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Coordinate transformations are a versatile tool to mould the flow of light, enabling a host of astonishing
phenomena such as optical cloaking with metamaterials. Moving away from the usual restriction that links
isotropic materials with conformal transformations, we show how non-conformal distortions of optical space
are intimately connected to the complex refractive index distribution of an isotropic non-Hermitian medium.
Remarkably, this insight can be used to circumvent the material requirement of working with refractive indices
below unity, which limits the applications of transformation optics. We apply our approach to design a broad-
band unidirectional dielectric cloak, which relies on non-conformal coordinate transformations to tailor the non-
Hermitian refractive index profile around a cloaked object. Our insights bridge the fields of two-dimensional
transformation optics and non-Hermitian photonics.

The introduction of coordinate transformations into optics
has enabled a host of interesting applications such as opti-
cal cloaking—the ability of a device to conceal an object by
shielding it from interacting with the incoming light [1, 2].
However, the early designs of optical cloaks were hindered
by demanding requirements, which prompted the search for
materials with unconventional properties [3]. Although this
search continues today, some of these requirements, such as
a vanishing refractive index, anisotropy or a non-vanishing
magnetic susceptibility, have been found to come with severe
restrictions such as a spectrally narrow optical response win-
dow. In spite of great efforts to circumvent these obstacles
[4–10], some applications like stand-alone cloaks [1, 2, 11],
still rely on such properties.

On another seemingly unrelated front, that of non-
Hermitian photonics [12–19], engineering the imaginary part
of the index of refraction has led to a plethora of experimental
demonstrations [20–28] with various novel applications [29–
32]. Gain and loss provides an extra degree of freedom (differ-
ent from negative or anisotropic electromagnetic responses)
which offers an alternative route for controlling the flow of
light with a non-Hermitian medium.

In this Letter we demonstrate how transformation optics
and the engineering of non-Hermitian media can be directly
linked. Specifically, in isotropic materials the non-conformal
transformations naturally lead to spatially modulated gain
and loss. When using them for constructing an invisibil-
ity cloak, such materials not only bend the phase fronts of
light around the cloaked object, but the involved gain and
loss distribution also provides sources and sinks for the prob-
ing light field. This can be used for designing a unidirec-
tional broadband non-Hermitian version of the Zhukovsky
cloak [1, 33, 34]. Rather than featuring anisotropic [2], ep-
silon near zero (ENZ) [35, 36] or negative index [37, 38]
materials, this non-Hermitian cloak just consists of a dielec-
tric isotropic medium with spatially modulated gain and loss.
With the underlying strategy to use non-conformal maps to

design non-Hermitian index landscapes, we also open up new
directions for the application of transformation optics in gen-
eral. We envision, for example, that based on our results many
of the existing conformal mapping setups in two-dimensional
(2D) media [34] could also be considered for potential non-
conformal extensions. The resulting non-Hermitian distribu-
tions can then be experimentally implemented with a spatially
modulated pump beam [39–41].

Our starting point is the Helmholtz equation that describes
the scattering of a linearly polarized electric field of a given
wavelength λ0 at a 2D isotropic material landscape. Follow-
ing the strategy of transformation optics, we first consider a
“virtual space” with coordinates (x′, y′), in which the incom-
ing light sees a homogeneous medium with a constant and real
refractive index n0. The corresponding Helmholtz equation is
given as follows:

∆
′E(x′,y′)+n2

0 k2
0 E(x′,y′) = 0, (1)

where ∆′ = ∇′2 = ∂ 2/∂x′2 + ∂ 2/∂y′2, with k0 = 2π/λ0. We
now translate this equation to “physical space” to obtain
a transformed Helmholtz equation that features the same
field distribution E in the physical coordinates (x, y) and in
the inhomogeneous (but isotropic) refractive index landscape
n2(x,y):

∆E(x,y)+n2(x,y)k2
0 E(x,y) = 0, (2)

where ∆ = ∇2 = ∂ 2/∂x2 +∂ 2/∂y2. If we do not restrict our-
selves to conformal (i.e., angle-preserving) transformations,
the refractive index n(x,y) = nR(x,y)+ inI(x,y), which is now
a complex-valued function in general, satisfies the follow-
ing complicated relation that notably depends not only on the
virtual index n0 and the coordinate transformation [x′(x,y),
y′(x,y)], but also on the specific solution E(x′,y′) in virtual
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space (see the Supplemental Material - SM for details):

n2(x,y) = n2
0

2

[
(∇x′)2 +(∇y′)2

]
− 1

k2
0

(
∆x′ ∂ lnE

∂x′ +∆y′ ∂ lnE
∂y′

)
− 2

k2
0
(∇x′ ·∇y′)

(
∂ 2 lnE
∂x′∂y′ +

∂ lnE
∂x′

∂ lnE
∂y′

)
− 1

2k2
0

[
(∇x′)2− (∇y′)2

]
×
[

∂ 2 lnE
∂x′2 +

(
∂ lnE
∂x′

)2
− ∂ 2 lnE

∂y′2 −
(

∂ lnE
∂y′

)2
]
.

