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Abstract

Gene expression measurements have successfully been used for building prognostic signatures, i.e for identifying a short list
of important genes that can predict patient outcome. Mostly microarray measurements have been considered, and there is
little advice available for building multivariable risk prediction models from RNA-Seq data. We specifically consider
penalized regression techniques, such as the lasso and componentwise boosting, which can simultaneously consider all
measurements and provide both, multivariable regression models for prediction and automated variable selection.
However, they might be affected by the typical skewness, mean-variance-dependency or extreme values of RNA-Seq
covariates and therefore could benefit from transformations of the latter. In an analytical part, we highlight preferential
selection of covariates with large variances, which is problematic due to the mean-variance dependency of RNA-Seq data. In
a simulation study, we compare different transformations of RNA-Seq data for potentially improving detection of important
genes. Specifically, we consider standardization, the log transformation, a variance-stabilizing transformation, the Box-Cox
transformation, and rank-based transformations. In addition, the prediction performance for real data from patients with
kidney cancer and acute myeloid leukemia is considered. We show that signature size, identification performance, and
prediction performance critically depend on the choice of a suitable transformation. Rank-based transformations perform
well in all scenarios and can even outperform complex variance-stabilizing approaches. Generally, the results illustrate that
the distribution and potential transformations of RNA-Seq data need to be considered as a critical step when building risk
prediction models by penalized regression techniques.
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Introduction

RNA-Seq is a relatively new approach for measuring gene

expression by making use of next generation sequencing technol-

ogy. It produces count data having low background noise and

hence allows to detect transcripts even at low expression levels and

provides a large dynamic range in terms of fold-changes [1,2].

Furthermore, RNA-Seq can detect and quantify alternative

splicing and previously unknown transcripts [3–6]. Therefore,

RNA-Seq is on its way to replace the microarray technology,

which has been widely used in the last decades.

Gene expression measurements from microarrays have often

been used for building prognostic gene signatures, i.e. a small set of

genes that can predict the clinical outcome of patients.

Correspondingly, it is attractive to also use RNA-Seq data for

such a task, but the highly skewed nature of the latter might pose

difficulties. In the following, we focus on regularized regression

techniques for building signatures from RNA-Seq data, as these

simultaneously consider all RNA-Seq measurements, can provide

automated selection of important genes, and have generally been a

popular class of multivariable approaches for microarray gene

expression data. For a more general overview of such approaches,

see e.g. Binder et al. [7] and for a comparison of the most common

methods see Bøvelstad et al. [8] or van Wieringen et al. [9]. We

will specifically consider the lasso [10] and componentwise

likelihood-based boosting [11,12] as representative approaches

for regularized regression with variable selection.

The aim of this work is to investigate which specific properties of

RNA-Seq data, such as skewness, mean-variance dependency and

extreme values, influence model building with these approaches.

In particular, we systematically investigate transformations of the

RNA-Seq measurements to increase the performance of the

models, with respect to identification of important genes and

prediction performance.

While there is hardly any advice for multivariable regression

modeling with RNA-Seq data, a multitude of univariate testing

techniques have been developed [13–20] and software tools

offering in addition graphical evaluations have become available,

see e.g. [21]. Most of the methods model the count data using a

Poisson or negative-binomial distribution. A main difference

between the methods is how they estimate the variances and

dispersion parameters, specifically in the context of small sample

sizes. Most frequently used methods include edgeR [13] and

DESeq [14], both assuming a negative binomial distribution.

DESeq includes a variance-stabilizing transformation (VST), to

account for the different variances for the individual genes before

applying a test for differential expression (DE), that might also be

useful as a first step before multivariable modeling. The SAMSeq
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method introduced by Li and Tibshirani [16] deals with the

extreme values using a nonparametric rank test. NOISeq [17] is

another approach which uses nonparametric tests on log2-fold

changes. Correspondingly, we will also consider rank-based

approaches for regularized regression. While we consider ideas

from univariate approaches for improving multivariable modeling,

we will not consider a comparison of univariate and multivariable

approaches, as these two classes of techniques have different aims.

For a recent comparison of the most frequently used univariate

methods see, e.g., Soneson et al. [22]. Naturally, we cannot

exhaustively investigate potential transformations, which even

might have been suggested outside RNA-Seq applications. For

example, a pre-transformation was proposed by Boulesteix et al. in

the context of microarray data [23], and might potentially also be

adapted for RNA-Seq data.

Besides transformations, such as using the VST or ranks, the

variances of covariates are a critical issue for regularized regression

techniques. Often, standardizing gene expressions is implemented

as a default in software packages. For other kinds of molecular

measurements, such as single nucleotide polymorphism data,

standardization has not always be found to be advantageous [24].

Therefore, we also consider the performance implications of

standardization for RNA-Seq data. Naturally, standardizing of

covariates depends on estimation of variances, which might again

be problematic for RNA-Seq data due to the skewness, the mean-

variance-dependency of count data, and the presence of extreme

values. As the latter issues already might be addressed by the

transformations indicated above, we will consider standardization

jointly with different kinds of transformation for judging the

resulting performance.

In this work we propose a set of different data transformations of

RNA-Seq data that can be applied before building a prognostic

gene signature for binary endpoints and time-to-event endpoints.

Transforming the data can be used to account for mean-variance

dependencies and extreme values, both typical for RNA-Seq data.

We compare the resulting gene signatures in terms of sensitivity,

specificity and prediction performance using a simulation study in

which we focus on a binary endpoint and componentwise

likelihood-based boosting. As we are not only interested in binary

endpoints and boosting, we will apply all transformations on two

different real RNA-Seq data sets of patients in which we focus on

time-to-event endpoints and boosting as well as the lasso. One data

set is from patients with kidney renal clear cell carcinoma and the

other from patients with acute myeloid leukemia. In the latter

settings, we will use the gene signature to predict the survival times

of the patients adjusting for known clinical covariates. Within these

application examples we will have a close look on the individual

differences of the gene signatures emerging from the different

transformations including signature size, variance of selected genes

and prediction performance given by the added value compared to

a prognostic model only including the clinical covariates.

