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Abstract. A common way of expressing string similarity in structural
pattern recognition is the edit distance. It allows one to apply the kNN
rule in order to classify a set of strings. However, compared to the wide
range of elaborated classifiers known from statistical pattern recogni-
tion, this is only a very basic method. In the present paper we propose
a method for transforming strings into n-dimensional real vector spaces
based on prototype selection. This allows us to subsequently classify the
transformed strings with more sophisticated classifiers, such as support
vector machine and other kernel based methods. In a number of exper-
iments, we show that the recognition rate can be significantly improved
by means of this procedure.

1 Introduction

Strings are one of the fundamental representation formalisms in structural pat-
tern recognition [1]. Using a sequence of symbols rather than a vector of features
often has some advantages. For example, the number of symbols in a string is
variable and depends on the individual pattern under consideration, while in a
feature vector we are forced to always use the same number of features, no matter
how simple or complex a pattern is. In fact, strings have been successfully used
in a number of applications, including digit recognition [2], shape classification
[3,4], and bioinformatics [5].

In many tasks, one needs to measure distances between patterns. In case of
string representations the standard distance function is the edit distance. This
distance function is based on the minimum number of edit operations, such as
insertion, deletion and substitution of symbols, required to transform one of two
given strings into the other [6]. This distance can be computed in quadratic time
with respect to the lengths of the two strings under consideration. Based on the
edit distance one can easily implement classifiers of the nearest-neighbor type.
However, more sophisticated classifiers, such as Bayes classifier, neural net, or
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support vector machine, are not applicable in the domain of strings [7,8]. This
is a serious drawback and restriction of string based pattern representation.

In the present paper we propose a transformation that maps elements from
the domain of strings into real vector spaces. This transformation is intended
to maintain the convenience and representational power of strings, but makes
available, at the same time, the rich repository of classification tools developed
in statistical pattern recognition. A transformation of graphs into vector spaces
has been proposed recently [9]. In [10] general properties of embedding transfor-
mations have been discussed from various points of view. The method proposed
in this paper is closely related to the dissimilarity based approach to pattern
recognition proposed in [11,12]. However, while the main focus in [11,12] is on
the transformation of feature vectors into dissimilarity spaces, and the possi-
ble gain in recognition accuracy obtained from this transformation, the main
motivation of our approach is to build a bridge between structural and statisti-
cal pattern recognition by making the large spectrum of classifiers known from
statistical pattern recognition available to string representations.

In the next section, we will introduce our terminology. Then, in Section 3, we
will show how strings are transformed to n-dimensional real vector spaces, R

n,
based on various prototype selection procedures. Experimental results of the pro-
posed method, applied to handwritten digit recognition using nearest-neighbor
classifiers and support vector machines, are reported in Section 4. Finally, in
Section 5, we present concluding remarks.

2 Basic Notation

Let A be a finite alphabet of symbols and A∗ be the set of all strings over
A. Furthermore, let ε denote the empty symbol. We can replace a symbol a ∈
A ∪ {ε} by b ∈ A ∪ {ε} and call this action an edit operation. More precisely,
we refer to a → b as a substitution, a → ε a deletion and ε → a an insertion.
In order to measure the dissimilarity of strings, a cost c is assigned to these edit
operations: c(a → b), c(a → ε) and c(ε → a). Given a sequence S = e1, . . . , en of
edit operation, its cost is defined as c(S) =

∑n
i=1 c(ei). Considering two strings

x, y ∈ A∗ and all sequences of edit operations that transform x into y, the edit
distance, d(x, y), of x and y is the sequence with minimum cost. The edit distance
can be computed by dynamic programming in O(nm) time and space, where n
and m are the lengths of the two strings under consideration.

With the notation introduced above, the set median string and the set
marginal string of a given set of strings can be defined as follows. If we de-
note a set of strings by X , the set median string of X , median (X ), is defined
as the string xmdn ∈ X that satisfies xmdn = argminy∈X

∑
x∈X d(x, y). It is

a popular approximation of the generalized median string [13]. Similar to the
set median we define the set marginal string, marginal (X ), of X as the string
xmrg ∈ X for which the sum of the edit distances to the remaining elements in
X is maximal: xmrg = argmaxy∈X

∑
x∈X d(x, y). Obviously, set median and set
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marginal strings can be easily obtained by first computing all pairwise distances
and then selecting the string with the minimum and maximum average distance,
respectively.