(3)

Whereas the first term on the right-hand side of the above
equation, (n2

0/2)[(∇x′)2 +(∇y′)2], is the conformal part (see
e.g. Ref. [33]), the remaining terms stem from the non-
conformality of the coordinate transformation. Since these
new terms bind the transformation of the index to a certain
solution in virtual space, E(x′,y′), they appear very impracti-
cal at first glance. It turns out, however, that for the canonical
case of a plane-wave input in positive x-direction, correspond-
ing to a virtual solution E(x′,y′) = E0 ein0k0x′ , the optical po-
tential in real space drastically simplifies to take the intensity-
independent form:

n2(x,y) = n2
0

[
(∇x′)2− i

n0k0
∆x′
]
. (4)

Remarkably, this expression for n2(x,y) is equivalent to the
2D constant-intensity (CI) potential that has recently been
studied extensively [42–50] (see the SM). CI waves are a spe-
cial solution of the Helmholtz equation for which a judiciously
chosen modulation of gain and loss suppresses wave scatter-
ing entirely. Moreover, as was recently shown in [47, 49], the
media supporting such waves can be made uni-directionally
invisible for a broad range of input frequencies. With Eq. (4)
we have thus discovered that CI-waves in physical space arise
naturally through a non-conformal coordinate transformation
of the plane wave solution in homogeneous virtual space. This
provides a simple geometrical interpretation of CI-waves, and
some of their hitherto unexplained properties, such as their
robustness to frequency detuning, can be seen as a direct con-
sequence of this interpretation.

In 2D virtual space not only plane waves, but also other
continuous wave solutions can be identified, for which the
refractive index of Eq. (3) will be independent of the vir-
tual beam’s intensity. Such solutions typically have sepa-
rable amplitude-dependent and amplitude-independent parts,
another example of which is a Gaussian beam. On the
other hand, electric field solutions with diverging logarithmic
derivatives, such as Bessel [51] and Airy beams [52], will cre-
ate regions of infinite n(x,y), and are hence unsuitable for our
transformation protocol.

We now apply the above approach to a well-studied ex-
ample in the literature on transformation optics, which is the
Zhukovsky map [54] that has been used extensively in confor-
mal transformation optics for the design of invisibility cloaks
[1, 33, 34]. We start with the expression for the conformal
Zhukovsky map, wzh(z) = z+ 1/z, where we have used the
convenient notation w = x′ + iy′ for the virtual coordinates,

FIG. 1. Transforming space with non-Hermitian media. (a) The vir-
tual coordinates, with the branch cuts of the conformal (light green)
and non-conformal (dark green) Zhukovsky maps. The area of each
square in the grid is 0.4× 0.4. After the mappings, the green lines
form circles, see (b) and (c), inside of which is the cloaked region
(gray shaded area). The local orthogonality of the coordinate lines,
a signature of conformal mapping, is present only in (b), but not in
(c) (in both plots only the upper Riemann sheet is depicted). (d) Vi-
sualization of light propagation in the proposed non-Hermitian cloak
profile, with the blue and red lines being the equivalent of rays in
a non-Hermitian landscape (see the SM). The yellow surface indi-
cates the imaginary part of the dielectric function, that causes the
blue and red lines to rise or fall in the direction orthogonal to the
x− y plane, indicating the local creation (∇ ·S(x,y) > 0) or destruc-
tion (∇ ·S(x,y)< 0) of energy flux. The projection of the lines onto
the 2D plane coincides with the inversely transformed coordinates,
plotted in the grid below, with the cloaked region shaded in gray.

and z = x+ iy for the physical coordinates [note that (x′,y′)
and (x,y) are real-valued, see Refs. [55–57] for examples of
complex-valued transformations]. Illustrations of the confor-
mal Zhukovsky transformation are provided in Figs. 1(a,b):
the light green line in virtual space, see Fig. 1(a) (branch cut
connecting the points w = ±2), is transformed into the light
green unit circle in physical space, see Fig. 1(b). A plane wave
traveling in positive x-direction of virtual space will thus be
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FIG. 2. Refractive index distributions for the conformal and non-
conformal Zhukovsky cloaks. (a) Real-valued refractive index distri-
bution of the conformal Zhukovsky cloak, reaching values of n= 0 at
x=±2.4λ , and requiring the use of ENZ materials. Here, λ = λ0/n0
and n0 = 3.1. (b) Real (left) and imaginary (right) parts of the re-
fractive index spatial profile of the non-conformal Zhukovsky map.
The refractive index based on Eq. (4) is calculated using the transfor-
mation w(z,z∗) with η(z,z∗) = 1/[1+eβ (|z|−R1)]−1/[1+eβ (|z|−R0)]
and R0 = 0.25, R1 = 1, β = 5.75. The values for nR(x,y) lie between
1.013 and 3.594, whereas those of nI(x,y) lie between −1.013 and
1.013. The black filled circle in all subfigures indicates the cloaked
region.

guided around the cloak boundary, placed right at this circle
in physical space. Importantly for the present case, the con-
formal Zhukovsky map features two points located at z =±1,
right at the cloak boundary, where the refractive index in phys-
ical space vanishes [see light green points in Fig. 1(b) and dark
blue parts in Fig. 2(a)]. The cloak thus requires the use of
materials with a vanishing refractive index, which limits the
cloak functionality to narrow-band radiation.