The rest of this work is organized as follows. We will first

introduce the application examples with kidney renal clear cell

carcinoma (KIRC) data and acute myeloid leukemia (AML) data

to further motivate this work and highlight some important

properties of real RNA-Seq data. In the subsequent section we will

show analytically how the variance of covariates affects the gene

selection process with regularized regression techniques. We then

provide a simulation study to investigate the effect of transforma-

tions and standardization on identification of genes. The

simulation study considers a binary response, e.g. reflecting a

two-group setting with a logistic regression model, and is based on

the covariate structure of the KIRC application to simulate

realistic conditions, including different expression strengths with

different variances, skewed data, extreme values and correlations.

Following the results of this simulation study we will give detailed

results on both real data application to the KIRC and AML data,

where time-to-event endpoints with a Cox regression model are

considered.

Materials

2.1 Kidney renal clear cell carcinoma (KIRC) data
As a first application example, we consider RNA-Seq data from

patients with kidney renal clear cell carcinoma (KIRC), available

from The Cancer Genome Atlas (TCGA) project (website:

https://tcga-data.nci.nih.gov/tcga/). RNA-Seq data is available

for 470 patients. We excluded five patients because their RNA-Seq

data were available twice with different expression values, and one

further patient due to an unknown survival time. Genes having a

maximum number of 10 counts were excluded as they showed

almost no expression (625 genes). After this preprocessing, we

normalized the raw counts between the patients using the DESeq

normalization proposed by Anders and Huber [14]. Genes with

unknown gene length were excluded (n= 680), because there

might be gene length effects [25] and we need them later in the

simulation study. Extreme values were truncated at the median

gene expression plus three times the interquartile range per gene,

which is similar to the pre-transformation suggested by Boulesteix

et al. for microarray data [23]. After these preprocessing and

normalization steps we end up with 464 patients with known

survival times and RNA-Seq data for 19,227 genes. The median

overall survival time for this patient cohort is 6.3 years, 3-year and

5-year overall survival rates are estimated to be 74%+2% and

61%+3%. In addition to the survival times there is some clinical

information available, e.g. age at diagnosis, sex or tumor stage.

This calls for an analysis that can quantify the added value of using

RNA-Seq in addition to the clinical characteristics for prognosis,

i.e. for a multivariable risk prediction approach, as provided by

regularized regression.

Having a closer look on the RNA-Seq expression data from the

KIRC patients, we can see that genes having larger mean

expression values do also have larger variances (figure 1A). If we

randomly select one of the genes (marked in red in figure 1A) and

look at the individual expression values for this gene, we can see

that they are not normally distributed but skewed (figure 1B). Both

is due to the fact that RNA-Seq produces count data. Count data

are known to follow a skewed distribution and have the property

that the variance depends on the mean value (just remember the

Poisson distribution for which the variance is exactly given by the

mean). Furthermore, we can see that RNA-Seq produces some

extreme values. They can be much more extreme than the one in

figure 1 B. The results of multivariable modeling will critically

depend on correlations between covariates. Figure 1C illustrates

the effect of the extreme values on correlation. On the x-axis we

have the thousand largest gene-gene correlations calculated

without prior truncation and on the y-axis we have the same

gene-gene correlations but calculated after truncation. We can see

that extreme values lead to correlation estimates of 0.99 or larger,

although there is no or even negative correlation for the truncated

data. As indicated above, we use truncated measurements in this

paper, to avoid problems arising from the extreme values.

2.2 Acute myeloid leukemia (AML) data
As a second application example, we consider RNA-Seq data

from patients with acute myeloid leukemia (AML), also available

from the TCGA website. There are 200 patients with clinical data

available and 182 of them have RNA-Seq measurements. We

RNA-Seq Data in Prognostic Gene Signatures
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excluded 13 additional patients due to unknown survival times.

For the RNA-Seq expression data we followed the same

preprocessing, normalization and truncation steps as for the

KIRC data and end up with 169 patients and 18,714 genes. The

median overall survival time for these patients is 1.3 years, 1-year

and 3-year overall survival rates are estimated to be 56%+4% and

30%+4%. In addition, we have information on some clinical

covariates including age at diagnosis and sex. For AML it is known

that gene FLT3 is a very strong predictor of overall survival, see

Bullinger et al. [26]. Standardization of covariates might have a

different result in this setting with at least one strong signal.

Methods

3.1 Effects of covariate variance in regularized regression
In this section we analytically highlight how covariates with

different variances influence the model building process in

regularized regression approaches. In the following we briefly

describe the prominent types of regression models where

regularized regression techniques are used, namely generalized

linear models and the Cox proportional hazards model.

In generalized linear models, there is a response yi, which

might, e.g., be continuous, binary, or a counting response, and a

covariate vector xi~(xi1, . . . ,xip)
T , containing p covariates, such

as RNA-Seq measurements and clinical characteristics, for each

patient i~1, . . . ,n. The structural part of a generalized linear

model then is given by

E½Y Dxi�~g(b0zxTi b),

where Y is the random variate corresponding to the response, g is

a known response function, depending on the type of the response,

b0 is an intercept term, and b~(b1, . . . ,bp)
T is a parameter vector

of length p, which can be estimated by maximizing the log-

likelihood l(b) if pvn.

In a time-to-event setting, observations often are given by an

observed time ti, a binary variable di that indicates whether an

event has occurred at time ti, and a covariate vector xi. The Cox

proportional hazards model is given by

h(tDxi)~h0(t) exp (x
T
i b),

where h(tDxi) is the instantaneous risk of experiencing an event at

time t given covariate information xi and survival up to time t.

