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Abstract: Electromagnetism provides us with some of the most powerful tools in science, 

encompassing lasers, optical microscopes, MRI scanners, radar and a host of other techniques. 

To understand and develop the technology requires more than a set of formal equations. 

Scientists and engineers have to form a vivid picture that fires their imaginations and enables 

intuition to play a full role in the process of invention. It is to this end that transformation optics 

has been developed exploiting Faraday’s picture of electric and magnetic fields as lines of force 

which can be manipulated by the electrical permittivity and magnetic permeability of 

surrounding materials. Transformation optics says what has to be done to place the lines of force 

where we want them to be. 

  



The nature of light was revealed by Maxwell a century and a half ago. His equations stand today 

as an description of light, and all electromagnetic phenomena, exact at the classical level. It has 

long been known that Maxwell’s equations are invariant under a coordinate transformation (1-3). 

If are the permittivity and permeability tensors expressed in some coordinate frame, 

then a transformation to a new coordinate frame  does not alter the form of Maxwell’s 

equations but only changes the  values of permittivity and permeability to be used. Formally we 

have, 

 

where, 

 

This simple mathematical statement has been elaborated over the past couple of decades into an 

intuitive working tool of electromagnetic theory (4-8). Here, we shall give a physical 

interpretation of the equations and re-derive the formulae in an intuitive fashion, followed by 

examples of where transformation optics has been effectively applied. 

Bald mathematical statements hide the real power of the transformation method which is only 

revealed when we appeal to Michael Faraday’s representation of electric and magnetic fields in 

terms of lines of force. In this scheme the displacement field, , and the magnetic field 

 are represented by field lines that begin and end on charges in the case of the displacement 

field, and are continuous in the case of the magnetic field. Their density represents the field 

strength. A coordinate transformation can be thought of as a distortion of space which moves the 

field lines around as if they were embedded in a block of rubber. As we distort the coordinates, 



we carry the field lines along too. This yields an intuitive picture of how to manipulate fields: 

just as Snell’s law tells how rays of light can be redirected and focused using the refractive 

index, transformation optics shows how field lines can be manipulated and gives an exact 

prescription for the values of  ensuring that the distorted field lines obey Maxwell’s 

equations. Replacing the rays of Snell’s law with Faraday’s fields extends our powers of 

visualization into regimes untouched by Snell, such as the sub wavelength electric fields found in 

plasmonic systems and even to the regime of static electric and magnetic fields (9). 

Not only does this manipulation apply to  and , but also any electromagnetic quantity that is 

conserved and therefore represented by field lines: for example the Poynting vector representing 

the flow of energy serves as a generalization of the ray picture. Another example is the flow of 

charge either as an electrical current or as the trajectory of an individual particle.  

The power of transformation. We shall give a few examples that demonstrate the power of the 

technique, but first let us make an alternate, intuitive, derivation of the transformation equations.  

Consider an electric displacement field, , parallel to the  axis in a dielectric medium (as 

shown red in Fig. 1A). Next make a coordinate transformation in which one half of space is 

uniformly compressed by a factor  (Fig. 1B. We then ask how the permittivity in the 

compressed medium must change. To calculate  we require that   is continuous. Noting 

that owing to the compression the lines of force have been pushed closer together and hence 

 has been increased by a factor , 

 

and hence . The same argument for magnetic fields shows that . 



 

 
Fig. 1. Visualising a transformation in the electric displacement fields. The field lines (A) 
before compression of half the coordinates, and (B) after compression. The flux lines 
perpendicular to the axis of compression (cyan) are pushed closer together, whereas those 
parallel to the axis (blue) have their spacing and therefore the  field intensity unaltered.  

 

To find  consider an electric displacement field, , parallel to the  axis (as shown cyan in 

Fig 1A). After compression of the coordinate system this field is unaltered,  (Fig. 1B). 

To find  we require that the work done by a test charge passing from one side of the 

compressed region to the other is unaltered by the compression. Because the charge traverses a 

region shortened by a factor , the electric field,  must increase by a factor , and as  

is unchanged this requires that, 

. 



The final result is simple: compression along an axis by a factor of  decreases  along that 

axis by a factor of , and along the two perpendicular axes  is increased by a factor of . 