3 Transforming Strings to Real Vector Spaces

The idea of our transformation approach is to select a number of prototypes out
of a given set of strings. By characterizing an arbitrary string in terms of its
edit distances to the prototypes, we obtain a vectorial description of the string.
More precisely, a string can be transformed into a vector by calculating the
edit distances to all the prototypes, where each distance represents one vector
component. Formally, if we denote a set of strings (over an alphabet A) by
X ⊆ A∗ and a set of prototypes by P = {p1, . . . , pn} ⊆ X , the transformation
tPn : X → R

n is defined as a (not necessarily injective) function, where tPn (x) =
(d(x, p1), . . . , d(x, pn)) and d(x, pi) is the edit distance between the strings x and
pi. Obviously, the dimension of the vector space equals the number of prototypes.

3.1 Prototype Selection Methods

In the previous paragraph, the basic idea of our transformation from the string
domain to a vector space has been described. However, no concrete prototype se-
lection strategies have been considered. In the current subsection we will discuss
possible algorithms for selecting prototypes from a given set of patterns.

Intuitively, a good selection strategy should satisfy the following three condi-
tions. First, if some prototypes are similar—that is, if they are close in the space
of strings—their distances to a sample string should vary only little. Hence, in
this case, some of the respective vector components are redundant. Consequently,
a selection algorithm should avoid redundancies. Secondly, to include as much
structural information as possible in the prototypes, they should be uniformly
distributed over the whole set of patterns. Thirdly, since outliers are likely to
introduce noise and distortions, a selection algorithm should disregard outliers.

In this paper we will focus on four different class-independent selection algo-
rithms, which we call center prototype selector, border prototype selector, span-
ning prototype selector and k-medians prototype selector . In the following, we
will describe these selection algorithms and discuss them in terms of the above
mentioned criteria.

Center Prototype Selector. As its name indicates, the center prototype se-
lector (c-ps) selects prototypes situated in the center of a given set of strings.
Considering the set median string to be the most central string, the set of i pro-
totypes Pi ⊆ X , i = 0, . . . , |X |, selected by the c-ps , is iteratively constructed
as:

Pi =

{
∅ if i = 0,

Pi−1 ∪ {pi} if 0 < i ≤ |X |, where pi = median (X \ Pi−1).
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For an intuitive illustration using points on the two-dimensional plane see Fig. 1a.
Due to their central position all prototypes are structurally similar. Hence, many
redundant prototypes occur. On the other hand, strings at the border are not
considered, and thus, the set of prototypes is not negatively influenced by out-
liers. Obviously, the property of uniform distribution is not satisfied.

Border Prototype Selector. The border prototype selector (b-ps) acts just
contrary to the c-ps. It selects prototypes from the border and is therefore based
on marginal strings. The set of i prototypes Pi ⊆ X , i = 0, . . . , |X |, selected by
the border prototype selector is defined as:

Pi =

{
∅ if i = 0,

Pi−1 ∪ {pi} if 0 < i ≤ |X |, where pi = marginal (X \ Pi−1).

An illustration is given in Fig. 1b. Obviously, only few redundant prototypes
are selected. However, there are no prototypes located in the center and the
condition of uniform distribution is only partially fulfilled. Furthermore, it is to
be expected that there are outliers among the prototypes selected by the b-ps.

Spanning Prototype Selector. A set of prototypes selected by the spanning
prototype selector (s-ps) is given by the following iterative procedure. The first
prototype is the set median string. Every further prototype is the string with the
largest distance to the set of previously selected prototypes. Analog algorithms
have been proposed for k-means initialization [14,15]. Formally, the set of i pro-
totypes Pi ⊆ X , i = 0, . . . , |X |, selected by the spanning prototype selector (s-ps)
is defined as

Pi =

⎧
⎪⎪⎨

⎪⎪⎩

∅ if i = 0,

median (X ) if i = 1,

Pi−1 ∪ {pi} if 1 < i ≤ |X |, where pi = argmax
x∈X\Pi−1

min
p∈Pi−1

d(x, p).

Each additional prototype selected by the s-ps is the string located the furthest
away from the already selected prototypes. Thus, the case that two prototypes
are very close is avoided and hence also redundant prototypes are prevented. It
is in the nature of this algorithm that new prototypes are selected from an area
which hasn’t been considered before. This leads to a good distribution of the
prototypes. However, since outliers have a large distance to the other patterns,
there is a certain chance for them to be selected. Fig. 1c illustrates the behavior
of the s-ps.

K-Medians Prototype Selector. The k-medians prototype selector (km-ps)
is based on the k-means clustering algorithm [16]. The idea is to find n clusters
in the given set of data and to declare each cluster center, i.e. the set median of
each cluster, to be a prototype. An illustration can be found in Fig. 1d.