The baseline hazard h0(t) does not need to be estimated, and an

estimate of the parameter vector b can be obtained by maximizing

a partial log-likelihood, also denoted by l(b) in the following, if p is

smaller than the number of events.

In the following, we investigate the effect of differences in

variance between covariates for componentwise likelihood-based

boosting and penalized likelihood-approaches.

3.1.1 Componentwise likelihood-based boosting. Likelihood-

based boosting transfers the idea of stagewise regression [27] to

generalized linear and additive models [11,28] and to the Cox

proportional hazards model [12]. At the same time, it provides

a link to gradient boosting [29], which adapts a popular

approach from the machine learning community.

Componentwise likelihood-based boosting starts with an esti-

mated parameter vector b̂b(0) equal to zero, and updates its

elements in a large number of boosting steps. In each step,

candidate models are fitted, one for each covariate, and the

covariate corresponding to the best candidate model is selected for

an update. For generalized linear models, the candidate models in

step m have the form of

E½Y Dxij �~g(b0zĝg(m{1)
zc

(m)
j xij) j~1, . . . ,p,

where ĝg(m{1)
~xTi b̂b

(m{1) incorporates the information from the

previous boosting steps, and the parameters c
(m)
j are estimated by a

penalized log-likelihood lpen(c
(m)

j� )~l(c
(m)

j� )zl(c
(m)

j� )2. The element

of the estimated parameter vector corresponding to the best

candidate model j� is updated by b̂b
(m)

j� ~b̂b
(m{1)

j� zĉc
(m)

j� . Estimates

for the Cox proportional hazards model are obtained in a similar

way. For both types of models, generalized linear models and the

Cox model, the best candidate model can be determined by a

penalized score test statistic

(U(c
(m)
j ))2

Ipen(c
(m)
j )

,

where U(c) is the score function, and Ipen(c) is the penalized

version of the Fisher information. In a continuous response setting

with orthogonal covariates, this results in estimates equivalent to

Figure 1. RNA-Seq of KIRC data. A: Scatterplot for all DESeq-normalized counts: Mean vs. variance. The larger the mean value, the larger the
variance. The red dot is a randomly chosen gene called B3GNT3. B: Histogram of DESeq-normalized counts for gene B3GNT3. The distribution is
skewed and has extreme values. C: 1000 highest gene-gene correlations for the original data compared to the same gene-gene correlations for data
in which we truncated the extreme values.
doi:10.1371/journal.pone.0085150.g001
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those from the lasso [27]. More generally, for the continuous

response setting and centered covariates, this penalized score

statistic takes the form

(yxT:j )
2

x:jx
T:jzl

~

v2j (yz
T
:j )

2

v2j (z:jz
T:jzlv{2

j )
,

where y is the row vector of response, x:j is a row vector containing

all observations for covariate j, and z:j contains the standardized

covariates with vj being the standard deviation of covariate j.

From this it is seen that scaling of covariates would cancel out if

the penalty parameter l in the denominator was equal to zero. For

non-zero l, covariates with larger variance receive a smaller

penalty, resulting in larger score statistics and therefore likely

selection and larger updates. This has two effects: First, genes with

large variances will be selected more often. Second, for the selected

genes with large variances there will be less shrinkage of the

parameter estimate compared to genes with smaller variances. The

first aspect is much more important in high-dimensional data

settings, because we are often more interested in selecting

differentially expressed genes than in the estimates themselves.

However, the parameter estimates gain importance in settings in

which we build prognostic signatures to predict patient outcomes.

In a continuous response setting, i.e. a generalized linear model

with identity link, componentwise likelihood-based boosting is

equivalent to stagewise regression [27]. The latter can provide

solutions similar to the lasso, which even are equivalent when

infinitesimally small steps are used in a setting with orthogonal

covariates. This indicates that the variance dependence of

componentwise likelihood-based boosting also transfers to the

lasso.

3.1.2 Ridge regression. While componentwise likelihood-

based boosting or the lasso provide sparse solutions, ridge

regression [30] provides regularized estimates without variable

selection, i.e. non-sparse solutions. In the following, we illustrate

the variance dependence for such kinds of regression modeling

approaches. Standardization of covariates, resulting in mean zero

and variance one for every covariate, has been recommended for

application of the ridge, and some of the implementations perform

this as a default. However, there are some authors which explicitly

do not use standardization in the context of microarray gene

expression data [31]. Efficient algorithms to compute the estimates

especially in high-dimensional settings have become available

recently, see e.g. Goeman [32].

For simplicity let us now consider a continuous response and

orthogonal, centered covariates with variance v2j , and

V~diag(v1, . . . ,vp) being a diagonal matrix of the standard

deviations. Then the unstandardized X can be represented by

X~ZV with Z~(Z1, . . . ,Zp) being the standardized covariates

having zero mean and variance one for all j. In the ordinary linear

regression without regularization and pƒn the least-squares

estimates b̂bOLS
X are just an V -multiple of the least-squares estimates

b̂bOLS
Z of the standardized covariates Z:

b̂bOLS
X ~(XTX ){1XTy~b̂bOLS

Z V{1

Correspondingly, the parameter estimates are independent of

rescaling covariates.