With the approach presented above, such limitations can be
conveniently circumvented through the use of non-conformal
maps that naturally lead to non-Hermitian materials with com-
plex refractive profiles. In particular, to design such a non-
Hermitian cloak, we modify the Zhukovsky map as w(z,z∗) =
z+η(z,z∗)/z.

In contrast to the conformal map wzh(z), the map w(z,z∗)
depends on both z and z∗, which violates conformality (com-
pare Figs. 1(b) and 1(c)). In the present case, we choose
the envelope η(z,z∗) as a function of |z| to have the shape
of a flat-top function with smoothed edges (see caption of
Fig. 2). For large values of |z| � 1 the envelope η(z,z∗) van-
ishes [w(z,z∗)→ z], while at |z| ≈ 1 it has an edge with fi-

FIG. 3. Non-Hermitian cloaking for an input plane wave at the cen-
ter design spatial frequency k = n0k0. (a) Electric field solution for
the case when cloaking is present. The refractive index distribution
is that of Fig. 2(b), with the dashed white box denoting the area plot-
ted there. The black ring represents the annulus of the cloak, where
the Neumann boundary condition of vanishing normal electric field
derivative was used. Inside the annulus there is a highly reflective
material, taken here as aluminium (nAl = 1.52+9.26i at 1µm [53]),
with a circular cross section. (b) The electric field solution for the
same input field but with only the highly reflective material present.
The cloak’s outer radius is 2.86λ , while its inner radius is 2.62λ .
The fields are normalized to the input wave amplitude. The black
arrow marks the propagation direction of the input beam.

nite first and second derivatives, such that the vanishing of
nR at x =±1 =±2.4λ ), shown for the conformal Zhukovsky
map in Fig. 2(a), is avoided, according to Eq. (4). We have
found that for a judicious choice of η(z,z∗) excellent cloak-
ing can be achieved when the cloak’s outer radius corresponds
to the radius of the branch cut in physical space. For the
cloak we show here, this radius is |z| = 1.20458 = 2.86λ ,
and is indicated by the dark green line and circle in Fig. 1(a)
and (c), respectively. The resulting material is dielectric with
nR(x,y) = Re[n(x,y)] > 1 in all points of physical space,
but with an inhomogeneous gain/loss distribution, given by
nI(x,y) = Im[n(x,y)].

The principle of the cloak’s operation is schematically de-
picted in Fig. 1(d). The yellow surface represents the imagi-
nary part of the dielectric profile, εI(x,y) = Im[n2(x,y)]. As
the energy flux is created and destroyed in regions of gain and
loss, the representation of light as rays in 2D space is not ap-
propriate in non-Hermitian media. To visualize the light prop-
agation, we plot instead the lines whose increase (decrease) in
the direction orthogonal to the x−y plane marks the creation
(destruction) of the Poynting flux S(x,y) (see the SM). The
cloaking for a beam incoming from the negative x direction
[red line in the upper plot of Fig. 1(d)] can be explained by
the interplay of the real and imaginary parts of the refractive
index distribution, which form here a parity-time (PT) sym-
metric system [see Fig. 2(b)]. The part of the beam that is
sufficiently displaced from the cloak center (blue line) sees a
non-curved space, and propagates in a straight line in the ho-
mogeneous background medium. For beam parts near the cen-
ter (red line), similarly to the conformal Zhukovsky mapping,
the real part of the refractive index distribution works to bend
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FIG. 4. Demonstration of cloaking under pulsed illumination, for the
optical media as in Fig. 3. (a) A spatially narrow pulse incident onto
the cloaking region (left) is nearly perfectly transmitted (right) when
the cloak is present. (b) When the cloak is absent, there is a distor-
tion of the pulse shape, clearly revealing the presence of the reflect-
ing material (nAl = 1.52+ 9.26i) to the outside observer. The thin
black dashed line denotes the separation of the plotting regions for
the incoming (left) and outgoing (right) part of the pulse evolution,
all other markings are as in Fig. 3. The time evolution was calculated
by an inverse Fourier transform, using a Gaussian envelope with a
width of σk = 0.055k in k-space.

the light around the object. Since, however, we have nR > 1 in
all of physical space, the real part of the refractive index alone
is insufficient to achieve the cloaking effect: in fact, the finite
imaginary part of the refractive index distribution partially ab-
sorbs the incoming electric field [∇ ·S(x,y)< 0] in front of the
cloak and amplifies it [∇ ·S(x,y)> 0] behind the cloak.

To demonstrate the cloaking efficiency, we solve Eq. (2)
with n(x,y) of Fig. 2(b) numerically by using the open source
finite-element solver NGSolve [58, 59]. Inside of the cloaked
region that we terminate with a Neumann boundary condition
in physical space, we place a highly reflective material with
a circular cross-section. Choosing the background value of
the refractive index in virtual space as n0 = 3.1, we find that
nR(x,y) varies between 1.013 and 3.594, whereas nI(x,y) has
values between ±1.013. In the SM, we also show the results
for an alternative parameter regime, where the cloak region
has a smaller radius but the nI(x,y) varies with an amplitude
as low as ±0.08.