The advantage of the prototypes selected by the km-ps is that they are evenly
spread over the whole set of data. Similar strings are represented by the same
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a) b) c) d)

Fig. 1. Illustration of the a) c-ps, b) b-ps, c) s-ps and d) km-ps algorithms. The larger
dots represent the selected prototypes.

prototype. Hence, redundant prototypes are mostly avoided. Furthermore, out-
liers usually aren’t positioned in the center of a k-medians cluster and thus the
chance for them to be selected as a prototype is small.

4 Experimental Results

This section provides experimental classification results using the transforma-
tion schema introduced in Section 3. The prototype selection algorithms are
tested on the Pendigits database described in [17] (original, unnormalized ver-
sion). The original version contains 10,992 instances of handwritten digits 0 to
9, where 7,494 are used for training and 3,498 for testing (see Fig. 2). Each digit
is originally given as a sequence of two-dimensional points. To obtain a suit-
able string representation, each digit curve is first approximated by a sequence
s = z1, . . . , zn of vectors of constant length |zi| = l, such that the start and end
points of all zi lie on the original curve.

A string can be generated by one of the following two methods. Either the
sequence s of vectors is directly regarded as a string. Then the costs of the edit
operations are defined as follows. A substitution has the costs c(zi → zj) =
‖zi − zj‖qv , where qv is a positive real value; for the costs of insertion and
deletion we take the arithmetic mean of the extremal values (0 and (2l)qv ) of the
substitution costs, which is 2qv−1lqv . This cost function is referred to as vector
cost function. Another way of generating a string is to consider the sequence
α1, . . . , αn−1 of angles, where αi is the angle between vectors zi and zi+1. In that
case, the costs assigned to the edit operations are constantly set to 0 ≤ qa ≤ π

2
in case of angle insertions and deletions, and for substitutions the costs are given
by the absolute difference of the two involved angles αi and αj , c(αi → αj) =
|αi − αj |. We call this cost function angle cost function.

To find a suitable string representation, the values of parameters l, qv and
qa are optimized on a validation set, which consists of one fifth of the origi-
nal training set. For this purpose we generate string representations for various
combinations of parameter values and classify the validation set with a k-nea-
rest-neighbor classifier, using the original training set minus the validation set as
the set of labeled training items. Finally, we select the parameter combination of
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Fig. 2. Example patterns of the classes “1”, “2” and “3”

l, qv, qa and k, that leads to the highest recognition rate. The value of parameter
k is used at the same time to build a k-nearest-classifier in the string domain,
which we use as a reference classifier for vector space classifiers.

Once the dataset is prepared, i.e. all the elements are represented as strings,
the prototypes are selected from the training set that is made up of the remaining
four fifths of the original training set (i.e. the part of the training set that is
not used for validation). The prototypes are exclusively used for the purpose
of mapping the data from the string to the vector space. Once the prototypes
are selected, the complete dataset is mapped into the vector domain, without
losing the partitioning into training, validation and test set. That is, each set
still represents the same objects as in the string domain. After the dataset has
been mapped to the vector domain, any classifier known from statistical pattern
recognition can be trained by using the transformed validation and training sets,
as described in the following.

The number of prototypes, i.e. the dimensionality of the vector space, and
the prototype selection strategy as well as classifier parameters are determined
on the validation set. That is, a number of possible vector space dimensions
are considered for each selection strategy and one individual classifier is built
for each combination of possible dimensionality and selection strategy. Then the
validation set is classified with each of these classifiers. Finally, the parameter
values for the dimensionality, the selection strategy, and the classifier leading to
best performance on the validation set are selected. Then this classifier is taken
to classify the test set. An overview of the classifiers we used in our experiments
is given in the following.

First of all, we apply a kNN classifier not only in the string domain, but
also in the vector space. The distance measure we use is the Minkowski met-
ric Lp(x, y) = (

∑n
i=1 |xi − yi|p)

1
p , where x = (x1, . . . , xn) ∈ R

n and y =
(y1, . . . , yn) ∈ R

n. In case of this classifier, both parameters k and p are op-
timized on the validation set and the training set (excluding the validation set)
is used for finding the nearest neighbors.
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Fig. 3. Comparison of the four prototype selection strategies c-ps, b-ps, s-ps and km-
ps: recognition rates of a 3NN classifier on the validation set depending on the number
of prototypes

Another possibility is to apply the kNN classifier in a higher-dimensional
feature space. This method uses kernel theory [18] which has become a pop-
ular subject in statistical pattern recognition. Instead of directly classifying
the transformed strings, the patterns are mapped by a non-linear function Φ :
R

n → R
m(m > n) to a higher-dimensional real vector space R

m, called fea-
ture space, in which the kNN classification is performed with the Euclidean
distance L2 as distance measure. In the feature space R

m an inner product
< x, y > exists and R

m is complete with respect to the norm ‖x‖ =
√

< x, x >,
defined by the inner product. This fact allows us to define kernel functions
kΦ(x, y) := 〈Φ(x), Φ(y)〉 , (x, y ∈ R

n). The kernel function kΦ(x, y) can then
be regarded as a similarity measure in the vector space R

n, and the Euclidean
distance in the feature space R

m can be derived from it. With the use of this
method, the explicit application of the mapping Φ can be avoided. In our ex-
periments we used the following standard kernel functions: radial basis function,
polynomial function, and sigmoid function [18].