For obtaining estimates in the case pwn, ridge regression

[30,33] attaches a penalty term of the form l
P

j b
2
j to the (partial)

log-likelihood l(b). In ridge regression we minimize the penalized

residual sum of squares

X

n

i~1

(yi{
X

p

j~1

xijbj)
2
zl

X

p

j~1

b2j

and in the case of pƒn we obtain a closed form estimate for the

standardized variables Z:

b̂b
ridge
Z ~b̂bOLS

Z (IpzlIp)
{1

For the unstandardized covariates X we obtain

b̂b
ridge
X ~b̂bOLS

Z (IpzlV{1){1V{1
=b̂b

ridge
Z V{1: ð1Þ

In the special case that the variances for the unstandardized

covariates X are all equal, vj~v1 for all j~2, . . . ,p, we have

V~v1Ip. Then, in equation (1), the first occurrence of V{1 can be

absorbed into the penalty term l. If we use the penalty l for the

standardized Z9s and the penalty v1l for the non-standardized X 9s

we will arrive at b̂b
ridge
X ~v{1

1 b̂b
ridge
Z , leading to the result for the

ordinary least-squares estimates. Going back to the more general

case of covariates X having unequal variances with vj=v0j for

j=j’, we can still absorb the diagonal matrix V{1 into the

penalization term l, but this leads to individual penalty terms

lj~l=vj which depend on the variances of the individual

covariates. Hence, covariates having larger variances will be

penalized to a smaller degree than covariates with smaller

variances. This results in the ridge regression preferring covariates

having large variances.

3.2 Transformations of RNA-Seq data
As seen in the KIRC data, data coming from RNA-Seq have

three problematic properties, namely a skewed distribution,

unequal variances for the individual genes and the presence of

extreme values. In the following we propose to transform RNA-

Seq data before applying a regularized regression approach to

potentially deal with all these properties. We compare the use of

the untransformed data with several different transformations. The

transformations can be separated into three classes: transforma-

tions not including standardization of covariates, transformations

including standardization of covariates and non-parametric

transformations. Each of the transformations tries to handle either

one, two or all of the three problematic properties. Table 1 gives a

summary of all transformations considered and Figure 2 gives a

histogram for the gene expression of gene B3GNT3 for each of the

considered transformations.

3.2.1 Naive analysis. The naive way of analyzing RNA-Seq

data in regularized approaches is to use the normalized counts

without further transformation. We will call the normalized, but

untransformed counts xij . For the xij we have skewed distribu-

tions, unequal variances and some extreme values.

3.2.2 Log transformation. In ordinary regression analysis,

the log transformation is often used for covariates with skewed

distribution, and so might also be useful for RNA-Seq data. The

log-transformed data are expected to be more or less normally

distributed, depending on the degree of skewness before transfor-

mation. As the normalized counts xij can be equal to zero, we shift

them by one before log-transforming them, i.e.

RNA-Seq Data in Prognostic Gene Signatures
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x
log
ij ~ log (xijz1):

For RNA-Seq data this does not lead to perfectly shaped normal

distributions (see figure 2), but the distribution is typically less

skewed than before transformation. The log-transformed data

have less extreme values compared to the untransformed data, but

they still have unequal variances for the covariates.

3.2.3 Variance-stabilizing transformation. Anders and

Huber [14] proposed a variance stabilizing transformation for

RNA-Seq data, which is implemented in the R package DESeq.

Variance stabilizing transformations are used to obtain covariates

with variances independent of the mean value. Anders and Huber

model the relationship between the mean expression values mj and

Figure 2. Transformed expression data for gene B3GNT3.
doi:10.1371/journal.pone.0085150.g002

Table 1. Transformations for RNA-Seq data.

Transformation Skewness Unequal variances Extreme values

Naive – – –

Logs (!) – !

Variance stabilizing – (!) !

Box-Cox (!) – !

Standardizing – ! –

Standardizing logs (!) ! !

Standardizing variance stabilizing – ! !

Standardizing Box-Cox (!) ! !

Ranks ! ! !

Blom ! ! !

Proposed transformations for RNA-Seq data. A check mark is given in the columns skewness, unequal variances or outliers, if the transformation is addressing the
corresponding problem. The last column shows the transformed distribution of gene B3GNT3 as an example.
doi:10.1371/journal.pone.0085150.t001
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the variances s2j by s2j ~mjzajm
2
j ~ : v(mj), with aj~a0za1=mj

being a dispersion parameter and a0 and a1 are estimated in a

generalized linear model. Details can be found in the vignette of

the R-package. The variance-stabilized expression values can be

calculated using the modeled mean-variance relationship

xvstij ~

ðxij

0

1

v(mj)
dmj :

The variances for the transformed data are approximately

independent of the mean value, but they are still unequal for all

genes. The variance stabilized counts have a less skewed

distribution but may include extreme values.

3.2.4 Box-Cox transformation. The Box-Cox transforma-

tion is a class of power transformations which has been developed

to transform data in such a way that they satisfy the normality

assumption [34]. The Box-Cox transformed gene expression

values are defined as

xBox{Cox
ij ~

(xijz1)
lj{1

lj
forlj=0

log (xijz1) forlj~0

8

<

:

where lj is a tuning parameter for gene j that can be optimized in

a way that the distribution of the transformed data has the largest

similarity to a normal distribution. There are several proposals to

optimize l, see e.g. [35], we have chosen the optimality criterion as

a maximum Pearson correlation within the QQ-plot for the

transformed data. We optimize lj for gene j as a multiple of 0:5
within the interval ½{3,2�. For all &20,000 genes of the KIRC

and the AML data, &50% of the times lj~0 and therewith the

log transformation has been chosen, &40% of the lj ’s were equal

to 0:5 or {0:5 and 8% of the times the algorithm has chosen a lj
smaller than {0:5. For only 2% of the genes, the algorithm led to

a value of lj~1 for which the Box-Cox transformation equals the

identity. These 2% were mainly very high expressed genes having

no extreme values. The Box-Cox-transformed expression values

do not guarantee normality although the data should be less

skewed and should have less extreme values than before

transformation.

3.2.5 Standardization. Standardizing the covariates is the

default implementation in many regularized regression techniques.

A gene-wise standardization of the expression values contained in

a covariate Xj is obtained by:

xstij~
xij{m̂mj

ŝsj
,

with estimated mean value m̂mj and estimated standard deviation ŝsj .

This transformation leads to empirical zero mean and variance

one for each gene j~1, . . . ,p. The distributions of the standard-

ized covariates retain their skewness and still might include

extreme values. The degree of skewness is different for different

genes.