When the cloak is present [Fig. 3(a)], the beam incoming
from the left is perfectly transmitted to the right side, with
both phase and amplitude in the far field being equal to that
of a plane wave in virtual space with a refractive index n0 [see
also Fig. S2 of the SM)]. Inside the cloaked area, the field
completely vanishes, as expected. When the cloak is absent
[Fig. 3(b)], strong scattering occurs and a shadow is formed
behind the cloak.

Concerning the directional sensitivity of the cloak opera-
tion, we recall that already the conformal Zhukovsky cloak is
sensitive to changes of the input angle with respect to the nor-
mal axis (see the SM). The cloak in Fig. 2(b) retains a similar
sensitivity to such deviations, with an appreciable reduction
of efficiency already at input beam tilts of around ±2◦ to the
normal, making the cloaking effectively unidirectional.

To put these results in the context of previous theoretical
work, let us mention here Ref. [60], where a cloak based
on anisotropic non-Hermitian electric and magnetic materials
was designed by transforming a PT-symmetric potential in the
virtual coordinates to the physical space—an idea later trans-
ferred also to acoustics [61]. In a similar vein, folding and
stretching of non-Hermitian virtual space has recently been
used to construct 2D gain-loss distributions that are robustly
balanced [62]. In Ref. [63], a cloaking strategy based on sub-
wavelength layers of balanced gain and loss was devised, us-
ing conducting non-Hermitian metamaterials with locally in-
finite reflection coefficients. This strategy, although similar in
spirit to active cloaking, does not require the knowledge of the
input wave properties for successful cloak operation, in con-
trast to the earlier work of Refs. [64, 65]. We note here that
none of the earlier non-Hermitian cloaking work, that we are
aware of, involves transformation optics with isotropic dielec-
tric media, as we do in this Letter. First remarkable successes
in the direction of non-Hermitian transformation optics were
made in one-dimensional (1D) systems, using complex spatial
coordinates [55–57].

A notable disadvantage afflicting ENZ [1], anisotropic [11]
and layered non-Hermitian cloaks [63] alike, is the require-
ment of extreme real refractive index values (or admittance
values [63]), which limits the cloak’s operation to frequencies
near metamaterial resonances. As our cloak features inho-
mogeneous dielectric media with nR > 1 and finite values of
nI , which are known to have reasonably fast and frequency-
broadband responses (see, e.g., Refs. [66, 67]), we now inves-
tigate the behavior of our cloak under pulsed illumination.

Strictly speaking, the cloak’s refractive index distribution
in Eq. (4) should produce its desired effect only at the design
wavenumber k = n0k0. Perfect cloaking from pulsed radia-
tion would thus require the tailoring of not only the spatial but
also the frequency dependence of the refractive index distribu-
tion. We choose here to approximate the spectral index distri-
bution to be entirely frequency-independent in the k-range of
the input pulse, while using the spatial distribution shown in
Fig. 2(b). The results, shown in Fig. 4(a), demonstrate excel-
lent cloaking performance for pulses with a spectral width of
σk = 0.055k, thereby confirming the robustness of the design
in Eq. (4) to frequency detuning.

To summarize, we have introduced a new way to achieve
optical cloaking in dielectric systems without using ENZ or
anisotropic materials, and demonstrated that non-conformal
maps naturally lead to complex isotropic indices of refrac-
tion. Based on a non-conformal Zhukovsky transformation,
a non-Hermitian invisibility cloak is introduced, which also
works for incoming pulses. We note that our transformation
optics design is fully analytical, but still optimization strate-
gies could also be applied in order to optimize the correspond-
ing refractive index profiles, with relatively low computational
effort as compared to previous work in non-Hermitian opti-
mization problems [39–41]. Although the discussed synergy
between non-Hermitian photonics and 2D isotropic transfor-
mation optics is expected to lead to many more interesting
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insights, we emphasize here that it should be possible to ex-
tend our theoretical methodology to three spatial dimensions,
where the vectorial properties of light-matter interaction play
a significant role.
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SUPPORTING INFORMATION: TRANSFORMING SPACE WITH NON-HERMITIAN DIELECTRICS

NON-CONFORMAL TRANSFORMATION OPTICS IN ISOTROPIC MEDIA

Here we provide a detailed derivation of the Eq. (3) of the main text, which is related to the geometric properties of the
transformed space. In particular, the Helmholtz equation in our physical system, which is an isotropic medium described by a
real- or complex-valued refractive index profile n(x,y), is the following (using normalized units):

∂ 2E
∂x2 +

∂ 2E
∂y2 +n2 k2

0 E = 0, (S1)

where E(x,y) is the electric field in a two-dimensional space. Such an equation can be written in a more compact form, by using
complex variables as:

4
∂ 2

∂ z∂ z∗
E +n2 k2

0 E = 0, (S2)

by writing z = x+ iy and using the definition of Wirtinger derivatives:

