. In ATL rule inheritance can be used as a code reuse mechanism 
and also as a mechanism for specifying polymorphic rules. 

A rule (called subrule) may inherit from another rule (parent rule). A subrule 
matches a subset of what its parent rule matches. The source pattern types in the 
parent rule may be replaced by their subtypes in the subrule source pattern. The guard 
of a subrule forms a conjunction with the guard of the parent rule. 

A subrule target pattern extends its parent target pattern using any combination of 
the following: by subtyping target types, by adding bindings, by replacing bindings, 
and by adding new target elements. 

3.4   Imperative Features of ATL 

The declarative style of transformation specification has a number of advantages. It is 
usually based on specifying relations between source and target patterns and thus 
tends to be closer to the way how the developers intuitively perceive a transformation. 
This style stresses on encoding these relations and hides the details related to selection 
of source elements, rule triggering and ordering, dealing with traceability, etc. 
Therefore, it can hide complex transformation algorithms behind a simple syntax. 

However, in some cases complex source-domain or target-domain specific 
algorithms may be required and it may be difficult to specify a pure declarative 
solution for them. There are several possible approaches to this issue. We consider 
two of them: 

• allow native operation calls to modules written in an arbitrary language. 
This solution has the drawback that it moves the control flow out of the 
transformation language semantics; 

• offer an imperative part in the transformation language. In that way the 
control flow remains in the transformation language semantics but the 
developer must encode this control flow explicitly; 
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ATL has an imperative part based on two main constructs: 

• called rules. A called rule is basically a procedure: it is invoked by name 
and may take arguments. Its implementation can be native or specified in 
ATL; 

• action block. An action block is a sequence of imperative statements and 
can be used instead of or in a combination with a target pattern in matched 
or called rules. The imperative statements available in ATL are the well 
known constructs for specifying control flow such as conditions, loops, 
assignments, etc. We do not give their syntax in this paper; 

If either a called rule or an action block is used in an ATL program, this program is 
no longer fully declarative. 

3.5   Execution of Transformation Definitions 

In this section we briefly sketch some aspects of the execution algorithm of ATL 
transformations. The execution starts by invoking an optional called rule marked as 
entry point. This rule, in turn, may invoke other called rules. Then the algorithm 
executes the standard matched rules (some of them may contain an action block). 
Rule matching and rule application are separated in two phases. In the first phase all 
patterns of the rules are matched against the source model(s). For every match the 
target elements are created. Traceability links are also created in this phase. In the 
second phase all the bindings for the created target elements are executed. ATL 
resolution algorithm and execution of lazy rules are applied if necessary. 

The algorithm does not suppose any order in rule matching, target elements 
creation for a match, and target elements initialization. Action block (if present) must, 
however, be executed after having applied the declarative part of the rule. 

Attribute helpers may be initialized in a pass performed before running the rest of 
the transformation. They may also be lazily evaluated when the helper value is read 
for the first time. Since the source models are read-only, the attribute helper values 
may be cached. Lazy evaluation and caching improve the performance. 

As long as lazy rules and called rules are not used, the execution algorithm 
terminates and is deterministic. Although the order of execution of rules is non-
deterministic, different execution orders produce the same result for a given source 
model. This is a consequence of the fact that source models are read-only: the 
execution of a rule cannot change the set of matches. In addition, target models are 
write-only: the initialization of a target element cannot impact the initialization of 
another. It is possible to have recursive helpers that do not terminate. In this case the 
transformation does not terminate either. Called rules use imperative constructs and 
the termination is not guaranteed. Lazy rules may introduce circular references to 
each other thus causing non-termination. 

4   Case Study: Transforming Class to Relational Models 

Because of the lack of space we present a rather simplified version of the case study 
given in the call for papers of the workshop. For the full version the reader is referred 
to [5]. The case study requires transformation of simple class models to relational 
models. The source and target metamodels are shown in Fig. 2. 
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Fig. 2. Source and target metamodels 

Classes in the source model have names and a number of attributes. They may be 
declared as persistent (attribute is_persistent). The type of an attribute is a classifier: 
either a primitive data type or a class. Attributes may be defined as primary (attribute 
is_primary). Every relational model contains a number of tables. Each table has a 
number of columns, some of them form a primary key. A table may be associated to 
zero or more foreign keys. We will focus only on two transformation rules: 

• Persistent classes that are roots of an inheritance hierarchy are transformed to 
tables; 

• Table columns are derived from the attributes of a class. Attributes of a 
primitive type are transformed to a single column. If the attribute is primary it 
results in a column from the primary key. Attributes of a non-primitive type 
are transformed to a set of columns derived from the type attributes. This rule 
is applied recursively until a set of primitive attributes is obtained (flattening); 

Below we give the transformation definition for the case study. 

