
Transforming Neural-Net Output Levels
to Probability Distributions

John S. Denker and Yann leCun
AT&T Bell Laboratories

Holmdel, NJ 07733

Abstract

(1) The outputs of a typical multi-output classification network do not
satisfy the axioms of probability; probabilities should be positive and sum
to one. This problem can be solved by treating the trained network as a
preprocessor that produces a feature vector that can be further processed,
for instance by classical statistical estimation techniques. (2) We present a
method for computing the first two moments ofthe probability distribution
indicating the range of outputs that are consistent with the input and the
training data. It is particularly useful to combine these two ideas: we
implement the ideas of section 1 using Parzen windows, where the shape
and relative size of each window is computed using the ideas of section 2.
This allows us to make contact between important theoretical ideas (e.g.

the ensemble formalism) and practical techniques (e.g. back-prop). Our
results also shed new light on and generalize the well-known "soft max"
scheme.

1 Distribution of Categories in Output Space

In many neural-net applications, it is crucial to produce a set of C numbers that
serve as estimates of the probability of C mutually exclusive outcomes. For exam
ple, in speech recognition, these numbers represent the probability of C different
phonemes; the probabilities of successive segments can be combined using a Hidden
Markov Model. Similarly, in an Optical Character Recognition ("OCR") applica
tion, the numbers represent C possible characters. Probability information for the
"best guess" category (and probable runner-up categories) is combined with con
text, cost information, etcetera, to produce recognition of multi-character strings.

853

854 Denker and IeCun

According to the axioms of probability, these C numbers should be constrained to be
positive and sum to one. We find that rather than modifying the network architec
ture and/or training algorithm to satisfy this constraint directly, it is advantageous
to use a network without the probabilistic constraint, followed by a statistical post
processor. Similar strategies have been discussed before, e.g. (Fogelman, 1990).

The obvious starting point is a network with C output units. We can train the net
work with targets that obey the probabilistic constraint, e.g. the target for category
"0" is [1, 0, 0, ... J, the target for category "1" is [0, 1, 0, ... J, etcetera. This would
not, alas, guarantee that the actual outputs would obey the constraint. Of course,
the actual outputs can always be shifted and normalized to meet the requirement;
one of the goals of this paper is to understand the best way to perform such a
transformation. A more sophisticated idea would be to construct a network that
had such a transformation (e.g. softmax (Bridle, 1990; Rumelhart, 1989)) "built
in" even during training. We tried this idea and discovered numerous difficulties,
as discussed in (Denker and leCun, 1990).

The most principled solution is simply to collect statistics on the trained network.
Figures 1 and 2 are scatter plots of output from our OCR network (Le Cun et al.,
1990) that was trained to recognize the digits "0" through "9~' In the first figure,
the outputs tend to cluster around the target vectors [the points (T-, T+) and
(T+ , T-)], and even though there are a few stragglers, decision regions can be
found that divide the space into a high-confidence "0" region, a high-confidence "I"
region, and a quite small "rejection" region. In the other figure, it can be seen that
the "3 versus 5" separation is very challenging.

In all cases, the plotted points indicate the output of the network when the input
image is taken from a special "calibration" dataset £. that is distinct both from
the training set M (used to train the network) and from the testing set 9 (used to
evaluate the generalization performance of the final, overall system).

This sort of analysis is applicable to a wide range of problems. The architecture of
the neural network (or other adaptive system) should be chosen to suit the problem
in each case. The network should then be trained using standard techniques. The
hope is that the output will constitute a sufficent statistic.

Given enough training data, we could use a standard statistical technique such
as Parzen windows (Duda and Hart, 1973) to estimate the probability density in
output space. It is then straightforward to take an unknown input, calculate the
corresponding output vector 0, and then estimate the probability that it belongs
to each class, according to the density of points of category c "at" location 0 in the
scatter plot.

We note that methods such as Parzen windows tend to fail when the number of
dimensions becomes too large, because it is exponentially harder to estimate prob
ability densities in high-dimensional spaces; this is often referred to as "the curse
of dimensionality" (Duda and Hart, 1973). Since the number of output units (typ
ically 10 in our OCR network) is much smaller than the number of input units
(typically 400) the method proposed here has a tremendous advantage compared to
classical statistical methods applied directly to the input vectors. This advantage
is increased by the fact that the distribution of points in network-output space is
much more regular than the distribution in the original space.

Transforming Neural-Net Output Levels to Probability Distributions 855

Calibration
Category 1

Calibration
Category 0

Figure 1: Scatter Plot: Category 1 versus 0

One axis in each plane represents the activation level of output unit
j=O, while the other axis represents activation level of output unit j=l;
the other 8 dimensions of output space are suppressed in this projection.
Points in the upper and lower plane are, respectively, assigned category
"I" and "0" by the calibration set. The clusters appear elongated because
there are so many ways that an item can be neither a "I" nor a "O~' This
figure contains over 500 points; the cluster centers are heavily overexposed.

Calibration
Category 5

Calibration
Category 3

Figure 2: Scatter Plot: Category 5 versus 3

This is the same as the previous figure except for the choice of data
points and projection axes.