∂

∂ z
=

1
2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂ z∗
=

1
2

(
∂

∂x
+ i

∂

∂y

)
. (S3)

Moving now to the primed (virtual) coordinates w = x′+ iy′, the Hemholtz equation is given by:

4
∂ 2

∂w∂w∗
E +n′2 k2

0 E = 0. (S4)

With the coordinate transformation w(z,z∗) = x′(x,y)+ iy′(x,y), based on the identities

∂

∂ z
=

∂w
∂ z

∂

∂w
+

∂w∗

∂ z
∂

∂w∗
,

∂

∂ z∗
=

∂w
∂ z∗

∂

∂w
+

∂w∗

∂ z∗
∂

∂w∗
, (S5)

the two-dimensional Laplacian is transformed as

1
4

∆ =
∂ 2

∂ z∂ z∗
=

∂w
∂ z

∂w
∂ z∗

∂ 2

∂w2 +

(∣∣∣∣∂w
∂ z

∣∣∣∣2 + ∂w∗

∂ z
∂w
∂ z∗

)
∂ 2

∂w∂w∗
+

∂w∗

∂ z
∂w∗

∂ z∗
∂ 2

∂w∗2
+

∂ 2w
∂ z∂ z∗

∂

∂w
+

∂ 2w∗

∂ z∂ z∗
∂

∂w∗
. (S6)

By choosing w not to depend on z∗ (and hence also w∗ not to depend on z), we are left with ∆ =
∣∣∣ ∂w

∂ z

∣∣∣2 ∆′, and the refractive

indices in the two media are related by a spatially-varying factor for all 2D waves at k0, giving n =
∣∣∣ ∂w

∂ z

∣∣∣n′ [33]. It can be shown

that the Cauchy-Riemann conditions are satisfied in this case, so that the coordinate transformation (x,y)→ (x′,y′) is conformal,
and the propagation satisfies the Fermat principle of shortest optical path in an isotropic medium.

When using a non-Hermitian medium with finite gain and loss, the above simplification, stemming from the Fermat principle
in isotropic media, may not apply, and thus the simple relation between Laplacians in the two coordinate systems is not satisfied.
However, one can still write the Helmholtz equation for a particular solution E, as is described in details below.

To show this, we write the derivatives in the above equation in the transformed coordinates as

∂ 2

∂w2 = 1
4

(
∂ 2

∂x′2 −
∂ 2

∂y′2 −2i ∂ 2

∂x′∂y′

)
,

∂ 2

∂w∂w∗ =
1
4 ∆′,

∂ 2

∂w?2 = 1
4

(
∂ 2

∂x′2 −
∂ 2

∂y′2 +2i ∂ 2

∂x′∂y′

)
.

(S7)

Writing the derivatives of the electric field E as

∂ 2E
∂x′2 =

[
∂ 2 lnE

∂x′2 +
(

∂ lnE
∂x′

)2
]

E,

∂ 2E
∂x′∂y′ =

[
∂ 2 lnE
∂x′∂y′ +

∂ lnE
∂x′

∂ lnE
∂y′

]
E,

∂ 2E
∂y′2 =

[
∂ 2 lnE

∂y′2 +
(

∂ lnE
∂y′

)2
]

E,

(S8)
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the transformation of the Laplacian (S6) allows us to transform Eq. (S2) to the Helmhotz equation (S4) of the virtual system,
with a new refractive index n′ related to n as:

n′2 =
(∣∣∣ ∂w

∂ z

∣∣∣2 + ∂w∗
∂ z

∂w
∂ z∗

)−1 [
n2 + 1

k2
0

(
∂w
∂ z

∂w
∂ z∗ +

∂w∗
∂ z

∂w∗
∂ z∗

)
×
(

∂ 2 lnE
∂x′2 +

(
∂ lnE
∂x′

)2
− ∂ 2 lnE

∂y′2 −
(

∂ lnE
∂y′

)2
)

+ 2i
k2

0

(
∂ 2 lnE
∂x′∂y′ +

∂ lnE
∂x′

∂ lnE
∂y′

)(
∂w∗
∂ z

∂w∗
∂ z∗ −

∂w
∂ z

∂w
∂ z∗

)
+ 2

k2
0

(
∂ 2(w+w∗)

∂ z∂ z∗
∂ lnE
∂x′ − i ∂ 2(w−w∗)

∂ z∂ z∗
∂ lnE
∂y′

)]
.

(S9)

This relation can be written as:

n′2 = 2
(∇x′)2+(∇y′)2

{
n2 + 1

k2
0

(
∆x′ ∂ lnE

∂x′ +∆y′ ∂ lnE
∂y′

)
+ 1

2k2
0

[
(∇x′)2− (∇y′)2

] [
∂ 2 lnE

∂x′2 +
(

∂ lnE
∂x′

)2
− ∂ 2 lnE

∂y′2 −
(

∂ lnE
∂y′

)2
]

+ 2
k2

0
(∇x′ ·∇y′)

(
∂ 2 lnE
∂x′∂y′ +

∂ lnE
∂x′

∂ lnE
∂y′

)}
.

