
Transforming Process Algebra Models
into UML State Machines:
Bridging a Semantic Gap?

M.F. van Amstel, M.G.J. van den Brand, Z. Protić, and T. Verhoeff

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{M.F.v.Amstel,M.G.J.v.d.Brand,Z.Protic,T.Verhoeff}@tue.nl

Abstract. There exist many formalisms for modeling the behavior of
(software) systems. These formalisms serve different purposes. Process
algebras are used for algebraic and axiomatic reasoning about the be-
havior of distributed systems. UML state machines are suitable for au-
tomatic software generation. We have developed a transformation from
the process algebra ACP into UML state machines to enable automatic
software generation from process algebra models. This transformation
needs to preserve both behavioral and structural properties. The combi-
nation of these preservation requirements gives rise to a semantic gap. It
implies that we cannot transform ACP models into UML state machines
on a syntactic level only.

We address this semantic gap and propose a way of bridging it. To
validate our proposal, we have implemented a tool for automatic trans-
formation of ACP process algebra models into UML state machines.

1 Introduction

In this paper we address the semantic gap that arises when transforming models
specified in one formalism into models in another formalism. A transformation
between models in different formalisms needs to bridge a syntactic gap. This is a
well-known problem. However, in many applications one also needs to preserve
semantic properties. This is not trivial since the semantic domains of the source
and target formalism may differ, or a formal semantics may be lacking. Moreover,
additional requirements on semantical properties can affect a transformation.

The goal within the FALCON project [1] is to model embedded systems in
a warehousing environment and use these models initially for simulation, but
later for, amongst others, automatic software generation. These systems are be-
ing modeled using a process algebra [2]. Process algebra is a formalism used for
algebraic and axiomatic reasoning about the behavior of systems, in particular
those involving concurrency [3]. However, little is known about automatic code
generation from process algebra models. We use UML state machines as an in-
termediate step because multiple techniques are available for automatic code

A. Vallecillo, J. Gray, A. Pierantonio (Eds.): ICMT 2008, LNCS 5063, pp. 61–75, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

62 M.F. van Amstel et al.

generation from them. Therefore we propose a transformation from process al-
gebra models to UML state machines [4]. We start with plain process algebra in
order to understand the basics of software generation from, and model transfor-
mations based on process algebras. In this paper we use the well-known process
algebra ACP (Algebra of Communicating Processes) [5,6] without encapsula-
tion. In the transformation of this small process algebra we already encounter a
semantic gap. The obtained results will be used when translating process algebra
based formalisms like timed χ [7] or mCRL2 [8].

Processes in distributed systems are allocated to different machines that run in
parallel. Therefore we have to ensure that the automatically generated code can
also be deployed on different machines. This requires that the ACP models and
the obtained state machines are structurally equivalent with respect to parallel
behavior. The ACP models and the state machines obtained from this trans-
formation obviously need to exhibit the same behavior. It is this combination
of requirements, i.e., preserving structural and behavioral properties, that con-
fronted us with the problems of bridging a semantic gap. In ACP, constructs are
available for modeling synchronous communication between parallel processes.
UML state machines are inherently asynchronous, hence no primitives exist for
modeling synchronous communication. This means that the transformation from
ACP to UML state machines encompasses more than translating syntax. Special
care is needed to ensure that the semantic gap is bridged in order to preserve
both behavioral and structural properties.

The remainder of this paper is structured as follows. Section 2 describes re-
lated work. In Section 3 our approach to transform ACP models into UML
state machines is explained. In this section also the semantic gap is explained
in depth and we propose and evaluate some solutions for bridging this gap. Sec-
tion 4 describes the implementation of our transformation. An illustration using
our implementation can be found in Section 5. Section 6 contains the conclusions
of our work and gives some directions for further research.

2 Related Work

Many papers have been published on the subject of transforming process algebras
into various formalisms. In one of the first papers in this area a transformation
from the Algebra of Timed Processes (ATP) into a variant of timed graphs is
presented [9]. The authors aim at unifying behavioral description formalisms for
timed systems. In [10], a transformation of a timed process algebra based on
LOTOS operators to Dynamic State Graphs is presented. The main purpose
of that mapping is to visualize and simulate process algebra models. In [11]
three different process algebras are analyzed and compared. The results of that
analysis are used to propose a framework for visualizing process algebras. In a
recent technical report [12], a transformation from timed χ into UPPAAL timed
automata is presented. The main purpose of that mapping is to enable model
checking and verification of process algebra models. Our approach, however,
focuses on automatic software generation.