Similarly for the permeability. In fact this is the most general statement of the transformation, 

since the most general distortion of a local coordinate system can be represented as sequential 

compressions about three axes followed by a rotation. So not only do we have an intuitive feel as 

to how field lines behave as we distort the coordinates, but we also get an intuitive feel for the 

changes in the electric and magnetic response of the transformed medium. 

Example applications: Cloaking. Perhaps the most famous application of transformation optics 

has been the design of a cloak of invisibility (10-15). The technique is ideally suited to this task 

as fields are only disturbed where the coordinates are distorted, so confining the distortion to the 

interior of the cloak itself leaves external fields undisturbed and therefore the act of cloaking 

undetected. However early experimental realizations of cloaks were all much larger than the 

wavelength of radiation from which they were hiding, and could in principle, though with 

difficulty, have been designed using ray optics. More recently cloaking principles have been 

applied to the near field, and in extremis to static magnetic fields, an instance where ray optics 

obviously has no application. The same transformation used for an optical cloak (10) was used to 

design a cloak for static magnetic fields (15), 

 

resulting in the following cloaking parameters for the permeability, 

   

Note how these parameters obey the compression rules derived above: radial values of  are 

decreased and angular ones increased.  



The magnetic field cloak (Fig. 2C) is designed using these formulae with the simplification that 

because magnetic fields alone are assumed to be present we need only adjust the permeability. 

The design strategy is to make a transformation that takes all the ‘space’ inside the cloak and 

compress it in the radial direction into an annulus, leaving an empty inner space in which we can 

hide objects. As we have noted, compressing space increases the permeability perpendicular to 

the direction of compression, and decreases the permeability along the direction of compression, 

in this instance along the radius.  

The latter specification was the key challenge that Narayana and Sata met (15). They built a 

cylindrical cloak for static magnetic fields using a novel design for the diamagnetic 

metamaterials demanded by the formula  (16). They placed the cloak in a magnetic field created 

by two electromagnets and measured the fields inside and outside the cloak as a function of the 

current in the electromagnets (Fig. 2). They also measured the fields for 3 different devices each 

of which excludes the magnetic field: (A) a superconducting screen that exploits the Meissner 

effect to exclude magnetic fields but, by repelling the fields into the surrounding space, distorts 

the external fields; (B) a mumetal shield that attracts the field lines into the highly permeable 

metal, but also distorts the external fields, and (C) a cloak designed according the transformation 

optical principles which excludes the magnetic fields in a fashion that does not distort the 

external fields. The measured data for the cloak confirm that the cloak not only excludes fields 

but is also undetectable. 



 
Fig. 2. Three schemes for excluding magnetic flux from an enclosed region of space. (A) A 
superconducting shell exploits the Meissner effect to exclude flux, but results in a strong 
disturbance in the external field which has to accommodate the excluded flux lines. (B) Mumetal 
is used to attract flux lines away from the central space, but also results in a distortion of the 
external field. (C) A true magnetic cloak removes flux lines from the protected space but 
confines the displaced flux lines within the body of the cloak leaving external fields unaltered. 
Below are the results of an experiment on the cloak shown in (C). A magnetic field generated by 
current in an electromagnet is applied to the cloak. Sensor 1 inside the cloak demonstrates zero 
flux inside the cloak; sensor 2 outside the cloak shows an undisturbed external field. 

There are several situations in which it may be desirable to hide a sensitive object from a 

magnetic field, but not to disturb the field outside the cloak. In this way external functions of the 

field, such as resolving objects in an MRI scan, are preserved. The solutions shown in Figs. 2A 

and  2B would not achieve this objective and would also result in mechanical forces on the cloak 

itself due to interaction with the induced dipole moment. In contrast the true cloak has no dipole 

moment and therefore no net force is exerted.  

 

Nanophotonics. Plasmonics has also been a fruitful area of application as reported in (7,17,18). 

The surfaces of metals such as gold and silver support density oscillations of the electrons, much 

like waves on a sea. These can couple to external radiation, but have a much shorter wavelength. 



The plasmonic excitations are greatly influenced by the shape of the surface and in particular by 

any singularities such as sharp corners, touching surfaces, or other rough features, which tend to 

attract very high field intensities: they act as harvesting points for any incident radiation. This is 

the origin of surface enhanced Raman spectroscopy (SERS) in which the intense field 

concentrations greatly increase the Raman signals from adsorbed molecules, sometimes by as 

much as . Without this effect many molecules would be Raman invisible at the surface. 