(S10)

If, as in the main text and the rest of the Supplemental Material, the virtual medium i homogeneous with n′ = n0, the above
equation simplifies to the Eq. (3) of the main text:

n2(x,y,E) = n2
0

2

[
(∇x′)2 +(∇y′)2

]
− 1

k2
0

(
∆x′ ∂ lnE

∂x′ +∆y′ ∂ lnE
∂y′

)
− 1

2k2
0

[
(∇x′)2− (∇y′)2

][
∂ 2 lnE

∂x′2 +
(

∂ lnE
∂x′

)2
− ∂ 2 lnE

∂y′2 −
(

∂ lnE
∂y′

)2
]
− 2

k2
0
(∇x′ ·∇y′)

(
∂ 2 lnE
∂x′∂y′ +

∂ lnE
∂x′

∂ lnE
∂y′

)
.

(S11)

RELATIONSHIP TO CONSTANT-INTENSITY WAVES

In the Supplementary Material of Ref. [49] we have shown that a 2D constant-intensity wave solution ECI = Aeik0θCI(x,y) exists
in an inhomogeneous non-Hermitian medium described by a dielectric function εCI(x,y) = n2

CI(x,y):

n2
CI(x,y) = (∇θCI)

2− i
k0

∆θCI . (S12)

This corresponds to Eq. (4) of the main text:

n2(x,y) = n2
0

[
(∇x′)2− i

n0k0
∆x′
]
, (S13)

with the following relationship between the phase profile and the coordinate transformation: θCI(x,y) = n0x′(x,y).

VISUALIZING BEAM PROPAGATION FOR NON-CONFORMAL ZHUKOVSKY TRANSFORMATION

Although the ray trajectories can only be defined for Hermitian media, as mentioned in the main text, here we show that
even in non-Hermitian media one can still relate the geometric properties of the optical space to the shape of the electric field
solution E = Ezeiϕ of the Helmholtz equation. We take rh(t) = [xh(t),yh(t)] to be a curve in the 2D physical space which is
asymptotically a horizontal line, and rv(t) = [xv(t),yv(t)] to be a curve in the same space which is asymptotically a vertical line,
where t is a parameter. These curves are defined as lines to which the local wave vector is tangent to throughout all space, which
in Hermitian media means they are rays (see e.g. Chapter 30 of Ref. [33]). In isotropic materials, the curves follow Hamilton’s
equations with ω = c|k|= c

√
k2

x + k2
y . Here, k = ∇ϕ , which for ϕ = n0k0x′(x,y)−ωT , where T is a time variable, gives

drh

dt
=

d
dt

(
xh

yh

)
=

(
∂x′
∂x
∂x′
∂y

)
, (S14)

and for ϕ = n0k0y′(x,y)−ωT , it gives

drv

dt
=

d
dt

(
xv

yv

)
=

(
∂y′
∂x
∂y′
∂y

)
, (S15)
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where we take the speed of light in the background medium equal to unity. These relations are valid for both conformal and
non-conformal transformations. Although in Hermitian media these lines correspond to ray trajectories, this will not be the case
for the non-Hermitian transformation media, as shown below.

For the non-conformal Zhukovsky cloak, it can be shown that the Poynting vector is given by (see the Supplementary Material
of Ref. [49]):

S(x,y) =
i
2
(E∇E∗−E∗∇E) = n0 k0 ∇x′. (S16)

The horizontal lines are then defined by ṙh = S/n0k0. As the ray picture is a good description only in the Hermitian case, where
the Poynting theorem gives ∇ ·S(x,y) = 0, the coordinate lines are no longer parallel to rays in non-Hermitian media, as rays are
difficult to define in this case. Avoiding the complications of writing the Poynting theorem for non-Hermitian media, we have
chosen to use another route for visualizing the beam propagation in the physical system. Instead of two dimensions, we instead
add a third dimension ξ , such that the Poynting vector is now divergence free, satisfying

∇ ·S(x,y,ξ ) = ∂Sx

∂x
+

∂Sy

∂y
+

∂Sξ

∂ξ
= 0. (S17)

It can readily be shown that this is satisfied for Sξ = −n0k0ξ ∆x′+ f (x,y). Choosing f (x,y) = 0, the propagation of these new
“rays”, incoming from x =−∞, is then governed by

dr
dt

=
d
dt

x
y
ξ

=


∂x′
∂x
∂x′
∂y

−ξ ∆x′

 . (S18)

The excursion of these lines from the x− y plane thus indicates the presence of non-Hermiticity in the system, as ∆x′(x,y) =
− k0

n0
εI(x,y) = (n0k0)

−1∇ ·S(x,y). It can easily be shown that ξ (t) is given by:

ξ (t) = exp
(
− 1

n0k0

∫ t

0
dt ′∇ ·S[x(t ′),y(t ′)]

)
, (S19)

where we have chosen the initial condition ξ (0) = 1. In Fig. 1(d) of the main text, we plot the quantity δξ (t) = 0.025[1−ξ (t)].
In this case, an increase (decrease) in δξ indicates a positive (negative) 2D divergence of the Poynting vector, since:

dδξ (t)
dt

=
0.025
n0k0

∇ ·S[x(t),y(t)] · exp
(
− 1

n0k0

∫ t

0
dt ′∇ ·S[x(t ′),y(t ′)]