Transforming Process Algebra Models into UML State Machines 63

Research has also been performed in the field of software generation from
UML state machines. In [13] an overview is given of different approaches for
generating code from UML state machines. The authors identify the weaknesses
in these approaches and also propose their own technique. The approach de-
scribed in [14] generates object-oriented code from UML state machines. In our
work we use the tool Telelogic Rhapsody to generate simulation code from state
machines. The semantics of Rhapsody state machines differs slightly from UML
state machines [15], but this does not affect our approach.

3 Transforming ACP Models into UML State Machines

In this section first a short introduction is given to the relevant parts of ACP.
Next, our transformation from ACP to UML state machines is described. In
Section 3.3 the semantic gap is discussed in more detail. Section 3.4 presents our
solution to bridge this gap.

3.1 Algebra of Communicating Processes

In this paper, we consider basic ACP without the encapsulation operator (∂)
to illustrate one of the main issues in bridging a semantic gap. It suffices to
leave out the encapsulation operator because a semantic gap already emerges
without it. An ACP model consists of a process term (P) and a communication
function (γ). A process term is built from atoms and operators.

In ACP there are three types of atoms. First, there is the deadlock con-
stant (δ) that denotes inaction. When this constant is encountered in a process
it deadlocks. Second, there is the empty process constant (ε) that denotes doing
nothing. Third, there are the actions that can be performed by a process term.

In ACP there are six operators. First, there is the sequential composition (·).
The sequential composition of n process terms, P1 · P2 · . . . · Pn, denotes that
the execution of P1 precedes the execution of P2 and so on. Second there is the
action prefix operator (.). This operator is similar to the sequential composi-
tion, therefore we consider it as such. Third, there is the alternative composi-
tion (+). The alternative composition of n process terms, P1 + P2 + . . . + Pn,
denotes that only one of these process terms is executed. This choice is made
non-deterministically. Fourth, there is the parallel composition (‖). The parallel
composition of n process terms, P1‖P2‖ . . . ‖Pn, denotes that these process terms
are executed quasi-parallel. This means that the process terms are arbitrarily
interleaved whilst maintaining their internal ordering. Consider for example the
parallel composition (a · b)‖(c · d). The arbitrary interleaving may not result
in a situation where the execution of b precedes the execution of a, or where
the execution of d precedes the execution of c. There is, however, more to the
parallel composition which will be explained in Section 3.3. Fifth, there is the
left merge operator (�) which is closely related to the parallel composition. It
denotes that the first action to the left of the operator is executed first where-
after the remaining process term continues as a parallel composition. Consider

64 M.F. van Amstel et al.

for example the process term (a ·x)�y. This means that first action a is executed
whereafter the process term behaves as x‖y. This operator occurs for techni-
cal reasons [16] in the reduction of ACP process terms and is seldomly used
in modeling directly. Last, there is the communication merge operator (|). This
operator is used together with the communication function (γ) to express com-
munication (or interaction) between two actions. The communication function
expresses which actions can communicate and what the result of this communi-
cation is. For example γ(a, b) = c expresses that in the process term a|b actions a
and b communicate, resulting in action c. If this communication function does
not exist, actions a and b cannot communicate. This means that the process
term a|b results in a deadlock (δ). The communication merge operator also oc-
curs for technical reasons [16] in the reduction of ACP process terms and is
seldomly used in modeling directly.

3.2 Transformation

Our transformation f from ACP models to UML state machines takes an ACP
model, which consists of a process term and a communication function, as an
argument and returns a UML state machine.

f : ACP model → UML state machine

Every non-atomic process term is built from smaller process terms, resulting in
an implicit tree structure. Our transformation traverses this tree and transforms
every subtree into a partial state machine that is structurally equivalent to the
process term in the node. ACP has axiomatic rewrite rules. This means that an
ACP process term can be rewritten (transformed) into a different-but-equivalent
process term using these rules. An example of this rewriting process is given in
Figure 1. In order to ensure the required structural equivalence with respect to
parallel behavior, the original ACP model should not be rewritten such as to
remove parallel composition operators. In general it is not required to maintain
structure. However, we will maximize structure preservation for the other ACP
constructs as well, since we want to preserve designer’s choices as closely as
possible. Therefore the ACP axioms for rewriting a process term are used as
little as possible by our transformation.