By applying transformations to simple structures, such as plasmonic waveguides consisting of 

two parallel sheets of silver, many of the singular structures can be generated through a singular 

transformation and their spectra understood through the spectrum of the original simple 

waveguide. Thus apparently diverse structures such as sharp edges, points, nearly touching 

spheres, can be shown to have a common origin and can in many cases be treated analytically. 

This deep understanding enables further properties of these structures to be elucidated such as 

the dispersion forces acting at short range between surfaces that are otherwise out of physical 

contact (19,20). The origin of these forces lies in the zero point energy, , of the 

electromagnetic modes whose frequencies shift as surfaces approach. By transforming 

apparently complex surface configurations to simple waveguides spectral shifts (invariant under 

a transformation) can be calculated analytically and the forces determined (21).  

Two gold spheres in close proximity (Fig. 3) are shown to transform into two concentric spheres. 

The transformation consists of an inversion about a point carefully chosen so that the inverted 

structure comprises two concentric spheres. The highly symmetric geometry of the inverted 

structure leads to greatly simplified calculations – another instance of ‘hidden symmetries’. 



This theory has been applied to the interaction between two gold nanospheres. First the 

experimental permittivity of gold (22,23) was fitted using the Drude-like term for the lower 

frequencies and Lorentzian terms for higher frequencies where core excitations in the gold are 

important. Data extending to 100eV were fitted. Included in the calculation are non local effects 

which smear out surface charges and hence introduce a natural cut off in wave vector without 

which the forces would not saturate as the touching point is approached. On the right are the van 

der Waals energies calculated in the coordinate system of the concentric spheres. The 

calculations demonstrate the importance of going beyond the Drude approximation to the 

permittivity and also of including non local corrections.  

 
Fig. 3. van der Waals energy between two 10-nm-diameter gold nanoparticles as a function 
of the separation. For the blue dashed line, nonlocal effects are considered. The black dotted 
line shows the van der Waals energy calculated neglecting nonlocal effects. The energy 
considering nonlocal effects but neglecting the Lorentzian terms in the permittivity is shown by 
the short dashed line.  

 

When investigating a system’s properties, whether electromagnetic, electronic, or acoustic, to 

mention only three aspects, considerations of symmetry are often vital. In spectroscopy 

symmetry classifies transitions, and when calculating the electronic properties of matter 



symmetry is vital to simplifying computations because states are classified by wave vector, 

courtesy of Bloch’s theorem. In contrast disordered solids are still not well understood because 

of their lack of symmetry. However it is possible to start with a highly symmetric system, such 

as a planar plasmonic waveguide, whose properties are classified by a wave vector and therefore 

well understood thanks to the symmetry, and apply a transformation that destroys the geometric 

symmetry, but leaves the spectroscopic properties intact. This we call a ‘hidden symmetry’ (24). 

For example the planar cross section of the waveguide can be transformed variously into a knife 

edge, two cylinders in close proximity, or a crescent. All these structures inherit the spectrum of 

the mother system: they have a common spectroscopic ‘DNA’.  

Electon micrscoscopy. Yet another example of both insight and computational facility brought 

by transformation optics is found in electron energy loss calculations. Electron microscope 

technology is highly developed and can image materials at the sub nanometer level. In addition 

by applying energy analysis to the emerging beam it is possible to detect the electromagnetic 

spectrum of an object resolved at the nanoscale (25). This is a very powerful technique.  

Figure 4 shows on the left an electron beam, typically 50keV, passing close to a metallic 

nanostructure. Electrons lose energy and momentum to the surface plasmons of the metal giving 

access to the electromagnetic spectrum of the structure. Electrons also have the advantage that 

unlike photons, the excitations are not limited by a dipole selection rule. The electromagnetic 

field surrounding an electron in uniform motion is easily calculated, but in the past it has been 

generally supposed that the modes with which it interacts require a complex harmonic expansion 

involving many terms. However a simple inversion about the touching point takes us to a highly 

symmetric planar waveguide whose modes are easily calculated and which can immediately be 

transformed to the modes of the touching cylinders. The electron trajectory in the transformed 



frame maps to a circle traversed at a non uniform rate, but that need not concern us because the 

field has already been simply calculated in the other frame. Hence the loss problem is easily 

solved in this way. 