3.2.6 Standardized logs. The standardized log transforma-

tion is a combination of log transformation and standardization.

We standardize the log-transformed values by their estimated

mean m̂m
log
j and standard deviation ŝs

log
j ,

x
log:st
ij ~

x
log
ij {m̂m

log
j

ŝs
log
j

:

Again this does not result in perfect normal distributions, but

the transformed data typically are less skewed, have less extreme

values and have exactly mean zero and variance one for all genes.

The standardized logs therefore potentially address all three

problematic properties of RNA-Seq data.

3.2.7Standardizedvariance-stabilizingtransformation. The

standardized variance-stabilizing transformation is a combina-

tion of the variance-stabilizing transformation and standardiza-

tion. We standardize the variance-stabilized values by their

estimated mean m̂mvstj and standard deviation ŝsvstj :

xvst:stij ~
xvstij {m̂mvstj

ŝsvstj

:

This leads to empirical mean zero and variance equal to one for

all genes.

3.2.8 Standardized Box-Cox transformation. The stan-

dardized Box-Cox transformation is a combination of Box-Cox

transformation and standardization. We standardize the Box-Cox

transformed values by their estimated mean m̂mBox{Cox
j and

standard deviation ŝsBox{Cox
j ,

xBox{Cox:st
ij ~

xBox{Cox
ij {m̂mBox{Cox

j

ŝsBox{Cox
j

:

The standardized Box-Cox transformed data are less skewed,

have less extreme values and have exactly mean zero and variance

one for all genes.

3.2.9 Ranks. Working with ranks is a simple and popular

method used in non-parametric statistics. Correspondingly, we

consider

xranksij ~ranki~1,...,n(xij):

The ranks are uniformly distributed from zero to the sample size

n. Hence, the ranks lead to exactly the same distribution for all

genes, which directly leads to exactly equal means and variances

for all genes. There are no extreme values in the transformed data.

This transformation potentially addresses all considered problems

of RNA-Seq data, although the resulting distribution is not

normal. For genes with very low expression, i.e. with many zero

counts, a small noise term eij might be added before data

transformation to handle the ties.

3.2.10 Blom transformation. Recently, the Blom transfor-

mation has been used in genetic association studies [36]. The

Blom transformation is a rank-based transformation, which back-

transforms the uniformly distributed ranks to a standard normal

distribution, i.e.

xblomij ~W
{1 ranki~1,...,n(xij){c

n{2cz1

� �
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with c = 3=8. The Blom transformed data have a standard normal

distribution, which results in empirical mean zero and variance

one for all genes. There are no extreme values in the transformed

data. The difference to the rank transformation is just the type of

resulting distribution. For a gene with very low expression, i.e. with

many zero counts, a small noise term eij might be added to handle

the ties.

3.3 A simulation study
In order to compare the behavior of the transformations under

realistic assumptions, we decided to perform simulations with

covariate structure based on a real RNA-Seq dataset, specifically

the KIRC data described above. So we do not need to specify an

underlying distribution for the RNA-Seq data, which may in

reality fit neither poisson nor negative binomial. Based on the real

RNA-Seq data we simulate a binary patient outcome, which will

be described in more detail in the following.

We included the real RNA-Seq expression measurements xij of

all 465 patients of the KIRC data set and all 19,227 genes. Apart

from the preprocessing and normalization steps described above,

we did not change any of the RNA-Seq measurements. So we

have skewed RNA-Seq data with a mean-variance-dependency

not relying on any specific distribution. Furthermore, the genes are

correlated and include a realistic number and size of extreme

values. The real clinical data and survival times have not been

used in the simulation study.

To simulate a binary outcome Yi~0,1 for each patient i, we

calculated the linear predictor for each patient i as

X

19,227

j~1

bjxij ð2Þ

where bj denotes the true effect of gene j on the simulated

outcome. As we assume sparsity, we randomly selected only a

subset S5f1, . . . ,19227g of size 10 (in a second scenario 20)

different genes to have non-zero effects bj=0. The non-selected

genes have no impact on the outcome and therewith bj~0 for

j 6[S. In order to have the informative genes over the whole range

of gene lengths, we first ordered the genes according to their length

and then divided them in either 10 or 20 equally large bins. In

every bin we randomly selected one gene to be the one with

impact on the outcome and so to have a non-zero true parameter

value bj=0. We have chosen equal effect sizes in the scenario with

10 informative genes, bj~b10 for all j[S, and have chosen b10 to

result in an approximate signal-to-noise ratio of 2.5. The signal-to-

noise ratio was defined as

Pn
i~1 (P(yi~1){�yy)2

Pn
i~1 (P(yi~1){yi)

2

with �yy~ 1
n

Pn
k~1 P(yk~1). In the second scenario, in which we

assumed 20 informative genes, we again assume equal effect sizes

bj~b20 for all j[S and a signal-to-noise-ratio of 2.5. This results in

more genes having smaller individual effect sizes b20vb10,

although the overall signal-to-noise ratio is maintained.

In a first run of simulations we assumed that the DESeq-

normalized counts xij have a linear effect on the patient outcome,

as indicated in the linear predictor in equation (2). Using the

logistic regression model we calculated the probability to be a case

for patient i:

P(yi~1)~
exp

P19,227
j~1 bjxij

1z exp
P19,227

j~1 bjxij

To end up with a binary patient outcome we used a bernoulli-

distributed random variable with probability pi~P(yi~1) to

decide if patient i will be a case (yi~1) or will be a control (yi~0).

After this procedure we have real RNA-Seq data and a simulated

binary patient outcome depending on a known subset of genes S.

We repeated the choice of the subset of informative genes S 50

times and obtained 50 datasets of the matrix with RNA-Seq data

and the vector of case/control-indicators y~(y1, . . . ,y465) for

analysis.