We use the formal semantics of ACP described in [17] and the semantics
description of UML presented in [4] to explain informally the behavioral equiva-
lence of ACP constructs and the resulting UML state machines. With behavioral
equivalence we mean that the the state machines need to define exactly the same
traces as the original ACP models.

The state machine constructs for the sequential, alternative, and parallel com-
position are straightforward, i.e., the semantics is clear from the syntax. The
sequential composition maps to the state machine depicted in Figure 2(a). This
construct enforces that the execution of P1 precedes the execution of P2 and so
on. The dotted state labeled f(Pi) represent the partial state machine acquired
after applying f to process term Pi. The state machine to which the alterna-
tive composition maps is depicted in Figure 2(b). The choice state ensures that

Transforming Process Algebra Models into UML State Machines 65

a.x + (b.y + a.x)

= {Axiom A1 : x + y = y + x}
a.x + (a.x + b.y)

= {Axiom A2 : (x + y) + z = x + (y + z)}
(a.x + a.x) + b.y

= {Axiom A3 : (x + x) = x}
a.x + b.y

Fig. 1. Example of rewriting using the ACP axioms

only one of the paths will (non-deterministically) be selected for execution. Fig-
ure 2(c) depicts the state machine for the parallel composition. The fork and join
states are used to ensure that all parallel branches start and end simultaneously.
The transformation of the atoms is explained in Section 3.4.

� � � � �� � � � � � � � � � 	 	 	

(a) Sequential composition

� � � � �

� � � � �

� � � � �

		
	

(b) Alternative composition

� � � � �

� � � � �

� � � � �

		
	

(c) Parallel composition

Fig. 2. Transformation

The left merge operator cannot be expressed in a natural way in a state ma-
chine. It is impossible to express that a specific action in one branch of a parallel
composition should be performed first. Therefore, the left merge operator is
eliminated by rewriting according to the axioms of ACP. Also the communica-
tion merge operator cannot be expressed in a natural way in a state machine.
Therefore, when communication of two actions is encountered the communica-
tion function (γ) is consulted whether this communication should be rewritten
into an action or the deadlock constant. These are the only two cases in which
structure is not preserved, but since these two constructs are seldomly used in
modeling this is acceptable.

66 M.F. van Amstel et al.

3.3 Semantic Gap

In ACP the parallel composition of two or more process terms represents not
just the interleaving of these terms. It also involves communication of the actions
inside them. Consider for example the ACP process term a‖b. This will rewrite
using the ACP axioms to a · b + b · a + a|b. Suppose now the communication
function γ(a, b) = c exists for some action c. In this case actions a and b can be
executed simultaneously (a|b) and communicate. The result of this communica-
tion is action c. So the traces allowed by this parallel composition are a · b, b · a,
and c. In UML state machines the parallel composition, created by transitions
that fork into orthogonal regions, represents interleaving or concurrent execution
of the traces in the orthogonal regions. There is no communication between the
actions in these traces like in ACP. This gap between the semantics of ACP and
UML state machines needs to be bridged.

One possibility to bridge this gap is to use the ACP axioms to rewrite an ACP
model such that all parallel composition operators are removed. In this way all
communication is made explicit. The state machine acquired after rewriting is
sketched in Figure 3(a). This is not a valid solution since one of the requirements
is that the UML state machines need to preserve the structure of the ACP
models, at least with respect to the parallel composition. In fact, the combination
of the requirements of preserving both behavioral and structural properties gives
rise to the semantic gap.