 
Fig. 4. Electron energy loss can be calculated simply using transformation optics. (A) shows 
the physical system with  a high energy electron passing close to a pair of touching nanowires 
represented as cylinders. (B) an inversion about the touching point takes points at the origin to 
infinity and points at infinity to the origin. The cylinders morph into a waveguide contained 
between two parallel metal plates, and the electron now makes a circular trajectory starting 
slowly at the origin, moving more rapidly at the furthest point from the origin, and slowing again 
before returning to the origin. The electromagnetic field of the electron is most simply calculated 
in (A), and that of the metallic system in (B). 

 
Perfect lensing. Another theoretical challenge to which TO has been applied is the perfect lens. 

Veselago (26) made a study of the then hypothetical materials which show negative refraction. 

He identified the necessary conditions for this effect which comprise . Many years 

later metamaterials have enabled his ideas to be realized (27-30). Amongst many suggestions 

from that earlier work was the possibility of focusing light using negative refraction: Veselago 

used the ray picture to show that light is naturally focused by a negative index slab of material 

(Fig. 5A). Of itself this result is unremarkable: there are many devices that focus light, but an 



alternative derivation using transformation optics castes new light on the Veselago lens. We have 

discussed how compressing a region of space by a factor  results in  parallel to the 

compression being reduced by a factor of , whereas in the perpendicular direction that  

are increased by . Now let us push matters to extreme: infinite compression leads to 

infinities in one direction and zeros in the other, and going beyond that to negative values of  

implies negative values of  if we take the mathematics seriously. If  we regain an 

isotropic system but with  and hence according to Veselago the refractive index is 

. In geometrical terms we have folded space over onto itself (Fig. 5B). This means that 

according to the transformation light passes through the same region of space three times coming 

to the same focus each time. Furthermore, because transformation optics is exact at the level of 

Maxwell’s equations, this is an exact statement and the focus has the same level of perfection on 

each of the three manifolds. This conclusion was reached some time ago (31) by a more 

elaborate multiple scattering treatment of the problem with the conclusion that the Veselago lens 

is perfect in the sense that its resolution is limited only by the perfection of manufacture, not by 

fundamental constraints. This gives yet another instance that transformation optics is not merely 

a tool for computation, but provides insight and understanding of complex problems.  

The apparent paradox of the light being in three places at once is resolved by the fact that the 

condition  can be satisfied exactly only at a single frequency and therefore a causal 

interpretation in the time domain is not available. 



 
Fig. 5. Geometry and negative refraction. (A) The Veselago lens. (B) If negative refraction is 
interpreted as ‘negative space’ the light appears to move in a folded space. (C) Transformation to 
a system of spherical coordinates makes a perfect magnifying glass which to an external observer 
displays everything within the green sphere appear within the magenta sphere in magnified form.  

 

Transformation optics has extended the concept of the perfect lens to the case of a magnifying 

lens. If we apply to the perfect lens a transformation, 

 

then in the primed frame we have a spherically symmetric system shown in figure 5C with the 

parameters, 

 

where  are the radii of consecutive spheres, outermost to innermost. This new lens, 

colored in cyan, is described in more detail in (5,32,33)  and has the property that everything 

inside the green inner  sphere is perfectly imaged as a magnified object into the region within the 



outer magenta sphere, and conversely any object between the magenta sphere and the lens, 

appears demagnified within the inner sphere. This leads to a paradox: an observer to the right of 

the lens would observe the red upper ray as having passed through the central region of the lens 

because the theory says that it has to. In particular if the region inside the green sphere were 

filled with a black material, to an external observer the whole of the large sphere outlined in 

magenta would appear black. The ray picture would say that this is not possible because rays that 

do not strike the blue sphere cannot be refracted into the central sphere. This superficially logical 

statement is wrong: one of the many curious consequences of negative refraction. The paradox is 

resolved if we allow for optical ‘tunneling’ between rays which is allowed in the wave picture. 

Concluding remarks. Transformation optics is a tool that can be applied across the entire 

electromagnetic spectrum. Here we have selected a few examples of its power. Already the 

concept has spread to acoustics (34), and other wave like phenomena (35). In the future we can 

expect many more applications as its utility comes to be recognized.  
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