For each of the 50 data sets, a logistic regression model is fitted

by componentwise likelihood-based boosting. As covariates for this

regression model, we consider the DESeq-normalized counts in

the model without transforming them further (naive analysis), and

all other transformations indicated above. For the ranks and the

Blom-transformation we added a small eij before transformation to

handle the ties. eij was drawn form a normal distribution with

mean zero and standard deviation 0:0001. We used the penalty

term l~(1=0:1{1)n which roughly corresponds to the factor 0.1

typically used in gradient boosting. All models were built up to 500

boosting steps.

In a second run of simulations, we assumed a logarithmic effect

of the gene expressions xij on the patient outcome. In this case, the

linear predictor in equation (2) was calculated using the log-

transformed counts log (xijz1):

X19,227

j~1
bj log(xijz1)

The influence of outliers is decreased in this logarithmic setting,

which may seem to be reasonable.

Results

4.1 Simulation study
For all 50 simulation runs we calculated a ROC-like curve in

which we have the number of false positive genes on the x-axis, i.e.

genes with true parameter equal to zero that have nevertheless

been assigned a non-zero estimate by the boosting approach, and

the number of true positive genes on the y-axis. The area under

this curve from zero up to ten false positive genes can be

interpreted as the mean number of true positives within ten or less

false positive genes. Figure 3 displays the area under the curve for

all transformations. The panel at the top (A and B) provides results

from the scenarios where the DESeq-normalized counts have a

linear effect on the outcome while the panel at the bottom (C and

D) provides the results from scenarios with logarithmic true effect

in the linear predictor of the generating logistic regression model.

The left panel of Figure 3 indicates the results from scenarios with

10 informative genes, the right panel with 20 informative genes.

In the scenarios with a linear effect, the four transformations

that do not include standardization (naive, logarithmic, variance-

stabilizing and Box-Cox) have overall worse performance than the

transformations including standardization and the non-parametric

ones. The variance stabilizing transformation which tries to

capture and make use of the distribution of the underlying data,

performs worse than the naive analysis, which may be explained

by the fact that it tries to estimate a gene’s variance using
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information of similar genes. This is helpful in settings with very low

sample sizes but in the setting of prognostic gene signatures, in

which one normally has plenty of samples, this will lead to more

biased results than estimating the variance just using the informa-

tion of the particular gene. Standardizing means and variances

increases the mean true positive rate, regardless of the specific

transformation by which the standardization of variances has been

achieved. Standardization via the variance stabilizing transforma-

tion is not performing better than standardization of the original

scale or the log-scale and the non-parametric transformations

achieve similar performance compared to the approaches using

standardization. Increasing the number of informative genes from

10 to 20, while not changing the signal-to-noise ratio, does not affect

the overall performance or the ranking of the transformations.

The bottom panels of Figure 3 indicate the area under the curve

for the scenarios with logarithmic effects of the RNA-Seq data on

the patient outcome. The overall performance is better compared

to the scenarios with linear true effects, although the signal-to-

noise ratio is the same. Logarithmic true effects decrease the

influence of extreme values and this seems to result in a less

difficult modeling problem. Interestingly, standardizing the

original scale of the covariates, which is the default of most

implemented regularized regression techniques, performs poor.

This is because this transformation mis-specifies the association

between expression data and outcome. This results in performance

that is even worse than the naive analysis. The rank-based

transformations perform best, followed by standardization of the

logs. Standardization of the Box-Cox transformed data, which led

Figure 3. Areas under the curve for the simulation study. A: 10 genes have a linear effect on the patient outcome. B: 20 genes have a linear
effect. C: 10 genes have a logarithmic effect. D: 20 genes have a logarithmic effect.
doi:10.1371/journal.pone.0085150.g003
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to 50% of the genes being log-transformed and 50% other power-

transformations, can not outperform standardization of the log-

transformation of all genes.

Generally, the results of the simulation study show that

standardizing the expression data has a large effect on perfor-

mance with respect to genes that truly have an effect, although

different underlying assumptions of the effects result in other

orderings of the performances of the transformations. The

performance of the standardized variance-stabilizing approach,

which is not better than using standardization of the log-scale, may

furthermore imply that RNA-Seq data are much more complex

than Poisson- or negative binomial distributions or that the

complex re-parametrization is not fully capable of handling the

extreme values. Furthermore, we find that the robustness of the

rank-based transformations cannot only compensate the lack of all

distributional assumptions, but can even outperform all other

transformations in some scenarios.

4.2 Application to real data: KIRC and AML
In the following we compare the transformations on the real

datasets of patients with kidney renal clear cell carcinoma and

acute myeloid leukemia introduced above. One main question is

whether the RNA-Seq data include additional information

concerning the survival times of the patients beyond the clinical

covariates. We analyzed the clinical covariates using forward and

backward Cox regression. For the KIRC data, four clinical

covariates showed an impact on the overall survival time, which

were age at diagnosis (continuous), laterality (the right or left

kidney), tumor stage (I vs. II vs. III vs. IV) and platelet count

(elevated vs. normal vs. low). For the AML data, two of them

showed an impact on the overall survival time, which were age at

diagnosis (continuous) and sex (female vs. male). These clinical

covariates were included as mandatory and unpenalized covariates

in a Cox model fitted either by the lasso [37] or by componentwise

likelihood-based boosting [12]. The RNA-Seq data of the 19,227

genes for the KIRC data and 18,714 genes for the AML data were

added optional and thus as regularized covariates. To obtain risk

prediction models for evaluating prediction performance, 10-fold

cross-validation was used to determine the optimal penalty

parameter l for the lasso and the optimal number of boosting

steps for componentwise likelihood-based boosting.

