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Abstract  

 

This paper argues that mathematical knowledge, and its related pedagogy, is inextricably linked to 

the tools in which the knowledge is expressed. The focus is on digital tools and the different roles 

they play in shaping mathematical meanings and in transforming the mathematical practices of 

learners and teachers.  Six categories of digital tool-use that distinguish their differing potential are 

presented: i. dynamic and graphical tools, ii. tools that outsource processing power, iii. tools that 

offer new representational infrastructures for mathematics, iv. tools that help to bridge the gap 

between school mathematics and the students’ world; v. tools that exploit high-bandwidth 

connectivity to support mathematics learning; and vi. tools that offer intelligent support for the 

teacher when their students engage in exploratory learning with digital technologies   Following 

exemplification of each category, the paper ends with some reflections on the progress of research 

in this area and identifies some remaining challenges. 
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Introduction  

Mathematics has a dual nature, with procedures and calculations on the one hand, 

and concepts logically connected in structures on the other. For most people, whatever 

their age, the former view of mathematics dominates: mathematics is simply a set of 

disparate rules for calculation and students attempt to master this ‘mathematical 

machinery’ without seeing its purpose; using another metaphor, they ‘practice the 

scales without playing a tune or even recognising that there is a tune to be played’ (for 

a more elaborated argument, see Hoyles, 2015b). 

Schools have access to a multiplicity of digital tools of varying sophistication and 

function, some specifically designed for mathematics and others more general. Some 

digital tools simply replicate mathematics as expressed in paper and pencil. By 

contrast, this paper attempts to tease out from the corpus of research and practice, a 

vision for the use of those digital technologies with the potential to transform the 

teaching and learning of mathematics and, in particular, enhance conceptual 

engagement.  There are two inevitable and interrelated tensions in such use of digital 

technologies. The first is that learners and teachers need to be able to cope with the 

syntax and semantics of the digital technologies: to find out how they work, what they 

afford, and how they might be employed. The second tension is that students will tend 
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to use the power of the technology to avoid the cognitive load of ‘mathematical 

thinking’. Thus, it is important to distinguish the needs of mathematical learners from 

the needs of mathematical users – learners need to search for and appreciate generality 

and structure, while users want simply to get a particular job done or a problem solved 

(for an elaboration of this argument, see Hoyles and Noss, 2003).  The interest in this 

paper is in digital technologies with at least some claim to transformative potential for 

mathematics learning. They might fall into two overlapping, cateogories: technologies 

that can catalyse shifts in the how mathematics is ‘known’, and technologies that can 

open windows on students’ conceptions and practices, an idea elaborated in Noss and 

Hoyles (1996).  I summarise the theoretical background underpinning, of what might 

promise to be transformational use of digital tools in mathematics teaching and 

learning, before outlining six categories of digital tools that distinguish their differing 

potential.  I note from the outset that the potential for transformational change depends 

utterly on how the digital tools are used and the support offered by teachers on their 

use: the availability of hardware or software is a necessary, but far from sufficient, 

condition for transformational mathematics teaching.  

 

Theoretical background  

There are several theories that underpin research into the use of digital 

technologies in mathematics education (for an early overview, see, Drijvers, Doorman, 

Boon, Reed & Gravemeijer, 2010). Many, including the author, have remained 

committed to constructionism as a way of thinking about using computers for 

mathematics learning that will truly revolutionise access to mathematical ways of 

thinking. Seymour Papert launched the notion of constructionism in the mid-1980s, 

arguing that a powerful way for learners to build knowledge structures in their mind, is 

to build with external representations, to construct physical or virtual entities that can 

be reflected on, edited and shared: 

 

Constructionism […] shares constructivism’s connotation of learning as “building 

knowledge structures” irrespective of the circumstances of the learning. It then adds 

the idea that this happens especially felicitously in a context where the learner is 

consciously engaged in constructing a public entity, whether it’s a sand castle on the 

beach or a theory of the universe. (Harel & Papert, 1991, p.1). 

 

It is useful to try to describe the characteristics of a constructionist environment. It 

embeds a compelling medium in which to explore ‘powerful ideas’ or intellectual 
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nuggets, often while ostensibly constructing something else. It allows learners to take 

some ownership of the construction process which, potentially at least, leads to their 

engagement, confidence and empowerment. This framework underpins the design of 

what are termed microworlds, where a successful microworld is both an 

epistemological and an emotional universe, a place where powerful (mathematical, but 

also scientific, musical or artistic) ideas can be explored; but explored ‘in safety’, 

acting as an incubator both in the sense of fostering conceptual growth, and a place 

where it is safe to make mistakes and show ignorance.  And, of course, crucially these 

days, a place where ideas can be effortlessly shared, remixed and improved (for an 

earlier discussion of all these aspects, see Noss & Hoyles, 2006).  

It is important to emphasise that, as Papert was at pains to point out, 

constructionism was as much a theory of epistemology as of pedagogy. In fact in the 

ICMI Study on Technology Revisited (Hoyles & Lagrange, 2010), all participants  

were encouraged to reflect on the 10% of knowledge that would need to be rethought 

given the use of new digital tools. When using a scientific calculator, or a spreadsheet 

to engage with mathematics what is changed, in what the user needs to know 

mathematically? This was later abbreviated to ‘Papert’s 10%’ and proved to be a 

worthwhile but challenging task followed by later research and development as part of 

constructionism and beyond.  