�

�

�

(a) Rewritten using the ACP axioms

�

 � � � � � � � � � �

 � � � � � � � � � � �

(b) Structure preserving

Fig. 3. State machine representations of a‖b

Another possible solution is to exploit the semantic openness of UML state
machines. Therefore we propose an action dispatcher that takes care of execut-
ing all actions. Actions are not executed in the state machine itself. Instead, an
action is announced to the action dispatcher and the branch of the state ma-
chine that contains the action is blocked. After the action dispatcher executes
the action, it enables the appropriate branch again such that the state machine
can continue. If multiple actions that can communicate have been announced,
the action dispatcher ensures that communication can occur in accordance with
the communication function. Suppose for example that actions a and b are an-
nounced and that γ(a, b) = c, i.e., actions a and b can communicate resulting in
action c. The action dispatcher now also allows action c to be executed. Using
the action dispatcher, we succeed in preserving most of the structure of the ACP
model. Figure 3(b) sketches the resulting state machine.

Transforming Process Algebra Models into UML State Machines 67

It can be argued whether having a global action dispatcher that exploits the
semantic openness of UML state machines is a proper solution. The disadvantage
of having this global action dispatcher is that communication behavior is invisible
in the state machine. In the case of ACP this is not a problem. Communication in
ACP models is also invisible because it is expressed by a global communication
function (γ) and not in a process term itself. The effect on the semantics is also
limited since the action dispatcher can be modeled using the UML as well. We
generate a state machine from an ACP model and add an implementation of the
action dispatcher in the form of a UML class and state machine to it.

3.4 Action Dispatcher

Figure 4 depicts the class diagram representing the (single) action dispatcher.
This action dispatcher object has an action pool of zero or more action objects.
The action pool consists of all action objects ready for execution. The γ attribute
of the class is the communication function γ. It is, like in ACP, used to determine
whether a pair of actions can communicate. The methods of the class handle
adding actions to, executing actions in, and removing actions from the action
pool. The functionality of the methods is explained below. The action dispatcher
is generic. This means that the same action dispatcher is generated for all ACP
models. Only the γ attribute is generated from the model.

� � � � � � � � � � � 	
 � � �

� � � 	 �
 � � � 	
 � � �

� � � � � � � � � � � � � � � � 	
 � � �

� 	
 � � �

� �

� � � �

� � � �

� 	
 � � � � � � �

�

� � � � � � � �
 � �

� 	
 � � � ! � � " �
 	 # � �

$

� � 	 � �
 � �
� � � �� � � �

Fig. 4. Action dispatcher class diagram

An action object has two attributes: an identifier to uniquely identify the
syntactic occurrence of the action and the name of the action. This name is the
same name as the one occurring in the ACP process term. An action can be
related to other actions, its ancestors. If an action x is the result of communi-
cation, e.g. γ(a, b) = x, actions a and b are considered to be its parents. The
set of ancestors of x can be found by taking the transitive closure of the ‘is
parent of ’ x relation. Note that an action that is the result of communication
can communicate with other actions, e.g. γ(a, b) = c and γ(c, d) = e. Because an
action cannot communicate with its ancestors, the ancestors of an action need
to be known to correctly handle communication. If an action is not the result of
a communication it does not have any ancestors.

The life cycle of an action object is such that it will first be added to the
action pool. After some time, it may be executed whereafter it is removed from
the action pool. In case of communication, action objects can also be removed
from the action pool without having been executed themselves. Action objects
can even stay in the action pool forever in case of a deadlock.

68 M.F. van Amstel et al.

 � � � � � � � � � � � �� � � � � �

� � � � � � � � � �
 �

Fig. 5. Transformation of atoms

Transformation of Atoms. The transformation of all constructs except for the
atoms has already been explained in Section 3.2. The atom a maps to the state
machine depicted in Figure 5. The entry activity on the simple state creates
an action object from atom a and invokes the AddToPool method of the action
dispatcher. This puts the newly created action object in the action pool. In
order to ensure that the state machine does not continue until the action has
been executed, a guard is present on the outgoing transition. This guard is true
when the action object is not in the action pool. This is the case when the action
has been executed or has communicated.

Addition. The method AddToPool(x) is invoked by the entry activity on the
simple state an atom is mapped to (cf. Figure 5). Its purpose is to extend the
action pool with x and to maintain closure of the action pool under γ. If an action
object x is added to the action pool, and it can communicate with another action
object a already in the pool that is not one of its ancestors, then a new action
object for the communication result given by γ is recursively added to the action
pool (lines 3–6 in Figure 6). On line 5 a new action object is created with a new
identifier and as name the result of the communication function γ. Also, the set
of all ancestors of x is assigned to this action object.