Table 2. KIRC data: Number of selected genes in a CoxBoost model of the KIRC data.

non-stand. stand. non-par.

naive log vst Box-Cox all st. st.log st. vst st. Box-Cox all ranks blom all

naive 113.9

(4.9)

log 1.3 44.5

(1.3) (3.9)

vst 7.0 9.3 38.3

(1.9) (2.4) (3.1)

Box-Cox 5.8 0.1 1.1 116.0

(2.0) (0.4) (0.8) 5.5)

all 0.1

(0.3)

stand. 2.0 7.3 3.2 0.9 65.6

(1.3) (2.5) (1.8) (0.8) (5.4)

stand. log 1.9 9.9 3.7 0.3 26.1 65.0

(1.1) (2.7) (1.8) (0.5) (3.4) 5.9)

stand. vst 2.0 8.4 4.0 0.3 27.0 40.0 66.6

(1.5) (2.6) (4.3) (0.5) (3.5) (4.3) (6.2)

st. Box-Cox 0.9 3.0 1.2 1.3 7.2 8.1 7.6 64.6

(1.0) (1.6) 1.1) (1.0) (2.8) (2.8) (2.9) (5.1)

all 0.0 4.1

(0.0) (1.9)

ranks 2.1 7.4 2.9 1.2 21.8 27.1 22.8 8.5 74.8

(1.2) (2.3) (1.5) (0.9) (3.4) (4.1) (4.0) (3.4) (4.8)

blom 1.3 5.6 2.0 0.8 13.8 16.8 15.3 6.8 24.9 94.2

(1.1) (2.0) (1.4) (0.9) (3.6) (3.19) (3.2) (2.4) (4.4) (5.6)

all 0.0 1.9 24.9

(0.0) (1.5) (4.4)

The transformations are separated in three blocks: those not using standardization, those using standardization and the non-parametric ones. The diagonal elements
give mean and standard deviation for the corresponding transformation. Diagonal elements called ‘‘all’’ give the number of overlapping genes for the whole block of
transformations. Non-diagonal elements show the number of overlapping genes for two transformation, the non-diagonal elements called ‘‘all’’ give the overlap
between two blocks.
doi:10.1371/journal.pone.0085150.t002
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For more detailed evaluation, we use a resampling procedure,

i.e. we randomly split the data in training and test set for a number

of 50 times, drawing t0:632ns observations without replacement

for each respective training set, and retaining the others for test

sets. Model fitting, including selection of the number of boosting

steps, was performed in each of these training data sets. Evaluating

selection for each gene across the resampling data sets then allows

to better judge the effect of different transformations, compared to

evaluation on a single data set. Furthermore, resampling data sets

allow to estimate the prediction performance for new observations.

Specifically, we consider 0.632+ prediction error curves for

judging prediction performance over the course of time [38].

To quantify the added value of a model combining RNA-Seq and

clinical data compared to a clinical model, we consider integrated

prediction error curves (IPEC), i.e. the area under the prediction

error curve. Thus, added value in the kth test data is given by

AVk
~

IPECk
clin{IPECk

comb

IPECk
clin

:

This measure of added value is zero if there is no improvement

in the prediction error, and it is negative if the prediction

performance of the combined model is worse than that of the

clinical model. For combined models which improve the

prediction performance the added value is in (0,1� and can be

interpreted as the proportion of prediction error of the clinical

model that could be eliminated using the combined model.

To have a closer look on the characterization of selected genes,

we build up a model up to 200 steps for the KIRC data. The

models with 200 boosting steps will certainly be overfitted, i.e. will

include too many genes, but this will allow more stable

characterization of the selected genes, e.g. when considering their

median variance. We used the DESeq-normalization before

transforming the data.

4.2.1 Characterization of selected genes in the KIRC

data. Table 2 shows means and standard deviations of the number

of selected and overlapping genes in 50 resampling datasets in which

we used componentwise likelihood-based boosting with 200 steps. We

can see that the overlap between the four transformations not

including standardization (naive, log, variance-stabilizing, Box-Cox) is

very small: less than 1 out of 40-100 genes has been selected by all four

transformations. The four transformations using standardization (of

the original scale, of the log-scale, of the variance-stabilized data or of

the Box-Cox-transformed data) select approximately 65 genes and

have a larger overlap of approximately 4 selected genes. The two rank-

basedmethods select approximately 80 genes and have an overlapping

proportion of about one third. This may imply that standardization

itself is more important than the exact distribution used for

standardization. The overlap between the rank-based transformations

and those using standardization is larger than the overlap between the

rank-based ones and those not using standardization (1.9 vs 0.0).

Figure 4 shows the number of selected genes plotted against the

median variance of the selected genes in 50 resampling datasets,

where the number of boosting steps was selected via 10-fold cross-

validation. We can see that in a model which already includes

some genes with large variances, the boosting algorithm stops early

and the final model includes a small number of genes. In a model

where the majority of genes have small variances, the algorithm

proceeds and allows a larger number of genes to be included in the

final model. Such a pattern is seen for all the transformations,

although the transformations not using standardization generally

incorporate genes with larger variances over the whole range of

numbers of selected genes.

4.2.2 Prediction performance in the KIRC and AML

data. The 0.632+ prediction error curve estimates, calculated

over all 50 resampling data sets, is shown for each of the proposed

transformations in Figure 5. The upper panel gives the prediction

error for the KIRC data and the lower panel for the AML data.

The results of the componentwise likelihood-based boosting

approach are shown in the left panel and the results for the lasso

in the right panel. In each of the four figures the black solid line is

the prediction error for the Kaplan-Meier estimate which takes

neither the clinical covariates nor the RNA-Seq data into account,

while the black dashed line is the prediction error curve for the

model including only the clinical covariates. In nearly all cases, the

prediction error curves for all transformations are seen to be below

the prediction error curve for the clinical model, indicating added

value over the clinical model. The degree of improvement depends

on the chosen transformation. Similar to the results of our

simulation study, the transformations not using standardization all

have larger prediction errors than their standardized counterparts,

for both datasets and both model building approaches. Thus,

choosing a small number of genes having large variances does not

seem to have an advantageous effect on prediction performance in

both real datasets. For the AML data we assumed at least one gene

to have a large effect on overall survival, so that these results may

not depend on the true signal sizes of the underlying data.

