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Abstract 

(1) The outputs of a typical multi-output classification network do not 
satisfy the axioms of probability; probabilities should be positive and sum 
to one. This problem can be solved by treating the trained network as a 
preprocessor that produces a feature vector that can be further processed, 
for instance by classical statistical estimation techniques. (2) We present a 
method for computing the first two moments ofthe probability distribution 
indicating the range of outputs that are consistent with the input and the 
training data. It is particularly useful to combine these two ideas: we 
implement the ideas of section 1 using Parzen windows, where the shape 
and relative size of each window is computed using the ideas of section 2. 
This allows us to make contact between important theoretical ideas (e.g. 

the ensemble formalism) and practical techniques (e.g. back-prop). Our 
results also shed new light on and generalize the well-known "soft max" 
scheme. 

1 Distribution of Categories in Output Space 

In many neural-net applications, it is crucial to produce a set of C numbers that 
serve as estimates of the probability of C mutually exclusive outcomes. For exam
ple, in speech recognition, these numbers represent the probability of C different 
phonemes; the probabilities of successive segments can be combined using a Hidden 
Markov Model. Similarly, in an Optical Character Recognition ("OCR") applica
tion, the numbers represent C possible characters. Probability information for the 
"best guess" category (and probable runner-up categories) is combined with con
text, cost information, etcetera, to produce recognition of multi-character strings. 
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According to the axioms of probability, these C numbers should be constrained to be 
positive and sum to one. We find that rather than modifying the network architec
ture and/or training algorithm to satisfy this constraint directly, it is advantageous 
to use a network without the probabilistic constraint, followed by a statistical post
processor. Similar strategies have been discussed before, e.g. (Fogelman, 1990). 

The obvious starting point is a network with C output units. We can train the net
work with targets that obey the probabilistic constraint, e.g. the target for category 
"0" is [1, 0, 0, ... J, the target for category "1" is [0, 1, 0, ... J, etcetera. This would 
not, alas, guarantee that the actual outputs would obey the constraint. Of course, 
the actual outputs can always be shifted and normalized to meet the requirement; 
one of the goals of this paper is to understand the best way to perform such a 
transformation. A more sophisticated idea would be to construct a network that 
had such a transformation (e.g. softmax (Bridle, 1990; Rumelhart, 1989)) "built 
in" even during training. We tried this idea and discovered numerous difficulties, 
as discussed in (Denker and leCun, 1990). 

The most principled solution is simply to collect statistics on the trained network. 
Figures 1 and 2 are scatter plots of output from our OCR network (Le Cun et al., 
1990) that was trained to recognize the digits "0" through "9~' In the first figure, 
the outputs tend to cluster around the target vectors [the points (T-, T+) and 
(T+ , T-)], and even though there are a few stragglers, decision regions can be 
found that divide the space into a high-confidence "0" region, a high-confidence "I" 
region, and a quite small "rejection" region. In the other figure, it can be seen that 
the "3 versus 5" separation is very challenging. 

In all cases, the plotted points indicate the output of the network when the input 
image is taken from a special "calibration" dataset £. that is distinct both from 
the training set M (used to train the network) and from the testing set 9 (used to 
evaluate the generalization performance of the final, overall system). 

This sort of analysis is applicable to a wide range of problems. The architecture of 
the neural network (or other adaptive system) should be chosen to suit the problem 
in each case. The network should then be trained using standard techniques. The 
hope is that the output will constitute a sufficent statistic. 

Given enough training data, we could use a standard statistical technique such 
as Parzen windows (Duda and Hart, 1973) to estimate the probability density in 
output space. It is then straightforward to take an unknown input, calculate the 
corresponding output vector 0, and then estimate the probability that it belongs 
to each class, according to the density of points of category c "at" location 0 in the 
scatter plot. 

We note that methods such as Parzen windows tend to fail when the number of 
dimensions becomes too large, because it is exponentially harder to estimate prob
ability densities in high-dimensional spaces; this is often referred to as "the curse 
of dimensionality" (Duda and Hart, 1973). Since the number of output units (typ
ically 10 in our OCR network) is much smaller than the number of input units 
(typically 400) the method proposed here has a tremendous advantage compared to 
classical statistical methods applied directly to the input vectors. This advantage 
is increased by the fact that the distribution of points in network-output space is 
much more regular than the distribution in the original space. 
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Calibration 
Category 1 

Calibration 
Category 0 

Figure 1: Scatter Plot: Category 1 versus 0 

One axis in each plane represents the activation level of output unit 
j=O, while the other axis represents activation level of output unit j=l; 
the other 8 dimensions of output space are suppressed in this projection. 
Points in the upper and lower plane are, respectively, assigned category 
"I" and "0" by the calibration set. The clusters appear elongated because 
there are so many ways that an item can be neither a "I" nor a "O~' This 
figure contains over 500 points; the cluster centers are heavily overexposed. 