Execution. An action object x in the action pool that does not represent a
deadlock constant will non-deterministically be selected at an arbitrary moment
for execution. The purpose of method Execute(x) is to find all actions that
execute along with x, i.e., all actions that, directly or indirectly, gave rise to x
through communication, and to clean up the action pool. If the state machine
cannot proceed and there are only action objects in the action pool that represent
a deadlock constant, it is in a deadlock state.

Removal. The purpose of method RemoveFromPool(x) is to remove action ob-
ject x from the action pool. To maintain closure of the action pool under γ, also
all action objects that are the result, directly or indirectly, of communication
involving x are removed. Note that these resulting action objects do not occur
in the conditions of outgoing transitions (cf. Figure 5), because they are the
result of communication.

Correctness Considerations. Interference between methods of the action dis-
patcher can be avoided by executing them under mutual exclusion. The ac-
tion dispatcher controls the state machine through conditions of the form a /∈
ActionPool only. Note that a is added to the action pool, falsifying the condition,
upon entry into the immediately preceding simple state, and is removed upon its
execution, making the condition true. During execution of each method, the ac-
tion pool changes monotonically to avoid glitches (undesired condition changes).

Transforming Process Algebra Models into UML State Machines 69

1. AddToPool(x: Action):
2. ActionPool := ActionPool ∪ {x};
3. ∀a : γ(a.Name, x.Name) = y
4. → if a ∈ ActionPool ∧ a.Id /∈ x.Ancestor
5. → NewAction := Action(NewId(), y, a.Ancestor ∪ x.Ancestor ∪ {a, x});
6. AddToPool(NewAction)

7. Execute(x: Action):
8. ∀a : a.Id ∈ x.Ancestor
9. → Execute(a)
10. RemoveFromPool(x)

11. RemoveFromPool(x: Action):
12. ActionPool := ActionPool − {x};
13. ∀a : a ∈ ActionPool
14. → if x.Id ∈ a.Ancestor
15. → RemoveFromPool(a)

Fig. 6. Pseudo code for the action dispatcher methods

4 Implementation

The transformation from ACP models into UML state machines expressed in the
XMI format is too complex to implement in a single step. Therefore we split the
transformation into four independent steps. This modular approach makes the
transformation more transparent, which benefits extensibility, maintainability,
and testability. Moreover, every step is (re)usable in isolation.

In the first step of the transformation the ACP model is rewritten using
the ACP axioms to remove all instances of the left merge and communication
merge operator. Consider for example the ACP process term a�(b|c) and suppose
γ(b, c) = d. This rewrites to a.d. This step has as in- and output an ACP model
expressed in the ACP metamodel1 we have defined. After this step the ACP
model will only consist of constructs that have a state machine equivalent. With a
few extensions the transformation used in this step can also be used for rewriting
ACP models to their normal form.

In the second step the implicit tree structure of an ACP model is made explicit.
For the representation of this tree structure we use an intermediate language for
which we defined a metamodel. This language uses a prefix format. Consider
for example the alternative composition P1 + P2 + . . . + Pn. The transformation
function finds all the alternatives and represents them as alt(P1, P2, . . . , Pn).

These first two steps are mere preparation for the actual transformation. In
the third step the tree representation of an ACP model is transformed into a
state machine. This state machine is defined in a state machine language for
which we have also defined a metamodel. This language closely resembles UML

1 Our metamodels are in fact context-free grammars.

70 M.F. van Amstel et al.

� �

� �

� �

		
	

� � � � �

� � � � �

� � � � �

		
	� �
 � � � � �

Fig. 7. Transformation of the alternative composition

state machines. The only difference is that it does not support the history mech-
anism. We chose to use this intermediate format to avoid having to transform
into complex XMI constructs directly. Moreover, it enables the transformation
of any UML state machine defined in our state machine language into XMI. This
third transformation step is similar to Thompson’s algorithm for transforming
regular expressions into non-deterministic finite automata [18]. The transforma-
tion function has as arguments an ACP process term represented as a tree and a
start and an end state. For the alternative and parallel composition these start
state and end state are respectively the choice and junction state, and the fork
and join state. In Figure 7 an example is depicted in which the partial state
machines for n alternatives are generated and connected to the choice and junc-
tion states. For the sequential composition it is more difficult because the end
state of the first partial state machine in the sequence is the start state for the
next. These states are not known in advance. To overcome this problem, dummy
states are inserted such that the start and end states are known in advance.
These dummy states are removed afterwards.