Standardization without using any further data transformation

shows the overall worst performance within the transformations

using standardization. The ordering of the remaining transforma-

tions using standardization is small and seems to depend on the

dataset: Standardization of the logs has the best performance in

the KIRC data and the worst in the AML data. The rank-based

transformations perform well for the KIRC data and very good for

the AML data, for both the boosting approach and for the lasso.

Figure 6 shows the added value AVcomb of the models combining

RNA-Seq data with clinical data compared to a solely clinical model

for the 50 splits in training and test data. The upper and lower panel

Figure 4. Selected genes in the KIRC data. Median variance of
selected genes plotted against the number of selected genes in 50
resampling datasets. We used a smoothing spline on the scatterplot for
better visualization of the association.
doi:10.1371/journal.pone.0085150.g004
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again give the results for the KIRC data and the AML data, while

the left and right panel display the results for boosting and the lasso.

The transformations using standardizations as well as the rank-

based ones have added value compared to the model only including

the clinical variables in all four application examples. The added

value of the transformations not using standardizations is either very

low or cannot be seen at all. We can see that the variances of the

added value differ for the transformations: The transformations not

using standardization seem to have smaller variances in the boosting

approach, while this cannot be seen clearly in the lasso.

Discussion

For high-dimensional data arising from RNA-Seq many

univariable testing procedures have been developed and imple-

mented within the last five years [13–20]. In contrast, there is only

little guidance available for multivariable modeling with RNA-Seq

data. This is a pity, as in particular regularized regression

techniques can be applied to select a small and manageable

number of differentially expressed genes, while at the same time

directly providing predictions for new patients.

As regularized regression techniques depend on the covariates

variances and may more generally be critically affected by covariate

Figure 5. Prediction error for the KIRC and AML data. The 0.632+ estimator for the prediction error in terms of the Brier Score. The solid black
line is the prediction error of the Kaplan-Meier estimate which does not include clinical information nor RNA-Seq data, the dashed black line the
prediction error of the clinical model. A: CoxBoost model used for prediction on KIRC data. B: Lasso used for prediction on KIRC data. C: CoxBoost
model used for prediction on AML data. D: Lasso model used for prediction on AML data.
doi:10.1371/journal.pone.0085150.g005
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distributions, we have compared different transformations of RNA–

Seq data in terms of signature size, identification of important genes,

and prediction performance. For gene expression measured by

microarrays, it has been argued that no standardization is needed, as

the measurements already are on the same scale [31]. However, we

focus on criteria such as identification and prediction performance

that nevertheless might make standardization attractive for RNA-Seq

data, despite having measurements at the same scale.

First, we used a two-group simulation study with covariate

structure based on real RNA-Seq data. We included scenarios

with a few genes having large signals and scenarios with a larger

number of genes having smaller signals. Transformations that

result in equal variances for all individual genes were seen to

perform better than those not standardizing variances. The

performance of the rank-based transformations is consistently

competitive in many different scenarios, which, e.g., was not the

case for the default of standardization. Also, complex variance-

stabilizing approaches did not outperform the rank-based

approaches. This is in line with the comparison of univariable

testing procedures for RNA-Seq data of Soneson et al. [22], who

found that the nonparametric SAMSeq method [16] works quite

well in situations with at least ten samples per group.

Second, we could show in an application to two different real

datasets consisting of patients with kidney renal clear cell carcinoma

and acute myeloid leukemia that the transformations behave similar

in real data with time-to-event outcomes. Standardization of

covariates leads to better prediction performance independent of

the underlying transformation used (original scale, log-scale, VST,

Figure 6. Added value for KIRC and AML data. Positive added values indicate improvement in prediction error. A: CoxBoost model used for
prediction on KIRC data. B: Lasso used for prediction on KIRC data. C: CoxBoost model used for prediction on AML data. D: Lasso model used for
prediction on AML data.
doi:10.1371/journal.pone.0085150.g006
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Box-Cox) and independent of the underlying regression model

(componentwise likelihood-based boosting and the lasso). The exact

type of transformation used has a smaller effect on prediction

performance than standardization and its effect seems to depend on

the real dataset. The number of selected genes and their variances

depend highly on the transformation used. There is a large overlap of

selected genes for the transformations including standardization and a

small overlap for all other transformations.

The results of this study suggest that transforming the data to a

distribution with equal variances for all genes is an important step if

RNA-Seq data are going to be analyzed in regularized regression.

The choice of a suitable transformation is essential and has a large

influence on the genes being selected as differentially expressed, on

the number of true positives and on the prediction performance of the

model. While these results are supported by a simulation study with

different numbers of important genes, i.e. sparse and non sparse

scenarios, and two real data sets, this naturally does not guarantee

generalizability to other data sets. However, the results at least point

out that transformation and standardization are important issues that

need to be carefully considered as a part of modeling, as they can

have a strong detrimental effect on performance for different kinds of

multivariable regression approaches. We expect that these results are

not specific for L1-penalized regression models like componentwise

likelihood-based boosting and the lasso, but will equally apply to the

ridge regression, as indicated in an analytical part on the effect of

covariate variance. Also, other types of regularized regression, e.g. the

elastic net, might be affected in a similar way.

While covariate variance and more generally covariate distri-

bution, also might affect performance for other molecular

platforms, the pattern might not necessarily be the same as for

RNA-Seq data. For single nucleotide polymorphism data an

investigation found even somewhat better performance for

covariates without standardization [24]. Other molecular plat-

forms, e.g. DNA methylation, might show still other patterns.

Further research will be necessary to decide the best fitting

transformation for each of the different platforms.
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