856 Denker and leCun

2 Output Distribution for a Particular Input

The purpose of this section is to discuss the effect that limitations in the quantity
and/or quality oftraining data have on the reliability of neural-net outputs. Only an
outline of the argument can be presented here; details of the calculation can be found
in (Denker and leCun, 1990). This section does not use the ideas developed in the
previous section; the two lines of thought will converge in section 3. The calculation
proceeds in two steps: (1) to calculate the range of weight values consistent with the
training data, and then (2) to calculate the sensitivity of the output to uncertainty in
weight space. The result is a network that not only produces a "best guess" output,
but also an "error bar" indicating the confidence interval around that output.

The best formulation of the problem is to imagine that the input-output relation
of the network is given by a probability distribution P(O, I) [rather than the usual
function 0 = f(I)] where I and 0 represent the input vector and output vec
tor respectively. For any specific input pattern, we get a probability distribution
POl(OII), which can be thought of as a histogram describing the probability of
various output values.

Even for a definite input I, the output will be probabilistic, because there is never
enough information in the training set to determine the precise value of the weight
vector W. Typically there are non-trivial error bars on the training data. Even when
the training data is absolutely noise-free (e.g. when it is generated by a mathematical
function on a discrete input space (Denker et al., 1987)) the output can still be
uncertain if the network is underdetermined; the uncertainty arises from lack of
data quantity, not quality. In the real world one is faced with both problems: less
than enough data to (over) determine the network, and less than complete confidence
in the data that does exist.

We assume we have a handy method (e.g. back-prop) for finding a (local) minimum
W of the loss function E(W). A second-order Taylor expansion should be valid in
the vicinity of W. Since the loss function E is an additive function of training data,
and since probabilities are multiplicative, it is not surprising that the likelihood of a
weight configuration is an exponential function of the loss (Tishby, Levin and SoHa,
1989). Therefore the probability can be modelled locally as a multidimensional
gaussian centered at W; to a reasonable (Denker and leCun, 1990) approximation
the probability is proportional to:

(1)
i

where h is the second derivative of the loss (the Hessian), f3 is a scale factor that
determines our overall confidence in the training data, and po expresses any infor
mation we have about prior probabilities. The sums run over the dimensions of
parameter space. The width of this gaussian describes the range of networks in the
ensemble that are reasonably consistent with the training data.

Because we have a probability distribution on W, the expression 0 = fw (1) gives
a probability distribution on outputs 0, even for fixed inputs I. We find that the
most probable output () corresponds to the most probable parameters W. This
unsurprising result indicates that we are on the right track.

'Ji'ansforming Neural-Net Output Levels to Probability Distributions 857

We next would like to know what range of output values correspond to the allowed
range of parameter values. We start by calculating the sensitivity of the output
o = fw (1) to changes in W (holding the input I fixed). For each output unit
j, the derivative of OJ with respect to W can be evaluated by a straightforward
modification of the usual back-prop algorithm.

Our distribution of output values also has a second moment, which is given by a
surprisingly simple expression:

2

2 (0 0-)2) ~ "(j,i
Uj = j - j p ... = ~ {3h"

. II ,
(2)

where "(j,i denotes the gradient of OJ with respect to Wi. We now have the first

two moments of the output probability distribution (0 and u)j we could calculate
more if we wished.

It is reasonable to expect that the weighted sums (before the squashing function)
at the last layer of our network are approximately normally distributed, since they
are sums of random variables. If the output units are arranged to be reasonably
linear, the output distribution is then given by

(3)

where N is the conventional Normal (Gaussian) distribution with given mean and
variance, and where 0 and U depend on I. For multiple output units, we must
consider the joint probability distribution POl(OII). If the different output units'
distributions are independent, POI can be factored:

POl(OII) = IT Pjl(OjlI) (4)

j

We have achieved the goal of this section: a formula describing a distribution of
outputs consistent with a given input. This is a much fancier statement than the
vanilla network's statement that () is "the" output. For a network that is not
underdetermined, in the limit {3 ~ 00, POI becomes a b function located at 0,
so our formalism contains the vanilla network as a special case. For general {3, the
region where POI is large constitutes a "confidence region" of size proportional to the
fuzziness 1/ {3 of the data and to the degree to which the network is underdetermined.

Note that algorithms exist (Becker and Le Cun, 1989), (Le Cun, Denker and Solla,
1990) for calculating "(and h very efficiently - the time scales linearly with the
time of calculation of O. Equation 4 is remarkable in that it makes contact between
important theoretical ideas (e.g. the ensemble formalism) and practical techniques
(e.g. back-prop).

3 Combining the Distributions

Our main objective is an expression for P(cII), the probability that input I should
be assigned category c. We get it by combining the idea that elements of the
calibration set I:- are scattered in output space (section 1) with the idea that the
network output for each such element is uncertain because the network is under
determined (section 2). We can then draw a scatter plot in which the calibration

858 Denker and leCun

data is represented not by zero-size points but by distributions in output space. One
can imagine each element of C, as covering the area spanned by its "error bars" of
size u as given by equation 2. We can then calculate P(cII) using ideas analogous
to Parzen windows, with the advantage that the shape and relative size of each
window is calculated, not assumed. The answer comes out to be:

J E/e'cc POl(OIII)
P(cII) = E/e,C POl(OIJl) POl(OII) dO (5)

where we have introduced c,e to denote the subset of C, for which the assigned
category is c. Note that POI (given by equation 4) is being used in two ways in this
formula: to calibrate the statistical postprocessor by summing over the elements of
c', and also to calculate the fate of the input I (an element of the testing set).