Constructionism continues to attract innovative ways of designing tools and 

working with learners from across the world (see, for example, the proceedings of a 

series of conferences originally called Eurologo, and, since 2012, held under the 

banner of Constructionism). Constructionist research has tried to pin down more 

precisely what kind of  ‘thing’ constructionism is. While constructionism might ‘act’ 

like a theory, it is perhaps best thought of as a “framework for action”, providing 

“focus and direction to the design of learning environments with much left implicit and 

open to diverse interpretation” (Cobb & diSessa, 2004).   The point is to acknowledge 

that digital technology can shape and be shaped by mathematical knowledge and its 

expression, and mathematical abstraction is scaffolded within computational media. 

Our way of thinking about this problem has centred around understanding how 

mathematical expression can at once appear as decontextualised and yet – notably in 

the context of suitably-crafted digital technology – remain connected to and situated in 

the linguistic and conceptual web of resources afforded by the medium and the activity 

system (see Noss & Hoyles, 1996; Hoyles, Noss and Kent, 2004).  

In summary, this paper seeks to distinguish the different categories of digital tools 

that support an agenda for research into transformational change in mathematics 
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teaching and learning, largely but not exclusively underpinned by constructionism. 

Some categories are well established with a considerable evidence base, while others 

are at a more embryonic stage.  In what follows, six categories are outlined, each 

including an illustrative example. They are: 

 dynamic and graphical tools that allow mathematics to be explored in diverse 

ways, from different perspectives;  

 tools that outsource processing power that previously could only be undertaken 

by humans, to change the focus of attention; 

 tools that offer new representational infrastructures for mathematics to change 

what can be learned and by whom; 

 tools that offer connections between school mathematics and learners’ agendas 

and culture, bridging the gap between school mathematics and the students’ 

world;  

 tools that exploit high-bandwidth connectivity to support mathematics learning 

opening new opportunities for students to share knowledge construction and 

their evolving solutions both within and between classrooms; 

 intelligent support for the teacher to reduce the burden of scaffolding the 

diverse solutions generated when students engage in exploratory learning with 

digital technologies.    

These categories are neither mutually exclusive nor exhaustive. Rather they serve 

as lenses through which to investigate the potential of using different digital tools to 

transform mathematical practices and make it possible to identify some challenges for 

future research which are discussed at the end of this paper.   

1. Dynamic and graphical tools  

Digital technology can provide tools that are dynamic, graphical and interactive.  Using these 

tools, learners can explore mathematical objects from different but interlinked perspectives, where 

the relationships that are key for mathematical understanding are highlighted, made more tangible 

and manipulable.  This category of digital tool use has a robust research base, mainly arising from 

arguments around the semiotic mediation of the tools, which can focus the learner’s attention on 

the things that matter while simultaneously giving them some agency in this process.  The 

computer screen affords the opportunity for teachers and learners to make explicit that which is 

implicit, and draw attention to that which is often left unnoticed  (Noss & Hoyles, 1996, Falcade, 

Laborde & Mariotti, 2007). 

By using digital technologies, students can produce an accurate sketch of the solution to a 

problem, where an accurate sketch is to be interpreted in a technical sense: it is accurate in that it 

meets the requirements of the problem situation but it is a sketch in that the necessary invariants of 
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the mathematical structure of the problem are not formalised. However, the accuracy of the sketch 

means that by reflection on and manipulation of the sketch, the students can more easily come to 

notice what varies and what does not, and thus are more likely to become aware of what to focus 

on (Mason, 1996). Thus, during the process of dragging their sketch, students can test, by eye, if 

the constraints of the problem they had hoped to satisfy are indeed satisfied, and become aware of 

invariants and possible relationships between the elements under dragging. Without the dynamic 

aspect, expressed through dragging, this would be difficult, since the accuracy of the sketch as 

well as its interactivity (through hand/eye coordination) is essential to the process of noticing such 

relationships. The key factor is the interplay between dynamic (while dragging key points) and 

static (stopping when some relationship seems evident), and crucially, the management of this 

interplay is in the control of learners, so they can pause, reflect, go back and test in the light of 

feedback from the graphical image: a constructionist approach.  

It is noteworthy that increasingly, dynamic sketches are built by teachers or curriculum 

designers and introduced to students as part of their schemes of work, in student worksheets, or 

more frequently, as teacher demonstrations presented on interactive whiteboards.  This latter mode 

bypasses the need for students to be fluent with the software, having acquired the skill to build the 

sketches for themselves. Clearly it is possible for students to learn by watching moving diagrams, 

especially if accompanied with text or spoken words. But care needs to be taken to guide students 

in ways that interweave the pragmatic and the epistemic; so they first notice the impact of the 

changes made, and second have some appreciation as to why the changes are significant 

mathematically. (See Dagienė and Jasute (2012) for examples of different guided approaches to 

learning with dynamic sketches). 