)
. (S20)

REDUCING THE GAIN/LOSS MODULATION AMPLITUDE WITH A THICK CLOAK

In addition to the thin cloak design, an example of which is presented in the main text, we here consider another regime of
cloaking, for which the refractive distribution occupies a larger area (see Fig. S1). As a result of this more gradual non-conformal
coordinate transformation, which has the same form as the transformation in the main text but with different parameter values,
the gain/loss modulation is weaker in this case than for the thin cloak. The results in Fig. S1(b) indicate that this cloak also
works well in concealing the scattering object. The small modulation of the wave amplitude around the cloaking region is here
a consequence of the fact that the radius of the cloak is slightly larger than the radius of the branch cut. This larger radius was
selected in order to reduce the gain/loss modulation amplitude even further.

An advantage of this type of non-conformal Zhukovsky cloak stems from the fact that the dielectric function (εI), given by the
imaginary part of Eq. (S13), is nearly an order of magnitude smaller than the real part (εR) in all of space. One can thus apply
the following approximation:

n(x,y) = n0|∇x′|

√[
1− i

n0k0

∆x′

(∇x′)2

]
≈ n0

(
|∇x′|− iλ

4π

∆x′

|∇x′|

)
. (S21)

This interesting property of our design strategy implies that the magnitude of the nI spatial modulation will fall almost linearly
with reducing the design wavelength, for a chosen non-conformal transformation [x′(x,y), y′(x,y)].
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FIG. S1. Non-Hermitian cloaking for the same prescription as in the main text, but for parameter values: R0 = 1.5, R1 = 4, β = 2.0. These
parameter values produce a more complicated refractive index distribution, with a more gradual spatial variation, resulting in a thick cloak with
smaller gain and loss modulation amplitude. The center operating wavelengths are here: (a)-(c) equal to the one in the main text, reduced by
a factor of (d)-(f) 2.6667 and (g)-(i) 4.7273. The imaginary part of the refractive index distribution reaches values between (c) [−0.36,0.36],
(d) [−0.14,0.14] and (g) [−0.08,0.08]. The electric field distribution for the factor of (b) 1, (e),(f) 2.6667 and (h),(i) 4.7273 (where (f) and (i)
are the corresponding magnified views of the transmitted part of the wave) shows that the cloak retains its good efficiency when reducing the
operating wavelength, and hence the gain and loss modulation amplitude. The black ring in (b), (e) and (h) marks the cloak layer, the black
arrow marks the beam incidence direction, while the white dashed box marks the regions plotted in the respective refractive index plots. The
nR(x,y) modulation has the same shape as in (a) for all of the three operating wavelengths.

In Fig. S1(d)-(i) we show how the cloak changes when the wavelength is reduced by a factor of 2.6667 and 4.7273. As can
be seen, the efficiency of the cloaking is nearly the same but for a gain/loss modulation that is significantly reduced compared
to the values in the main text. This property could prove crucial for an experimental implementation of our cloaking strategy.
An optimization of the non-conformal mapping along these lines could enable a cloak design with a refractive index having a
realistic range of values at optical frequencies.

SENSITIVITY ON THE ANGLE OF INCIDENCE

The cloak design with a refractive index given by the profile of Eq. (4), assumes a transformation of the optical space for
only a particular input wave—a plane wave with wavenumber k0, that is normally incident on the medium. Moreover, our
non-conformal Zhukovsky cloak is based on a tailored distribution of gain and loss, which is known to affect beams differently,
depending on their direction of incidence. However, since the cloak efficiency exhibits robustness to changes of the input
frequency, some robustness is also expected regarding changes on the direction of incidence. Note also that the conformal
Zhukovsky cloak’s efficiency is known to be sensitive to the incidence angle, so it is expected that this property will extend to
its non-conformal modification.

To test the input angle dependence of cloaking efficiency, we have scanned over various angles of incidence, meaning different
incidence directions for incoming plane waves at the design frequency. The results for the refractive index of the conformal and
non-conformal cases of Fig. 2 of the main text are shown in Figs. S2. It is visible from the results that both the conformal
and non-conformal cases are, indeed, sensitive to the input wave direction, with the latter being slightly more so. A decreased
sensitivity to the input beam direction is found for the refractive index of Fig. S1(a),(c), as shown in Fig. S3(a),(c).
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FIG. S2. Sensitivity of the cloaking efficiency on the input beam direction, for the homogeneous medium in the virtual system (first row), and
the non-conformal (second row) and conformal (third row) cloaks shown in Fig. 2 of the main text. The input angles are: (a) 0◦, (b) 2◦, (c) 4◦

and (d) 6◦, with respect to the normal.

FIG. S3. Sensitivity of the cloaking efficiency on the input beam direction, for the cloak with the refractive index given in Fig. S1(a),(c). The
input angles are: (a) 0◦, (b) 6◦, (c) 10◦ and (d) 20◦, with respect to the normal.