1.  module SimpleClass2SimpleRDBMS; 
2.  create OUT : SimpleRDBMS from IN : SimpleClass; 
3.     
4.  helper context SimpleClass!Class def :  
5.    flattenedAttributes : Sequence(Sequence(SimpleClass!Attribute)) = 
6.      self.attrs->collect(a |  
7.       if a.type.oclIsKindOf(SimpleClass!PrimitiveDataType) then Sequence {a}           
8.         else a.type.flattenedAttributes->collect (t | t->prepend(a)) 
9.   endif 
10. )->flatten(); 
11. 
12. rule PersistentClass2Table{ 
13.   from 
14.     c : SimpleClass!Class (c.is_persistent and c.parent.oclIsUndefined()) 
15.   to t : SimpleRDBMS!Table ( 
16.       name <- c.name, 
17.   cols <- c.flattenedAttributes, 
18.   pkey <- c.flattenedAttributes->select(t | t->last().is_primary) 
19.   ) 
20. } 
21. 
22. unique lazy rule AttributeTrace2Column { 
23.   from trace : Sequence(SimpleClass!Attribute) 
24.   to col : SimpleRDBMS!Column ( 
25.   name <- trace->iterate(a; acc : String = '' | 
26.      acc + if acc = '' then '' else '_' endif + a.name), 
27.   type <- trace->last().type 
28.    ) 
29. } 
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The transformation specification may be split into two logical parts. The first part 
performs decoration of the source model and the second part contains the actual 
transformation rules. The decoration part is based on the helper flattenedAttributes. In 
the helper every class generates a sequence of traces derived from its attributes. Every 
trace is a sequence of attributes and will be transformed to a column. If an attribute is 
of a primitive type then the trace is the attribute itself (line 7). If an attribute is of a 
non-primitive type then it results in a set of traces derived from the traces of its type 
by prepending the attribute to every trace (line 8). The traces represent the paths to the 
primitive attributes for a given class after application of flattening. 

Transformation rules use the result of the decoration part to create the elements in 
the target model. Rule PersistentClass2Table transforms persistent root classes to 
tables. The interesting part of this rule is the initialization of the features of the 
created tables. The code in line 17 initializes the cols slot of the table. The value of 
this slot is a collection of all the columns of the table. Columns are created from 
traces contained in the flattenedAttributes helper. The value of the helper is resolved 
according to the ATL resolution algorithm. The resolution requires finding a rule that 
transforms the value of the expression into target model elements. In this case we 
have an implicit invocation of a transformation rule. The only suitable rule is 
AttributeTrace2Column unique lazy rule. This rule transforms traces to columns. 

Furthermore the slot pkey contains the primary key of the table. Primary key is a 
subset of all the columns of the table. The columns in the key are created from the 
traces whose last element is a primary attribute (line 18). Similarly to the previous slot 
we have an implicit invocation of AttributeTrace2Column rule. This rule may be 
triggered multiple times over the same source. Since it is a unique lazy rule the 
invocations after the first time will return the same result. 

It must be noted that this implementation relies on features of ATL that are not 
implemented yet. Current compiler does not fully support lazy rules, rules with 
multiple source elements, and source elements that are of OCL types (e.g. sequences). 
A working solution is available on the Eclipse GMT project site [5]. 

5   ATL Tools 

ATL is accompanied by a set of tools that include the ATL transformation engine, the 
ATL integrated development environment (IDE) based on Eclipse, and the ATL 
debugger. ATL transformations are compiled to programs in specialized byte-code. 
Byte-code is executed by the ATL virtual machine. The virtual machine is specialized 
in handling models and provides a set of instructions for model manipulation. 

The architecture of ATL execution engine is shown in Fig. 3. The virtual machine 
may run on top of various model management systems. To isolate the VM from their 
specifics an intermediate level is introduced called Model Handler Abstraction Layer. 
This layer translates the instructions of the VM for model manipulation to the 
instructions of a specific model handler. Model handlers are components that provide 
programming interface for model manipulation. Some examples are Eclipse Modeling 
Framework (EMF) [4] and MDR [7]. Model repository provides storage facilities for 
models. 