Calibration 
Category 5 

Calibration 
Category 3 

Figure 2: Scatter Plot: Category 5 versus 3 

This is the same as the previous figure except for the choice of data 
points and projection axes. 
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2 Output Distribution for a Particular Input 

The purpose of this section is to discuss the effect that limitations in the quantity 
and/or quality oftraining data have on the reliability of neural-net outputs. Only an 
outline of the argument can be presented here; details of the calculation can be found 
in (Denker and leCun, 1990). This section does not use the ideas developed in the 
previous section; the two lines of thought will converge in section 3. The calculation 
proceeds in two steps: (1) to calculate the range of weight values consistent with the 
training data, and then (2) to calculate the sensitivity of the output to uncertainty in 
weight space. The result is a network that not only produces a "best guess" output, 
but also an "error bar" indicating the confidence interval around that output. 

The best formulation of the problem is to imagine that the input-output relation 
of the network is given by a probability distribution P(O, I) [rather than the usual 
function 0 = f( I)] where I and 0 represent the input vector and output vec
tor respectively. For any specific input pattern, we get a probability distribution 
POl(OII), which can be thought of as a histogram describing the probability of 
various output values. 

Even for a definite input I, the output will be probabilistic, because there is never 
enough information in the training set to determine the precise value of the weight 
vector W. Typically there are non-trivial error bars on the training data. Even when 
the training data is absolutely noise-free (e.g. when it is generated by a mathematical 
function on a discrete input space (Denker et al., 1987)) the output can still be 
uncertain if the network is underdetermined; the uncertainty arises from lack of 
data quantity, not quality. In the real world one is faced with both problems: less 
than enough data to (over ) determine the network, and less than complete confidence 
in the data that does exist. 

We assume we have a handy method (e.g. back-prop) for finding a (local) minimum 
W of the loss function E(W). A second-order Taylor expansion should be valid in 
the vicinity of W. Since the loss function E is an additive function of training data, 
and since probabilities are multiplicative, it is not surprising that the likelihood of a 
weight configuration is an exponential function of the loss (Tishby, Levin and SoHa, 
1989). Therefore the probability can be modelled locally as a multidimensional 
gaussian centered at W; to a reasonable (Denker and leCun, 1990) approximation 
the probability is proportional to: 

(1) 
i 

where h is the second derivative of the loss (the Hessian), f3 is a scale factor that 
determines our overall confidence in the training data, and po expresses any infor
mation we have about prior probabilities. The sums run over the dimensions of 
parameter space. The width of this gaussian describes the range of networks in the 
ensemble that are reasonably consistent with the training data. 

Because we have a probability distribution on W, the expression 0 = fw (1) gives 
a probability distribution on outputs 0, even for fixed inputs I. We find that the 
most probable output () corresponds to the most probable parameters W. This 
unsurprising result indicates that we are on the right track. 
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We next would like to know what range of output values correspond to the allowed 
range of parameter values. We start by calculating the sensitivity of the output 
o = fw (1) to changes in W (holding the input I fixed). For each output unit 
j, the derivative of OJ with respect to W can be evaluated by a straightforward 
modification of the usual back-prop algorithm. 

Our distribution of output values also has a second moment, which is given by a 
surprisingly simple expression: 

2 

2 (0 0- )2) ~ "(j,i 
Uj = j - j p ... = ~ {3h" 

. II , 
(2) 

where "(j,i denotes the gradient of OJ with respect to Wi. We now have the first 

two moments of the output probability distribution (0 and u)j we could calculate 
more if we wished. 

It is reasonable to expect that the weighted sums (before the squashing function) 
at the last layer of our network are approximately normally distributed, since they 
are sums of random variables. If the output units are arranged to be reasonably 
linear, the output distribution is then given by 

(3) 

where N is the conventional Normal (Gaussian) distribution with given mean and 
variance, and where 0 and U depend on I. For multiple output units, we must 
consider the joint probability distribution POl(OII). If the different output units' 
distributions are independent, POI can be factored: 

POl(OII) = IT Pjl(OjlI) (4) 

j 

We have achieved the goal of this section: a formula describing a distribution of 
outputs consistent with a given input. This is a much fancier statement than the 
vanilla network's statement that () is "the" output. For a network that is not 
underdetermined, in the limit {3 ~ 00, POI becomes a b function located at 0, 
so our formalism contains the vanilla network as a special case. For general {3, the 
region where POI is large constitutes a "confidence region" of size proportional to the 
fuzziness 1/ {3 of the data and to the degree to which the network is underdetermined. 