The dynamic and graphical functionality of digital tools can be illustrated in an episode from 

design research 2 using dynamic geometry undertaken as part of a research project3 that set out to 

build bridges between informal argumentation and formal proof through participation in carefully 

designed activities involving construction and experimentation using digital tools,  The aim of this 

task was that students using dynamic geometry tools would come up with conjectures about the 

properties of a quadrilateral whose adjacent angle bisectors crossed at right angles, properties that 

were then used as the starting points of a proof (for more details see, Healy & Hoyles, 2001).  We 

noticed that some students, while dragging the vertices of a quadrilateral until the angle between 

the two angle bisectors measured 90°, noticed that one pair of sides of the quadrilateral were 

parallel. The constraints of the task created ‘by eye’ provided an object on which the students 

could reflect and make conjectures as to its structure, and then explore the generality of their 

conjectures by constructing and dragging.  Our activities were designed for students to use with a 

teacher to scaffold and orchestrate the interactions, and specifically, to point to how the tools 

might be manipulated to highlight key points for mathematical learning.  
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The process of exploiting digital tools that represent variation and functional dependence has 

provided the basis for taking a Vygotskian perspective of semiotic mediation on student tool use in 

mathematics (see for example Bartolini Bussi, & Mariotti, 2008). It has also been theorised as part 

of instrumental genesis, with its constituent twin sub-processes of instrumentation and 

instrumentalisation (for early work, see Vérillon & Rabardel, 1995). Drijvers et al. (2010) put it 

thus when talking about the instrumental approach: 

 

According to this approach [the instrumental approach], the use of a technological tool 

involves a process of instrumental genesis, during which the object or artefact is turned into an 

instrument. This instrument is a psychological construct, which combines the artefact and the 

schemes (in the sense of Vergnaud, 1996) the user develops to use it for specific types of tasks. 

In such instrumentation schemes, technical knowledge about the artifact and domain-specific 

knowledge (in this case, mathematical knowledge) are intertwined. Instrumental genesis, 

therefore, is essentially the co-emergence of schemes and techniques for using the artifact. (pp. 

214) 

 

In using dynamic and graphical tools in the way illustrated above in dynamic geometry, the 

digital tool does not provide a language of description that ‘captures’ the moves undertaken. More 

recent work suggests that there might be a need to promote explicit discussion or demonstration of 

how digital technology controls the movement, the mathematical purpose served by the variation 

and a suitable language to describe it (see Clark-Wilson & Hoyles, under review).   

From a constructionist viewpoint, in order for users to engage with the sketch in the ways 

anticipated by the designer, it is important that some aspect of the constructionist agenda is 

implemented – the black box of the digital tool is opened ‘just a little’ so the students can take 

some control of the solution process by building or adding something. They are able, in the spirit 

of constructionism, to explore with the digital tools at different ‘layers’ according to the student’s 

goals and expertise: by, for example, watching a simulation to notice patterns and regularities, 

making some alterations in some values of the variables, exploring how the variables relate to each 

other, or even editing these relationships (for elaboration of the idea of layered learning, see Kahn 

& Noble, 2010).  When these openings are on offer, the dynamic sketch would more likely serve 

as a ‘boundary object’ and facilitate the communication of meanings across communities, in this 

case between the designer and the student.  The notion of the boundary object is used in the sense 

of Star and Griesemer (1989), in that it can serve as a focal point to trigger the coordination of 

perspectives of the different communities of practice engaged in a common problem, and, crucially 

facilitate communication between them. Research that introduces students to microworlds that are 

intentionally improvable, with students challenged to find and fix faults or bugs, shows much 
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promise as a way of ensuring that students engage with the code, and open the black box just a 

little (see Healy & Kynigos, 2010).  

There is new momentum behind the constructionist agenda with the widespread popularity of 

coding and programming, where young people are put in the role of designing and creating with 

digital media and not simply playing and searching online (see Resnick, 2012). Although coding 

initiatives tend to take place outside formal education, there are some promising initiatives in 

school. For example, the ScratchMaths project4 seeks to harness the enthusiasm and energy for 

coding in the interests of mathematics learning (Benton, Hoyles, Kalas and Noss, 2017).  

ScratchMaths uses the programming language Scratch, (an online descendant of Logo) to promote 

mathematical learning. The project encompasses more than 100 schools, some 200 teachers, and 

3,000 pupils of all abilities.   It is a carefully designed intervention for pupils aged 9-11 and 

includes the provision of detailed curriculum materials (for 20+ lessons in each year), as well as 

carefully crafted teacher professional development - both necessary conditions for successful 

implementation in schools. The resources support teachers in planning and delivering their lessons, 

and in adapting the lessons for different pupils. (see 

https://www.ucl.ac.uk/ioe/research/projects/scratchmaths). The ScratchMaths project takes 

programming to scale within an education system (in contrast to taking place in out-of-school 

clubs). It offers effective pedagogy for learning mathematics, for all pupils and has broadened 

understanding of the potential benefits of learning programming as a tool to foster model-based 

reasoning across disciplines. Schools that utilise ScratchMaths talk of its transformative impact as 

a “breath of fresh air” that gives teachers the knowledge, skills and understanding to engage pupils 

in the mathematics curriculum more effectively.  There will no doubt be more design research 

projects that follow in this path.  

2. Tools that outsource processing power  
There are a range of tools that outsource processing power, whether it is a simple pocket 

calculator to ‘do arithmetic’, a graphics calculator, a computer algebra system or, more recently, 

finely tuned applets for particular tasks. The goal of calculator use was originally articulated as 

‘setting students free’ from technical procedures in order to focus on interpretation and problem 

solving.  Heid, a leading researcher in this area, suggested that while using Computer Algebra 

Systems (CAS) mathematics teachers can focus on reasoning, and help students engage in problem 

solving, see for example, Heid & Blume (2008). Artigue (2002) stressed the need to attain a fine 

balance between the ‘pragmatic’ and ‘theoretical’ (or ‘epistemic’) roles of techniques, 

exemplifying her argument with research using CAS, undertaken within the framework of 

mathematical didactics.  With the development of more high-level languages (computer algebra 

systems, dynamic geometry and statistical software), the debate about the potential and 

consequences of outsourcing calculation has intensified.  Wolfram (2015), for example, has argued 

https://www.ucl.ac.uk/ioe/research/projects/scratchmaths
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that “mathematics” is the wrong word for much of what is taught in schools. Rather, students learn 

to “calculate”, and he goes on to assert that calculation “is an obsolete skill, since almost all 

calculating is done by computer these days.”  