136 F. Jouault and I. Kurtev 

 

Fig. 3. The architecture of the ATL execution engine 

The current ATL IDE is built on top of Eclipse platform. It includes an editor that 
provides view of the text with syntax highlighting, outline (view of the model 
corresponding to the text), and error reporting. The IDE uses the Eclipse interface to 
the ATL debugger. 

Table 1 presents a summary of the features of the current ATL compiler and some 
features planned for future extensions. Stars indicate the supported features. An 
explanation of some of the features is given after the table.  

Table 1. ATL features summary 

ATL feature Current version Future extensions 
metamodel types,  
OCL primitive and 
tuple types, 
transformation module 
(i.e. static) 

*  
OCL helpers 

operations and 
attributes in the 
context of 

OCL collection types  * 

helpers libraries *  Code reuse 
rule libraries (importable modules)  * 

standard *  
lazy  * 
unique lazy  * 
rule inheritance  * 

Matched rules 

multiple source elements  * 
standard *  
with rule inheritance  * 

ATL resolve 
algorithm 

with lazy rules  * 

Refining mode (1) *(basic) *(improved) 

Traceability internal external 

ATL called rules  * 
native called rules  * 

Imperative 
part 

action blocks  * 

OCL type checking Dynamic 
Static (following the 

specification) 

(1) In ATL, source models are read-only and target models are write-only; this prohibits in-place 
transformations. However, such transformations are quite common in certain domains. ATL provides 
a mechanism to answer this need: refining mode. This mode can be used for transformations having 
the same source and target metamodel. Unmatched source elements are automatically copied into the 
target model, as if a default copying rule was present. 

Model Handler Abstraction Layer

EMF MDR …

ATL VM

ATL Compiler 

Model repository
XMI 2.0

XMI 1.2

ATL programs
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6   Related and Future Work 

In the last couple of years we observed a number of proposals for model 
transformation languages. Some of them are a response to the QVT RFP issued by 
OMG [10]. As we explained in Section 2 ATL is applicable in QVT transformation 
scenarios where transformation definitions are specified on the base of MOF 
metamodels [8]. However, ATL is designed to support other transformation scenarios 
going beyond QVT context where source and target models are artifacts created with 
various technologies such as databases, XML documents, etc. In that way ATL serves 
the purpose of the AMMA platform as a generic data management platform. A 
comparison between ATL and the last QVT proposal may be found in [6]. 

Another class of transformation approaches relies on graph transformations theory 
[1][11]. ATL is not directly based on the mathematical foundation of these 
approaches. An interesting direction for future research is to formalize the ATL 
semantics in terms of graph transformation theory. The declarative part of ATL is 
especially suitable for this. 

In [3] we present an application of ATL by showing how it can be used to check 
models if they satisfy given constraints. A simple specific target metamodel is 
defined to represent diagnostics resulting from evaluation of these constraints as a 
set of problems (i.e. constraint violations). OCL constraints defined on a metamodel 
can then be translated into ATL rules generating such problems. Diagnostic models 
can subsequently be transformed into any convenient representation. We plan to 
extend this work and show how ATL can be used to compute any kind of metrics on 
models. 

Static type checking of OCL expressions used in ATL programs is not 
implemented in current compiler. It is, however, necessary to be closer to OCL 2.0 
specification. 

7   Conclusions 

In this paper we presented ATL: a hybrid model transformation language developed 
as a part of the ATLAS Model Management Architecture. ATL is supported by a set 
of development tools built on top of the Eclipse environment: a compiler, a virtual 
machine, an editor, and a debugger. 

The current state of ATL tools already allows solving non-trivial problems. This is 
demonstrated by the increasing number of implemented examples and the interest 
shown by the ATL user community that provides a valuable feedback. 

The applicability of ATL was demonstrated in a case study. We identified 
alternative ways for implementing the case study. Alternatives are based of different 
programming styles, e.g. declarative and imperative. ATL allows both styles to be 
used in transformation definitions depending on the problem at hand. We encourage a 
declarative approach for defining transformations whenever possible. We believe that 
this approach allows transformation developers to focus on the essential relations 
among the model elements and to leave the handling of complex execution algorithms 
and optimizations to the ATL compiler and virtual machine. 
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