Note that algorithms exist (Becker and Le Cun, 1989), (Le Cun, Denker and Solla, 
1990) for calculating "( and h very efficiently - the time scales linearly with the 
time of calculation of O. Equation 4 is remarkable in that it makes contact between 
important theoretical ideas (e.g. the ensemble formalism) and practical techniques 
(e.g. back-prop). 

3 Combining the Distributions 

Our main objective is an expression for P(cII), the probability that input I should 
be assigned category c. We get it by combining the idea that elements of the 
calibration set I:- are scattered in output space (section 1) with the idea that the 
network output for each such element is uncertain because the network is under
determined (section 2). We can then draw a scatter plot in which the calibration 
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data is represented not by zero-size points but by distributions in output space. One 
can imagine each element of C, as covering the area spanned by its "error bars" of 
size u as given by equation 2. We can then calculate P(cII) using ideas analogous 
to Parzen windows, with the advantage that the shape and relative size of each 
window is calculated, not assumed. The answer comes out to be: 

J E/e'cc POl(OIII) 
P(cII) = E/e,C POl(OIJl) POl(OII) dO (5) 

where we have introduced c,e to denote the subset of C, for which the assigned 
category is c. Note that POI (given by equation 4) is being used in two ways in this 
formula: to calibrate the statistical postprocessor by summing over the elements of 
c', and also to calculate the fate of the input I (an element of the testing set). 

Our result can be understood by analogy to Parzen windows, although it differs 
from the standard Parzen windows scheme in two ways. First, it is pleasing that 
we have a way of calculating the shape and relative size of the windows, namely 
POI. Secondly, after we have summed the windows over the calibration set c', the 
standard scheme would probe each window at the single point OJ our expression 
(equation 5) accounts for the fact that the network's response to the testing input 

I is blurred over a region given by POl(OII) and calls for a convolution. 

Correspondence with Softmax 

We were not surprised that, in suitable limits, our formalism leads to a generaliza
tion of the highly useful "softmax" scheme (Bridle, 1990j Rumelhart, 1989). This 
provides a deeper understanding of softmax and helps put our work in context. 

The first factor in equation 5 is a perfectly well-defined function of 0, but it could 
be impractical to evaluate it from its definition (summing over the calibration set) 
whenever it is needed. Therefore we sought a closed-form approximation for it. 
After making some ruthless approximations and carrying out the integration in 
equation 5, it reduces to 

P( II) _ exp[TL\(Oe - TO)/u~e] 
c - Eel exp[TL\(Oel - TO)/U~/C/] 

(6) 

where TL\ is the difference between the target values (T+ - T-), TO is the average 
of the target values, and ue; is the second moment of output unit j for data in 
category c. This can be compared to the standard softmax expression 

P( ell) = exp[rOe] 
Eel exp[rOe/] 

(7) 

We see that our formula has three advantages: (1) it is clear how to handle the 
case where the targets are not symmetric about zero (non-vanishing ro); (2) the 
"gain" of the exponentials depends on the category c; and (3) the gains can be 
calculated from measurable! properties of the data. Having the gain depend on 
the category makes a lot of sense; one can see in the figures that some categories 

lOur formulas contain the overall confidence factor /3, which is not as easily measurable 
as we would like. 
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are more tightly clustered than others. One weakness that our equation 6 shares 
with softmax is the assumption that the output distribution of each output j is 
circular (i.e. independent of c). This can be remedied by retracting some of the 
approximations leading to equation 6. 

Summary: In a wide range of applications, it is extremely important to have good 
estimates of the probability of correct classification (as well as runner-up proba
bilities). We have shown how to create a network that computes the parameters 
of a probability distribution (or confidence interval) describing the set of outputs 
that are consistent with a given input and with the training data. The method has 
been described in terms of neural nets, but applies equally well to any parametric 
estimation technique that allows calculation of second derivatives. The analysis 
outlined here makes clear the assumptions inherent in previous schemes and offers 
a well-founded way of calculating the required probabilities. 
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