The research evidence  about the ‘costs’ of outsourcing to a computer all mathematical 

calculations and manipulations is mixed.  It could be argued that relying on computers for 

calculation might lead to a loss in computational or algebraic fluency, handicapping future 

problem solving. Will students be able to spot a ‘trig identity’ within expressions that need to be 

simplified, without considerable prior practice?  How is this ‘skill’ to be replaced if similar 

simplifications are automated?  What is the balance of amplification, or mental reorganisation, 

from using tools with dependency on them (for a discussion of mental reorganisation, see Pea, 

1985)? Does mathematics education research throw light on the role of routine tasks more 

generally whose outcomes are ‘needed’ in problem solving? What are the long term effects of 

outsourcing calculation to digital tools?  These remain major questions for research.   

An example is presented below of an attempt to address this dilemma from a research project 5 

that investigated how mathematics was used in workplaces, where digital tools were all-pervasive 

and expected to do all necessary calculations. The users of the tools were not engaged in learning; 

rather they sought to reach correct outcomes efficiently. In our studies of the shopfloor, we noted 

how mathematical symbols generated by computers in the form of numbers, charts, tables and 

graphs were ubiquitous with displays put up to trigger the coordination of perspectives of the 

different communities of practice involved in the work, and facilitate communication between 

them (see Hoyles, Noss, Kent & Bakker, 2010). Yet, the language of communication in the work-

based training around these symbolic artefacts was generally algebra, which proved a barrier to 

sense-making for most workers and a barrier to communication. As one trainer remarked:   “The 

response to the formula is laughter. … Eyes glaze over … really lose it.”. Another trainer told us 

that there was: “lots of information for the shopfloor to use in the form of graphical data but the 

shopfloor did not use it partly as it was quite obscure and partly because they did not really have a 

connection in their minds between what they were doing, what the [assembly] line was doing, and 

what the graphs were showing” (Hoyles, Noss et al., 2010).  The symbolic charts and tables on the 

shopfloor simply did not achieve their purpose in supporting communication between different 

groups and tended to be ignored: “expensive wallpaper,” as one worker remarked.  

In the subsequent design research phase of the project arising from our constructionist 

framework, we developed what we called ‘technology enhanced boundary objects’ (TEBOs), 

through which different layers of structure could be revealed in the control of the user. TEBOs are 

highly constrained microworlds designed so that interaction in these worlds provides users with a 

glimpse of part of the underlying mathematical system. Thus the TEBOs offered dynamic, 

graphical and visual tools alongside and simultaneously with the calculations. The tool certainly 
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took on the calculation role, but also enabled the user to observe elements of the structure that 

served as the basis for the calculation, thus promoting more meaningful conceptual engagement. 

As the first trainer above later remarked:  “the web-based tool [the TEBO] helped us get across 

this concept … move to ‘visualisation’ and away from ‘calculation’”.  And as the second trainer 

explained:  “we could encourage them [through using the TEBO] to look at the information on the 

graph and see it as a story that was telling them something would be of benefit so that they could 

troubleshoot the process themselves”. And even more powerfully, the second trainer went on to 

say “there are so many things we learnt from the tool [the TEBO] that we did not anticipate … it 

provided a window for me as to what the guys on the shopfloor thought - not only about the 

process but also about trouble shooting and problem solving as well” (Hoyles, Noss et al., 2010, 

pp. 60-67).  One TEBO supported the interpretation of data presented in a variety of forms; 

another was designed to develop some overall appreciation of the production system and its 

underlying model (see Hoyles, Noss et al., 2010).  

The point of this example is that the digital tool, the TEBO, certainly performed ‘the 

calculations’ but did much more: it was designed so users could glimpse the ‘other side of 

mathematics’ through dynamic and visual manipulation of key variables in a context that was 

meaningful to them. This trainer put into her own context my vision for using digital technologies 

in mathematics more generally: to build meaning (in her words, “stories”) by opening windows on 

learners’ ideas and conceptions, which can serve as starting points for the design of activities and 

teaching. The message from this work was that the mathematics-related skills needed in a variety 

of workplaces cannot be described only in terms of academic mathematics, but as mathematics 

framed by the work situation and context and it is such descriptions, which provide the language 

of communication between different communities in the workplace, for eample, workers on the 

line, senior management and sales reps. Rasmussen and Keene (2015) used of the notion of 

TEBOs in advanced school mathematics.  They provided students with minimalist applets as a 

‘step before’ working with CAS. Thus the use of the applets supported the students in creating 

concepts and methods and this experience later helped them to interpret the output from CAS.   

This promises to be a fruitful area of future research. 