Our result can be understood by analogy to Parzen windows, although it differs
from the standard Parzen windows scheme in two ways. First, it is pleasing that
we have a way of calculating the shape and relative size of the windows, namely
POI. Secondly, after we have summed the windows over the calibration set c', the
standard scheme would probe each window at the single point OJ our expression
(equation 5) accounts for the fact that the network's response to the testing input

I is blurred over a region given by POl(OII) and calls for a convolution.

Correspondence with Softmax

We were not surprised that, in suitable limits, our formalism leads to a generaliza
tion of the highly useful "softmax" scheme (Bridle, 1990j Rumelhart, 1989). This
provides a deeper understanding of softmax and helps put our work in context.

The first factor in equation 5 is a perfectly well-defined function of 0, but it could
be impractical to evaluate it from its definition (summing over the calibration set)
whenever it is needed. Therefore we sought a closed-form approximation for it.
After making some ruthless approximations and carrying out the integration in
equation 5, it reduces to

P(II) _ exp[TL\(Oe - TO)/u~e]
c - Eel exp[TL\(Oel - TO)/U~/C/]

(6)

where TL\ is the difference between the target values (T+ - T-), TO is the average
of the target values, and ue; is the second moment of output unit j for data in
category c. This can be compared to the standard softmax expression

P(ell) = exp[rOe]
Eel exp[rOe/]

(7)

We see that our formula has three advantages: (1) it is clear how to handle the
case where the targets are not symmetric about zero (non-vanishing ro); (2) the
"gain" of the exponentials depends on the category c; and (3) the gains can be
calculated from measurable! properties of the data. Having the gain depend on
the category makes a lot of sense; one can see in the figures that some categories

lOur formulas contain the overall confidence factor /3, which is not as easily measurable
as we would like.

Transforming Neural-Net Output Levels to Probability Distributions 859

are more tightly clustered than others. One weakness that our equation 6 shares
with softmax is the assumption that the output distribution of each output j is
circular (i.e. independent of c). This can be remedied by retracting some of the
approximations leading to equation 6.

Summary: In a wide range of applications, it is extremely important to have good
estimates of the probability of correct classification (as well as runner-up proba
bilities). We have shown how to create a network that computes the parameters
of a probability distribution (or confidence interval) describing the set of outputs
that are consistent with a given input and with the training data. The method has
been described in terms of neural nets, but applies equally well to any parametric
estimation technique that allows calculation of second derivatives. The analysis
outlined here makes clear the assumptions inherent in previous schemes and offers
a well-founded way of calculating the required probabilities.

References

Becker, S. and Le Cun, Y. (1989). Improving the Convergence of Back-Propagation
Learning with Second-Order Methods. In Touretzky, D., Hinton, G., and Se
jnowski, T., editors, Proc. of the 1988 Connectionist Models Summer School,

pages 29-37, San Mateo. Morgan Kaufman.

Bridle, J. S. (1990). Training Stochastic Model Recognition Algorithms as Net
works can lead to Maximum Mutual Information Estimation of Parameters.
In Touretzky, D., editor, Advances in Neural Information Processing Systems,
volume 2, (Denver, 1989). Morgan Kaufman.

Denker, J. and leCun, Y. (1990). Transforming Neural-Net Output Levels to Proba
bility Distributions. Technical Memorandum TM11359-901120-05, AT&T Bell
Laboratories, Holmdel NJ 07733.

Denker, J., Schwartz, D., Wittner, B., Solla, S. A., Howard, R., Jackel, L., and
Hopfield, J. (1987). Automatic Learning, Rule Extraction and Generalization.
Complex Systems, 1:877-922.

Duda, R. and Hart, P. (1973). Pattern Classification And Scene Analysis. Wiley
and Son.

Fogelman, F. (1990). personal communication.

Le Cun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard,
W., and Jackel, L. D. (1990). Handwritten Digit Recognition with a Back
Propagation Network. In Touretzky, D., editor, Advances in Neural Informa

tion Processing Systems, volume 2, (Denver, 1989). Morgan Kaufman.

Le Cun, Y., Denker, J. S., and Solla, S. (1990). Optimal Brain Damage. In Touret
zky, D., editor, Advances in Neural Information Processing Systems, volume 2,
(Denver, 1989). Morgan Kaufman.

Rumelhart, D. E. (1989). personal communication.

Tishby, N., Levin, E., and Solla, S. A. (1989). Consistent Inference of Probabilities
in Layered Networks: Predictions and Generalization. In Proceedings of the
International Joint Conference on Neural Networks, Washington DC.

It is a pleasure to acknowledge useful conversations with John Bridle.