In the last step a state machine is transformed into its XMI [19] representation.
This back-end part is isolated, because the XMI standard is actually not so
standard. Most UML tools use a different dialect of XMI requiring different back-
ends. Currently our implementation is able to generate XMI files for the UML
tools ArgoUML [20] and Telelogic Rhapsody [21]. Our state machine language
closely resembles UML state machines and there is a one-to-one mapping from
UML state machine constructs to XMI. Therefore, this final transformation step
is straightforward.

The Telelogic Rhapsody tool allows for execution of state machines. We use
this feature to simulate the execution of ACP models. To ensure a correct han-
dling of communication, an implementation of the action dispatcher presented
in Section 3.4 is added to the XMI file.

We use the term rewriting system ASF+SDF [22,23] for the development of
our metamodels and for the implementation of our transformation. Transforma-
tions between languages is one of the main applications of ASF+SDF. These
transformations are performed between languages specified in the Syntax Defi-
nition Formalism (SDF) using conditional equations specified in the Algebraic
Specification Formalism (ASF). Because the concrete syntax of the source and
target language of a transformation are formally defined in SDF, syntax-safety

Transforming Process Algebra Models into UML State Machines 71

of the input and output of a transformation is guaranteed. This implies that
every syntactically correct ACP model is transformed into a syntactically cor-
rect XMI document representing a state machine that preserves structural and
behavioral properties. Syntax-safety also implies that every ACP model that is
syntactically incorrect is not transformed at all.

5 Illustration

We have used our implementation on multiple ACP models to verify the correct-
ness of our transformation. This section describes the transformation of an ACP
model of a conveyor system into a UML state machine that preserves structural
and behavioral properties.

The conveyor system is schematically depicted in Figure 8. Machines M1
and M2 put products on a conveyor belt. The products from machine M1 can go
to machines M3 or M4 for further processing and the products from machine M2
can go to machines M4 or M5. When products are sent to machine M4 by both
machines M1 and M2 at the same time a collision will occur and an operator
should ensure that both products can still enter the machine for processing.

� �� � �

� �

�
� !

� � !

� !

�
� �

� �

Fig. 8. Conveyor system

The ACP model representing this system is depicted in Figure 9. The process
term expresses that a product is produced by machine M1 which is then sent to
machine M3 or M4 for further processing and that another product is produced
by machine M2 which is then sent to machine M5 or M4 for further processing,
possibly at the same time. The communication function (γ) expresses that an
operator rearranges products that collide if two products go from machines M1
and M2 to machine M4 at the same time. Note that only one iteration is modeled.

γ(C14, C24) = operator

(M1 · (C13 · M3 + C14 · M4)) ‖ (M2 · (C25 · M5 + C24 · M4))

Fig. 9. ACP model of the conveyor system

72 M.F. van Amstel et al.

Fig. 10. ArgoUML screen shot depicting the acquired state machine diagram

(a) Trace 1 (b) Trace 2 (c) Trace 3

Fig. 11. Three Telelogic Rhapsody execution results

The state machine resulting from the transformation should exhibit the same
behavior. A screen shot of the state machine acquired from the transformation
imported in ArgoUML can be found in Figure 10. Note that ArgoUML uses
circles for choice states and diamonds for junction states.

We also transformed this ACP model into an XMI file for Telelogic Rhapsody,
enabling simulation of the state machine. Three screen shots showing the results
of three different executions of the simulation are depicted in Figure 11. In trace 1
and 3 both products go to different machines. In trace 2 the operator is needed
to rearrange collided products.

6 Conclusion and Further Research

6.1 Conclusions

We have addressed the semantic gap that arises in the transformation from the
process algebra ACP without encapsulation into UML state machines. Trans-
forming a model specified in one formalism into a model in another formalism
involves more than transforming syntax. Differences in the characteristics of se-
mantics need to be handled meticulously to ensure a correct transformation. In
our case a semantic gap emerged as a result of the requirements on the trans-
formation. The transformation should preserve both structural and behavioral
properties. Our transformation preserves structure for all operators except for

Transforming Process Algebra Models into UML State Machines 73

the seldomly used left merge and communication merge operators. It also pre-
serves behavior by exploiting the semantic openness of UML state machines. We
have extended UML state machines with an action dispatcher to ensure that
they can generate the same execution traces as the ACP model.