3. Tools that offer new representational infrastructures for mathematics  

The difficulty of a mathematical idea often inheres in the system with which it is expressed. As 

Hoyles and Noss, 2008 argued “[I]magine just how difficult it would be to remember the 

procedural rules of calculus (like the chain rule) without Leibniz’s elegant notation”. Similarly, 

Papert’s thought experiment about the transition from Roman to Arabic numerals serves as a 

provocative example of the opportunities and challenges that follow from changes in the 

representational infrastructure of mathematics (see Wilensky, 2010b). Clearly with the emergence 

of Arabic numerals, students would conceptualise numbers and perform calculations differently.  
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The hypothesis underlying this category of digital tools is that digital technology can offer such a 

new representational infrastructure, and thus change and shape a learner’s language of interaction 

with mathematics and the ways mathematical ideas are expressed; that is, promote 

transformational change, not least as this shift in representational infrastructure could provoke 

discussion of what is important in mathematics, resonating with the idea of Papert’s 10% 

mentioned earlier. The research studies investigating this hypothesis are limited so below is an 

illustrative example.  

The example concerns a thought experiment triggered by an unexpected (for the author) result 

from the Longitudinal Proof project 6. Surveys were conducted each year for 3 years, with the 

same students followed up and tested each year. In one question, shown in Figure 1, a geometric 

diagram was presented which lent support to a false conjecture, and students were asked whether 

or not they agreed with the conjecture and to explain their decision. We found that 40% of students 

(age 13) in our large national sample of top-set students answered incorrectly with the percentage 

only dropping to 26% at age 15.  

 

 

Figure 1. Geometry item from Proof survey 7  

But suppose dynamic geometry systems were infrastructural, and students were just as familiar 

using these systems as they are using a pencil. Would they not “naturally drag a point in their 

heads” - any vertex would do - leading to a rather different profile of responses?  And would we 

then not need to rethink our learning goals, learning hierarchies – and of course our teaching 

approaches?  The following question was submitted by a secondary mathematics teacher as part of 

the online discussion on the teaching and learning of proof organised by the National Centre for 

Excellence in the Teaching of Mathematics (NCETM), in June 2008:  “I now use a dynamic 

geometry package on my interactive whiteboard to illustrate the circle theorems. This shows that 

these theorems always work. Why should my students still have to learn how to write down formal 

geometric proofs?” (See online panel discussion on proof, https://www.ncetm.org.uk/). 

This question is by no means uncommon now and represents a general challenge for teachers 

and for researchers that needs to be addressed. If certain digital tools become infrastructural so that 

students ‘think with them’, what are the consequences for mathematics teaching and learning, and 
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for school mathematics more broadly?  What are the evidence-based frameworks that we could 

turn to for advice and support?   There is in fact some advice available in this particular case 

arising from the considerable research into the teaching of proof, which suggests that it is 

important to make a shift in teaching following the use of dynamic geometry systems from 

illustrating that a particular theorem ‘always works’ to discussing why this is the case: or put 

another way a shift to prioritise in school “the explanatory power of proof” (see Laborde, Kynigos, 

Hollebrands & Strasser, 2006).  More research is needed to investigate how a similar shift in 

teaching with digital technology that promotes explanation of the computer output among peers, 

orchestrated by the teacher might be fruitful.  

4. Tools that help to bridge the gap between school mathematics and the students’ world 

Mathematics is central to the school curriculum, yet, as argued earlier, all too often 

mathematics does not engage learners who do not discern the point of the mathematics they are 

forced to learn. The technology-based ‘information society’ needs model-based reasoners who can 

use mathematical thinking as a way of making sense of the world.  Thus the importance of tapping 

into youth culture must not be underestimated, through the design of ‘engaging environments’ in 

which some mathematical thinking and application is actually needed for students to achieve the 

goals that they find compelling.  One way to achieve this is for learners to take the role, to some 

extent at least, of producers rather than consumers of digital tools and while engaging in 

collaborative design of these tools, they develop the ability to construct, describe, and explain the 

effects of the tools; that is how the system works. There is some research that provides indications 

of this potential but there more research could usefully be conducted.    

Two case studies, along with their underlying theoretical principles of this approach are 

reported in Hoyles and Lagrange (2010). Both studies comprised sets of interactive modelling 

activities, microworlds, targeted at 11-14 year old students, with the following underlying 

rationale:  

 

Students are typically told that they must study mathematics in order to keep open their options 

to pursue quantitatively-oriented careers in mathematics, science, technology, or engineering.  

For most of them, this is a very distant and abstract motivation, especially for students whose 

familial network does not include members who currently engage in such work. (See Confrey 

et al., 2009, p. 19) 

 

The emphasis in the design allowed the exploration of mathematical ideas in different ‘layers’, 

embedding increasing problem-solving complexity into the software.  The first case study 

concerned designing a Space Travel Games Construction Kit, in which specially designed 

programme fragments were provided that the students could customise, assemble and re-assemble 
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to build a computer game. The student could ‘dig down’ and edit as far as they wished even to the 

programming code, or stay at the level of changing variables with sliders, or changing 

backgrounds by selecting different images. The second case study concerned the design of an 

animation microworld to strengthen and connect students’ numerical and geometric knowledge, 

with the aim of teaching students a range of mathematical ideas, including integer and rational 

number operations, similarity and scaling, coordinate graphing and tables, basic geometric 

concepts, transformations, and ratio reasoning (for more detail, see Confrey et al., 2009). 

Many studies outside mathematics education research similarly suggest that digital technology 

devices hold the potential to tap into the culture of young people to support their ‘STEM learning’.  