Another classification method using kernel functions is the support vector ma-
chine (SVM) [8,19]. The key idea is to find a hyperplane that separates the data
into two classes with a maximal margin. Such a hyperplane can only be found
if the data are linearly separable. If linear separability is not fulfilled, a weaker
definition of the margin, the soft margin, can be used. In this case, the opti-
mal hyperplane is the one that minimizes the sum of errors and maximizes the
margin. This optimization problem is usually solved by quadratic programming.
In order to improve the classification of non-linearly separable data, an explicit
mapping to a higher-dimensional feature space can be performed, or instead, a



294 B. Spillmann et al.

the above mentioned kernel function can be applied. For our experiments we use
the LIBSVM library [20]. The kernel functions used in our experiments are the
linear kernel and the radial basis function.

Fig. 3 illustrates the performance of the four prototype selection methods
described in Section 3 with respect to the number of prototypes. It shows the
recognition rate of a 3NN classifier on the validation set, where the digit curves
are approximated by segments of length 20 and the angle cost function with
qa = 11

36π is used. (Note, the classifier parameter k is kept constant for this
plot.) The number of prototypes n ranges from 10 to 2000. Generally, it can
be observed that the recognition rate increases with an increasing number of
prototypes. Once the recognition rate has reached a certain value, however, it
roughly remains constant. For a small value of n, differences in the quality of
each method can be detected, but the recognition rates become incrementally
equal for larger n. That is, while the c-ps and the b-ps clearly perform worse than
the s-ps and km-ps for small n, the difference at n = 2000 almost disappears.
We observe that selection strategies which uniformly distribute the prototypes,
s-ps and km-ps, have a higher performance for smaller n.

In Tab. 1 the recognition rates on the test set with the above mentioned
classifiers are listed. The table shows the results for both angle (pen ang) and
vector cost function (pen vec). Three different partitions of the dataset into a
validation, training and test set have been used. The term pen1 refers to the
original partitioning into training and test set. The experiments pen2 and pen3
are further setups, where the size of each set is unchanged, but different partitions
have been performed. In order to show the performance of the transformation, we
use the recognition rate of the kNN classifier in the string space as a reference
value. Recognition rates printed in bold face refer to statistically significant
better results at a significance level of 0.95.

Table 1. Recognition rates on the Pendigits dataset
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First we observe that the application of the standard kNN classifier in the
vector space (column kNN Mink. metric) leads to an improvement of the recog-
nition rate over the kNN classifier in the string domain in four out of six cases.
For all other kernel based kNN classifiers (columns kNN RBF kernel, kNN poly.
kernel and kNN sig. kernel), an improvement is obtained in only one out of
six cases. However, both SVMs demonstrate superior performance. The SVM
with radial basis function kernel leads in all six cases to an improvement, five of
which are statistically significant, and even the linear kernel SVM shows a higher
recognition performance than the classifier in the string domain in all cases
but one.

In [21], classification based on two MLP approaches has been performed on
the same data. The recognition rates on the test set achieved in [21] are 95.26%
and 94.25%, respectively. We note that both recognition rates are already outper-
formed by our kNN classifier in the string domain using the vector cost function.
Nevertheless, a further improvement can be achieved by means of the proposed
embedding procedure in conjunction with both SVMs.

5 Conclusion

In this paper we study the representation and classification of strings in n-dim-
ensional real vector spaces. The transformation is accomplished with a proto-
type selection procedure, where each vector component of a transformed string
represents the edit distance to one prototype.

We evaluate the transformation on strings extracted from the Pendigits
database. The recognition rates of several kNN methods and support vector
machines for the transformed strings are compared to a kNN classifier in the
original string domain. We show that by means of SVM the recognition rate for
strings can significantly be improved. However, the improvement of the correct
classification rate in the considered task is just one contribution of this paper.
From the general point of view, the methodology proposed in the paper opens
new ways of embedding symbolic data structures, i.e. strings, into vector spaces
using edit distance and prototype selection. Based on such an embedding, a
large number of methods from statistical pattern recognition become available
to string representations. In our future work we will study additional classifiers,
such as Bayes classifier and neural net, as well as data dimensionality reduction
and clustering tasks.
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