Note that trace equivalence is in general only one aspect of semantic equiva-
lence. Without providing a formal semantics for the UML we cannot guarantee
that we have bridged the semantic gap completely. Since there are many for-
malisms with different (or without) formal semantics, there are probably many
model transformations that are not proven to be semantics preserving. Proving
that a model transformation preserves semantics requires different expertise.

In general, to bridge a semantic gap when transforming models from one
formalism into another, it first has to be identified. Therefore, two steps should be
taken. First, the semantics of the source and the target formalism should be well
understood. Second, additional requirements on the (static) semantics should be
made explicit. When bridging the semantic gap is not a straightforward affair, it
is advisable to address a simplified version of the source metamodel first. Another
possibility is first to relax the semantic requirements on the transformation. It
can also be that the semantic gap is simply too large to be bridged at all.

We have used the term rewriting system ASF+SDF to implement a transfor-
mation from ACP without encapsulation to UML state machines. This required
us to define metamodels for both ACP and UML state machines. We have created
a metamodel for ACP and for UML state machines without history mechanism.
The modular implementation of our transformation has proven to be useful for
decreasing the complexity. Moreover this benefits reuse, extensibility, maintain-
ability, and testability of the implementation.

Using the CASE tool Telelogic Rhapsody we can generate code to execute the
acquired UML state machine and action dispatcher. In this way the execution
of an ACP model can be simulated. Since our transformation preserves most
structure of ACP models, UML tools can be used for visualizing this structure.

We performed several case studies using our implementation to illustrate our
transformation of ACP models into UML state machines.

6.2 Directions for Further Research

We have considered ACP without the encapsulation operator (∂). The next thing
to consider is the transformation of the encapsulation operator. This makes the
semantic gap even larger. The encapsulation operator prevents certain actions
from being executed, which cannot be expressed in a state machine. This re-
quires an extension of the action dispatcher such that it forbids the execution
of encapsulated actions. Moreover, the alternative composition is no longer non-
deterministic. In ACP the alternative composition of an encapsulated and a non-
encapsulated action, e.g. ∂{a}(a)+ b, rewrites to the non-encapsulated action (b)
only. In a structure preserving state machine, care has to be taken that the se-
lection of a branch with an encapsulated action is prevented to avoid unwanted
deadlocks. This gets even more delicate when an action cannot be executed itself
but can communicate with another action.

74 M.F. van Amstel et al.

Acknowledgements. This work has been carried out as part of the FALCON
project under the responsibility of the Embedded Systems Institute. This project
is partially supported by the Netherlands Ministry of Economic Affairs under
the Embedded Systems Institute (BSIK03021) program.

We would like to thank the anonymous reviewers for their comments which
helped us improving an earlier version of this paper.

References

1. FALCON, http://www.esi.nl/falcon/
2. van Amstel, M.F., van de Plassche, E., Hamberg, R., van den Brand, M.G.J.,

Rooda, J.E.: Performance analysis of a palletizing system. SE Report 2007-09, De-
partment of Mechanical Engineering, Eindhoven University of Technology (2007)

3. Baeten, J.C.M.: A brief history of process algebra. Theoretical Computer Sci-
ence 335(2–3), 131–146 (2005)

4. Object Management Group: Unified Modeling Language: Superstructure specifica-
tion, version 2.1.1. Document – formal/2007-02-05, OMG (2007)

5. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes. In: de Bakker,
J.W., Hazewinkel, M., Lenstra, J.K. (eds.) Proceedings of the CWI Symposium.
CWI Monographs, vol. 1, pp. 89–138. Centre for Mathematics and Computer Sci-
ence, North-Holland (1986)

6. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical
Computer Science, vol. (18). Cambridge University Press, Cambridge (1990)

7. van Beek, D.A., Man, K.L., Reniers, M.A., Rooda, J.E., Schiffelers, R.R.H.: Syntax
and semantics of timed Chi. CS-Report 05–09, Department of Computer Science,
Eindhoven University of Technology (2005)