To take one quite provocative quote:  

 

As core education is increasingly distributed in out of school contexts, it is time to start 

considering how everyday things might lend themselves to teaching the fundamentals students 

need to know.  After all, they will be using the science and mathematics to invent the next, 

newest everyday things.  (Lewis & Ju, 2013, pp.295) 

 

Design research for mathematics learning with this explicit affective dimension as a goal - along 

with the aim of building connections between ‘school’ and ‘outside school’ - is rather less well 

developed than the other categories above.  Such research will be of increasing importance at least 

in England, as more and more students are required to study mathematics for longer but may not 

know why.  Research and development to ensure their mathematical studies provide some 

intellectual reward as well as important qualifications would be timely.  

5. Tools that exploit high-bandwidth connectivity to support mathematics learning 

With the massive increase in the power and reach of web infrastructure, both in homes and 

schools, there is little doubt that much has changed in terms of access to connectivity. But the 

question remains as to how far affordances arising from this enhanced connectivity have been 

exploited in the interests of mathematics education.  Connectivity has the potential to lead to 

sharing solutions, problem solving strategies and knowledge construction. In practice, this 

potential is rarely achieved. At the ICMI Study Conference (Hoyles & Lagrange, 2010), 

contributions on this topic of connectivity and virtual networks for learning mathematics were 

called for, but very few proposals or papers were received.  A few experts were therefore invited to 

be part of a plenary panel on this topic. This field is still at quite an early stage but their 

contributions, summarised below, give an idea for some fruitful avenues for research.   

First it is possible to develop microworlds specifically for on-line collaborative learning with 

opportunities for communication and working in common learning spaces, physically or virtually  

(Kalas, 2010).  Key components of designing for connectivity were outlined by Noss and Hoyles 
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(derived from two large-scale projects: the Playground project and the WebLabs project, both 

funded by the European Union), where students built and shared their own models, so had 

developed ownership of the models, and in the process of writing a joint report the students (face-

to-face or online) developed a shared language of communication. On the basis of research in 

‘ordinary classrooms’, Trouche and Hivon (2010) noted how the teacher's behaviour was 

significantly modified when designing to exploit connectivity for mathematics learning: the 

teacher not only had to create the conditions for students to build a mathematical object but to take 

on board that this object would be built by the community of students. To quote: “A student does 

not play only the music written by the conductor anymore. He is writing part of the music. The 

question is now to know how the teacher can create conditions to make the music not too different 

from what s/he wants it to be!” Wilensky (2010b) asserted that concurrent connectivity was a 

rather neglected affordance of connectivity. His examples of classroom participatory interactive 

simulations and their outcomes indicated the potential in the classroom contexts.  Finally, Noss 

and Hoyles (2010) reported the findings of two European projects, the Playground Project and the 

WebLabs project that set out to investigate ways that students could be motivated to collaborate 

while physically separated.  In the Playground young children (aged 4 to 8 years) built and shared 

their own videogames during out-of-school clubs, while in WebLabs, students engaged in 

mathematics or science lessons, with a web-based collaboration system to share the models they 

had built to solve a particular problem and to discuss their assumptions and evolving solutions.  

All the presentations reported positive outcomes but also mentioned technical, linguistic and 

cultural obstacles that needed to be addressed (for more detail, see Hoyles et al., 2010). 

So what new insights for mathematics education can be gleaned from research that takes 

account of the ubiquitous connectivity now on offer?  There is a large and growing body of 

research in computer-supported collaborative learning that includes some research in learning 

mathematics (see, for example, Stahl, Cress, Law, and Ludvigsen, 2014).  I wonder if this rich 

strand of research permeates more ‘mainstream’ mathematics education research?  If, as I 

conjecture, the answer is ‘rather little’, is this yet another example of the ‘isolation of technology-

related research’ that Hoyles and Noss (2003) noted.  One example that seeks to build bridges 

between research with digital tools including exploiting connectivity is the ScratchMaths project, 

mentioned earlier, that includes tasks to be performed collaboratively on and off the computer. But 

there is much more to be done, not least to research in detail the impact of such tasks. 

6. Intelligent support for the teacher  

In 2008, Richard Noss and I led a research project, Migen,8 which set out to design some 

intelligent support for the teacher when students are engaged with specific tasks. The aim of the 

project was to reduce the burden of scaffolding the diverse responses generated when students 

engage in exploratory learning with digital technologies. We know that the teacher’s role with a 
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class of students using digital technologies in exploratory ways is certain to be challenging, due to 

the sheer number and variety of student outputs that need appropriate response. The research set 

out to design scaffolding as part of our microworld to ‘address’ at least some of the predictable 

responses originating from known conceptual obstacles.  In Migen, we took as our focus algebra 

and generalisation in early secondary school, an area that has attracted a considerable volume of 

research on student errors, approaches and alternative conceptions. The project then designed a 

pedagogical and technical system that allowed students to interact with mathematical objects and 

relationships (in the form of figural patterns and the rules that governed them), and, as a result of 

their interactions with carefully designed tasks, could  ‘see’ the general case unfold. We aimed to 

create a situation where, by engagement with the microworld, the following three key ‘algebraic 

ways of thinking’ would be developed: perceiving structure and exploiting its power; seeing the 

general in the particular, including identifying variants and invariants; and recognising and 

articulating generalisations, including expressing them symbolically. (For more details see, for 

example, Mavrikis, Noss, Hoyles & Geraniou, 2012). 