∗ ivor.kresic@tuwien.ac.at; ikresic@ifs.hr
[1] U. Leonhardt, Science 312, 1777 (2006).
[2] J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[3] H. Chen, C. T. Chan, and P. Sheng, Nature Materials 9, 387 (2010).

mailto:ivor.kresic@tuwien.ac.at
mailto:ikresic@ifs.hr
http://dx.doi.org/10.1126/science.1126493
http://dx.doi.org/10.1126/science.1125907
http://dx.doi.org/10.1038/nmat2743


11

[4] J. Li and J. B. Pendry, Physical Review Letters 101, 203901 (2008).
[5] J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, Nature Materials 8, 568 (2009).
[6] L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, Nature Photonics 3, 461 (2009).
[7] T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, Science 328, 337 (2010).
[8] X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, Science 349, 1310 (2015).
[9] L. Hsu, T. Lepetit, and B. Kante, Progress in Electromagnetics Research 152, 33 (2015).

[10] M. McCall, J. B. Pendry, V. Galdi, Y. Lai, S. Horsley, J. Li, J. Zhu, R. C. Mitchell-Thomas, O. Quevedo-Teruel, P. Tassin, et al., Journal
of Optics 20, 063001 (2018).

[11] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
[12] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, Physical Review Letters 100, 103904 (2008).
[13] Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, Physical Review Letters 106, 213901 (2011).
[14] Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, Physical Review Letters 105, 053901 (2010).
[15] S. Longhi, Europhysics Letters (EPL) 120, 64001 (2017).
[16] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, Nature Physics 14, 11 (2018).
[17] S. K. Özdemir, S. Rotter, F. Nori, and L. Yang, Nature Materials 18, 783 (2019).
[18] M.-A. Miri and A. Alú, Science 363, eaar7709 (2019).
[19] S. Yao and Z. Wang, Physical Review Letters 121, 086803 (2018).
[20] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Nature Physics 6, 192 (2010).
[21] A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, Nature 488, 167 (2012).
[22] L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B. Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer, Nature Materials 12, 108

(2013).
[23] B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Nature Physics 10, 394

(2014).
[24] B. Peng, S. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, Science 346, 328 (2014).
[25] L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, Science 346, 972 (2014).
[26] H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, Science 346, 975 (2014).
[27] J. Doppler, A. A. Mailybaev, J. Böhm, U. Kuhl, A. Girschik, F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev, and S. Rotter, Nature 537,

76 (2016).
[28] S. Weidemann, M. Kremer, T. Helbig, T. Hofmann, A. Stegmaier, M. Greiter, R. Thomale, and A. Szameit, Science 368, 311 (2020).
[29] S. Assawaworrarit, X. Yu, and S. Fan, Nature 546, 387 (2017).
[30] K. Pichler, M. Kühmayer, J. Böhm, A. Brandstötter, P. Ambichl, U. Kuhl, and S. Rotter, Nature 567, 351 (2019).
[31] Z. Zhang, X. Qiao, B. Midya, K. Liu, J. Sun, T. Wu, W. Liu, R. Agarwal, J. M. Jornet, S. Longhi, N. M. Litchinitser, and L. Feng,

Science 368, 760 (2020).
[32] S. Xia, D. Kaltsas, D. Song, I. Komis, J. Xu, A. Szameit, H. Buljan, K. G. Makris, and Z. Chen, Science 372, 72 (2021).
[33] U. Leonhardt and T. Philbin, Geometry and Light: The Science of Invisibility (Courier Corporation, 2010).
[34] L. Xu and H. Chen, Nature Photonics 9, 15 (2015).
[35] A. Alú, M. G. Silveirinha, A. Salandrino, and N. Engheta, Physical Review B 75, 155410 (2007).
[36] P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, Nature Photonics 7, 791 (2013).
[37] J. B. Pendry, Physical Review Letters 85, 3966 (2000).
[38] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, Nature 455, 376 (2008).
[39] N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, Physical Review Letters 109, 033903 (2012).
[40] T. Hisch, M. Liertzer, D. Pogany, F. Mintert, and S. Rotter, Physical Review Letters 111, 023902 (2013).
[41] N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, Nature Physics 10, 426 (2014).
[42] K. G. Makris, Z. H. Musslimani, D. N. Christodoulides, and S. Rotter, Nature Communications 6, 7257 (2015).
[43] K. G. Makris, A. Brandstötter, P. Ambichl, Z. H. Musslimani, and S. Rotter, Light: Science & Applications 6, e17035 (2017).
[44] S. Yu, X. Piao, and N. Park, Physical Review Letters 120, 193902 (2018).
[45] E. Rivet, A. Brandstötter, K. G. Makris, H. Lissek, S. Rotter, and R. Fleury, Nature Physics 14, 942 (2018).
[46] P. Sebbah, Nature Photonics 11, 337 (2017).
[47] A. Brandstötter, K. G. Makris, and S. Rotter, Physical Review B 99, 115402 (2019).
[48] S. A. R. Horsley, Physical Review A 100, 053819 (2019).
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