8. Groote, J.F., Mathijssen, A., Reniers, M., Usenko, Y., van Weerdenburg, M.:
The formal specification language mCRL2. In: Brinksma, E., Harel, D., Mader,
A., Stevens, P., Wieringa, R. (eds.) Methods for Modelling Software Systems
(MMOSS). Number 06351 in Dagstuhl Seminar Proceedings, Internationales
Begegnungs- und Forschungszentrum fuer Informatik (2007)

9. Nicollin, X., Sifakis, J., Yovine, S.: From ATP to timed graphs and hybrid systems.
Acta Informatica 30(2), 181–202 (1993)

10. Pardo, J.J., Valero, V., Cuartero, F., Cazorla, D.: Automatic translation of a
timed process algebra into dynamic state graphs. In: Proceedings of the 8th Asia-
Pacific Conference on Software Engineering, pp. 63–70. IEEE Computer Society,
Los Alamitos (2001)

11. Cerone, A.: From process algebra to visual language. In: Lakos, C., Esser, R., Kris-
tensen, L.M., Billington, J. (eds.) Proceedings of the 23rd Conference on Applica-
tion and Theory of Petri Nets. Conferences in Research and Practice in Information
Technology, vol. 12, pp. 27–36. Australian Computer Society (2002)

12. Bortnik, E.M., Mortel-Fronczak, J.M., Rooda, J.E.: Translating χ models to UP-
PAAL timed automata. SE Report 2007-06, Department of Mechanical Engineer-
ing, Eindhoven University of Technology (2007)

13. Pintér, G., Majzik, I.: Program code generation based on UML statechart models.
Periodica Polytechnica 47(3–4), 187–204 (2003)

14. Niaz, I.A., Tanaka, J.: Code generation from UML statecharts. In: Hamza, M.H.
(ed.) Proceedings of the 7th IASTED International Conference on Software Engi-
neering and Applications, pp. 315–321. ACTA Press (2003)

http://www.esi.nl/falcon/

Transforming Process Algebra Models into UML State Machines 75

15. Crane, M.L., Dingel, J.: UML vs. classical vs. Rhapsody statecharts: Not all models
are created equal. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS,
vol. 3713, pp. 97–112. Springer, Heidelberg (2005)

16. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Infor-
mation and Control 60(1–3), 109–137 (1984)

17. Baeten, J.C.M., Basten, T., Reniers, M.A.: Algebra of communicating processes.
Lecture notes (DRAFT) (2005)

18. Thompson, K.: Regular expression search algorithm. Communications of the
ACM 11(6), 419–422 (1968)

19. Object Management Group: Meta Object Facility MOF 2.0/XMI mapping speci-
fication, version 2.1. Document – formal/05-09-01, OMG (2005)

20. ArgoUML v0.24 (Viewed January 2008), http://argouml.tigris.org/
21. Telelogic Rhapsody 7.1.1 (Viewed January 2008), http://modeling.telelogic.

com/products/rhapsody/index.cfm
22. van den Brand, M.G.J., van Deursen, A., Heering, J., de Jong, H.A., de Jonge, M.,

Kuipers, T., Klint, P., Moonen, L., Olivier, P.A., Scheerder, J., Vinju, J.J., Visser,
E., Visser, J.: The ASF+SDF meta-environment: A component-based language
development environment. In: Wilhelm, R. (ed.) CC 2001 and ETAPS 2001. LNCS,
vol. 2027, pp. 365–370. Springer, Heidelberg (2001)

23. van Deursen, A.: An overview of ASF+SDF. In: van Deursen, A., Heering, J., Klint,
P. (eds.) Language Prototyping: An Algebraic Specification Approach. AMAST
Series in Computing, vol. 5, pp. 1–29. World Scientific, Singapore (1996)

http://argouml.tigris.org/
http://modeling.telelogic.
com/products/rhapsody/index.cfm

	Transforming Process Algebra Models into UML State Machines: Bridging a Semantic Gap?
	Introduction
	Related Work
	Transforming ACP Models into UML State Machines
	Algebra of Communicating Processes
	Transformation
	Semantic Gap
	Action Dispatcher

	Implementation
	Illustration
	Conclusion and Further Research
	Conclusions
	Directions for Further Research