The microworld provided informative feedback from its dynamic functionality, but also from 

the ‘intelligent support’ designed to be triggered when responses pointed to a ‘typical’ 

misconception – that is, a misconception we could predict.  This is the point where 

interdisciplinary input is essential to include those who could conjecture about the nature of these 

challenges (as gleaned from the mathematics education research literature), those who could 

conjecture what an expert teacher might do in these situations, and those with technical expertise 

who could implement the required prompts. A major challenge – arguably, the major challenge – 

was to design support in ways that provided students with ‘enough’ freedom so they could actively 

engage in their construction task, yet with adequate constraints so as to be able to generate 

feedback that assists students in achieving the planned mathematical goals – an example of the 

play paradox described in Noss and Hoyles (1996). The system has been developed further and 

integrated into larger platforms with additional teacher support (Dragon et al., 2013) and 

colleagues have developed e-books based on these ideas as part of the Mathematical Creativity 

Squared project9. The design ideas of the microworld have also formed the basis of one unit of 

Cornerstone Mathematics (see below).  Finally there have been interesting developments 

associated with intelligent support in natural language designed for tertiary education students, as 

reported in Rojano and Garcia-Campos (2016). But again this area is rich in opportunities for more 

research in different mathematical domains and with different students. 

Challenges for the mathematics education research community 

This outline and exemplification of the six categories of digital tools that might support an 

agenda for research into transformational change in mathematics teaching and learning indicates 

that much remains to be done to fulfil the potential promised.  In some areas, research is at an early 
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stage; in others, outcomes are more established but are yet to have widespread impact. What new 

directions for research have opened up and what challenges are still to be faced? Below are some 

broader issues to that it would be fruitful to investigate further. 

 

Embedding digital tools to support epistemological transformation through design research 

The volumes of RME reveal rather little research addressing this challenge. I mention one 

article here: Sinclair and Yurita (2008) discussed how using dynamic geometry changed classroom 

discourse with significant differences in the ways in which teachers talked about geometric 

objects, made use of visual artifacts and modelled geometric reasoning. Is it worth the 

mathematics education research community revisiting or catalysing more research into how 

mathematical processes and objects are transformed with the use of digital tools and how this 

impacts teaching and learning?  This research would, in my view, require an explicit focus on 

design – the design of tasks, digital tools, feedback and evaluation  – as well as the investigation 

and identification of what might be different epistemological goals for school mathematics in the 

light of the available technological infrastructure, or put another way, work on ‘Papert’s 10%’. I 

wonder if the move in general towards researching mathematical classroom practice that embeds 

digital tools has had the unintended consequence of moving away from design research and 

considerations of epistemology and curriculum?  

In her editorial for the ICMI book (Watson & Ohtani, 2015), Watson makes a perceptive point, 

arguing that: “Few studies justify task choice or identify what features of a task are essential and 

what features are irrelevant to the study” (p.12).  Is it the case that much of mathematics education 

research tends to engage with systematic analyses of what happens in mathematics classrooms 

with tasks taken as givens? This echoes what Papert might have had in mind when he criticised the 

general field of mathematics education research for not allocating sufficient energy to consider the 

‘what’ rather than merely the ‘how’ of teaching.  By contrast, in the much smaller, sub-domain of 

mathematics education research around ‘design research with digital tools’, the task, its design and 

the software are all at the forefront of the collective research effort: the design of digital tools is 

predicated on identifying and expressing mathematical concepts in novel ways to promote learning 

mathematics.  

So there seems a good case for more research into the transformational potential of using 

digital technology in mathematical practice, and to move beyond the documentation of new 

mathematical meanings and discourses, to proposals and evaluations of ‘mini’ curricular systems 

that deliberately exploit the expressive potential and functionalities of digital tools and identify 

‘new hierarchies’ of learning. Well-researched notions such as that of “hypothetical learning 

trajectory” (HLT), originally conceived by Simon (1995), recognise that learning activities and the 

learning processes are interdependent and co-emergent, rather than setting out universal steps of 
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learning. Can and should design research embedding digital technologies usefully contribute to 

this corpus of research, for different age-ranges and for different mathematical topics? I refer here 

to a volume (Monaghan, Trouche & Borwein, 2016), which presents an excellent starting 

foundation with its multiple examples of ‘doing mathematics with tools’ and the associated issues 

around teaching, teachers and the curriculum.  

We have contributed  to the agenda of transformational change through the design and 

implementation of Cornerstone Mathematics (CM) (See Hoyles, Noss, Roschelle & Vahey, 2013; 

Clark-Wilson, Hoyles, Noss, Vahey & Roschelle, 2015). CM encompasses four elements, each of 

which have been extensively researched and developed over many years: digital technology for 

mathematics learning, professional development and teachers' skills and knowledge, developing 

curriculum replacements activities, along with scaling and sustainability of research-based 

interventions. The novelty of the Cornerstone approach lies in the particular combination of the 

elements, seeking to exploit the positive potentials of each, and overcoming some of the 

limitations. CM has designed activities embedding digital technology that focus on a selection of 

topics, where we predicted the mobilisation of digital tools would make a difference to student 

engagement, student learning and progress: our contribution to Papert’s 10%. In order to simplify 

the methodological challenge of evaluating CM in practice, we provided a common focus for the 

analyses of classroom interactions and teacher moves by identifying what we termed ‘landmark 

activities’, designed so that students, through their explorations with the digital tools, would come 

up against unexpected outcomes. (see also Rowland, 2015).  

However, unsurprisingly all innovations that embed digital technologies rely fundamentally on 

appropriate teacher support, which takes me to my second challenge. 

 

Progress in supporting teachers and teaching in using digital technologies? 

 It was recognised in the ICMI study (Sinclair & Yurita, 2008, section 2), that the teacher had 

been a relatively neglected player in digitally oriented research, where the focus had tended to be 

on individual(s) ‘doing mathematics with software’ and the mutual effects of their interactions. 

Early design research with computers reveals rather little detail of the role of the researchers and 

the teachers, although teacher scaffolding of mathematics learning was certainly recognised as 

critical. For digital technologies to move from the periphery to centre stage in mathematics 

teaching and learning and for its potential for transforming mathematical practice to be realised, I 

would argue that teachers must be part of the transformative process as co-designers and teacher 

researchers.  But the design process is challenging: the dialectical influence of tools on 

mathematical expression and communication must be taken into account, the diverse foci of design 

and analyses (software and activity design, interactions in classrooms, teacher scaffolding moves) 

each demand different expertise, methodologies and resources.   
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Nonetheless, many mathematics education researchers are now investigating explicitly the role 

of the teacher in classrooms where digital technology is used (see for example, Clark-Wilson, 

Robuttie & Sinclair, 2014). In addition, turning the research gaze onto teachers has raised the 

question of the nature and extent of ‘necessary’ continuing professional development and learning.  

One way to support such professional learning could be through a national infrastructure for 

Continuing Professional development (CPD) such as the National Centre for Excellence in the 

Teaching of Mathematics (NCETM) in England. Such networks and communities could support 

the use of digital technologies in classrooms, share good practice and ways to overcome obstacles.  

Is such a national infrastructure a necessary backdrop for embedding digital technologies at scale?  

Is it possible to maintain a balance of ‘top-down’ and ‘bottom-up’ initiatives?  The initiatives 

mentioned above might be important components in this next step (see Sinclair et al., 2010, for an 

earlier discussion of implementing digital technologies at a national scale) and insights can be 

gleaned from the research on scaling CPD as reported in Roesken-Winter, Hoyles & Blömeke 

(2015) but this is just the start of a much longer research journey. 

 

Managing methodological complexity  

Artigue (2002) complained there was no framework to underpin analyses of the use digital 

technologies in mathematics classrooms. There are now many: some general for analyses of 

teacher, student and classroom interactions and teacher expertise, and some specifically concerned 

with practice embedding digital technologies. (For a description of analyses of learning using the 

documentational approach, see Gueudet, Buteau, Mesa, & Misfeldt, 2014).  

This multiplicity of frameworks brings new challenges not least to compare and contrast 

research and to build a cumulative picture of results.  Ruthven (2014) provides a helpful summary 

of a subset of ‘contemporary’ frameworks as he calls them, and concludes his chapter by 

suggesting that: ‘More intensive research at the concrete level could serve better to operationalize 

the existing frameworks or to fuel the development of a single more powerful one’ (p. 392). It 

would seem important for the research community in mathematics education to take steps in this 

direction? 

 

Despite this focus, that research task is complex, with multiple sources of data to be collected, 

analysed and synthesised. In Hoyles and Noss (2016) it was conjectured that a potentially rich new 

strand of design research methodology might usefully include more complementarity between 

qualitative and quantitative data analyses, thus harnessing further the emerging techniques of big 

data and learning analytics. There are already initiatives in school mathematics that are working to  

capitalise on the ease with which data can be collected and analysed, Several of these are initiated 

and managed by experienced practicing teachers (see for example Hegarty Maths, 
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(https://hegartymaths.com, a massive online resource with explanations of carefully modelled 

examples, and a tracking system that allows teachers to focus on pupils' mistakes).  My point here 

is there is rather little evidence of any role of the mathematics education research community in 

such initiatives that reach so many teacher, and there might be a fruitful role for more research into 

their design, data analyses and interpretation, and into the form of the feedback communicated to 

teachers and schools?  

 

Final remarks 

I end by reiterating what might be read as a rather obvious point.  Clearly, the mere presence of 

digital technology or even the ready access to data  makes little difference to student learning 

outcomes. Outcomes depend on how all these resources are used separately or in combination. 

This point is worthy of emphasis, however, as I still hear of projects looking at the ‘effects of, say, 

a technology on X or Y’ (see, for example, a study reporting on ‘The Impact of Computer Usage 

on Academic Performance’ Carter, Greenberg & Walker, 2016). As early as 1985, an article by 

Pea conveyed the following crucial message: “The urgency of updating education's goals and 

methods recommends an activist research paradigm: to simultaneously create and study changes in 

processes and outcomes of human learning with new cognitive and educational tools.” (Pea, 1985). 

Can the mathematics education research community embrace such an activist paradigm and take 

steps to overcome any remaining “marginalization of technology”, and make progress in 

elaborating evidence-based ways to exploit the use of digital tools to enhance mathematics 

learning for all? All too frequently, the costs and accessibility of digital technologies are given as 

reasons why impact has not reached expectations. It could be argued that this is no longer the case, 

in many countries including the U.K.  With ever increasing knowledge, a more robust theoretical 

basis, along with systematic evidence from the research community to underpin the necessary 

teacher support (see, for example, Clark-Wilson & Hoyles, 2017), it seems a promising time for 

research to move forward with practice and to support teachers so students progress along 

trajectories of learning with digital tools, with the ultimate goal that more students reach a broader 

view of mathematics – one that is so much more than calculation and one that they judge to be 

personally empowering and fulfilling.  

 

  

https://hegartymaths.com/
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