
Transforming XML Documents as Schemas Evolve
Marcin Kwietniewski Jarek Gryz

York University and IBM CAS
Toronto
Canada

{marcin,jarek}@cs.yorku.ca

 Stephanie Hazlewood Paul Van Run

IBM
Toronto
Canada

{stephanie,pvanrun}@ca.ibm.com

ABSTRACT

Database systems often use XML schema to describe the format

of valid XML documents. Usually, this format is determined

when the system is designed. Sometimes, in an already

functioning system, a need arises to change the XML schemas. In

such a situation, the system has to transform the old XML

documents so that they conform to the new format and that as

little information as possible is lost in the process. This process is

called schema evolution.

We have implemented an XML schema transformation toolkit

within IBM Master Data Management Server (MDM). MDM uses

XML documents to describe products that an enterprise may be

offering to its clients. In this work we focus on evolving schemas

rather than on integrating separate or heterogeneous data sources.

Our solution includes an extendible schema matching algorithm

that was designed with evolving XML schemas in mind and takes

advantage of hierarchical structure of XML. It also includes a data

transformation and migration method appropriate for

environments where migration is performed in an abstraction

layer above the DBMS. Finally, we describe a novel way of

extending an XSLT editor with an XSLT visualization feature to

allow the user’s input and evaluation of the transformation.

1. INTRODUCTION
Database systems which store XML documents often impose

constraints on those documents to make certain the data they

represent makes sense in the context of the database. A

recommended way of doing that is the use of XML schema, by

which the format of valid XML documents can be specified.

Usually, the format of XML data which a computer system will

store is determined when the system is designed along with the

whole database schema. However, it is possible that in an already

functioning system, a need will arise to change the XML schemas.

Perhaps the users need to store some additional data or need to

describe phenomena that cannot be described in the old format. In

such a situation, apart from adjusting all software that dealt with

the old data model, there is a need to transform the old XML

documents in such a way that they conform to the new format and

that as little information as possible is lost in the process. This

process is called schema evolution.

We have implemented an XML schema transformation toolkit

within IBM InfoSphere Master Data Management Server (MDM).

MDM is an enterprise application that works on top of a relational

database and provides a solution for managing customer, account,

and product data centrally. It uses XML documents to describe

products that an enterprise may be offering to its clients. In this

work we focus on evolving schemas rather than integrating

separate or heterogeneous data sources. When two schemas to be

mapped come from a single database and describe the same

concept they will, most likely, have a big overlap. It is desirable to

exploit this property and to create a schema matching and

mapping tool geared towards evolving schemas rather than those

coming from very different sources. Indeed, by restricting the

domain of possible XML documents in this way we are able to

provide semi-automatic (and often fully automatic) transformation

of XML schemas.

This work provides a comprehensive solution to the problem of

XML schema evolution. Our system includes an extendible

schema matching algorithm that was designed with evolving

XML schemas in mind and takes advantage of hierarchical

structure of XML. It also includes a data transformation and

migration method appropriate for environments where migration

is performed in an abstraction layer above the DBMS. Finally, we

extend an XSLT editor with an XSLT visualization feature to

allow the user’s input and evaluation of the transformation.

Although this work focuses on the MDM Server environment, the

results should be applicable to other similar systems that manage

XML documents.

2. BACKGROUND
Numerous approaches to schema matching have been proposed

[2]. The focus in this area is primarily on automatic or semi-

automatic discovery of correspondences between attributes of

matched schemas. Fully automatic and reliable matching is

impossible to achieve because of ambiguity and imprecision of

data model information. Therefore, researchers aim to help the

user as much as possible, especially in the tedious analysis of

large schemas, where most attributes have obvious matches.

Successful, modern data matching tools use multiple matching

methods and combine their results to obtain the best match. Ideas

from such tools could potentially be reused in the environment

considered here. However, the focus of research in this area is on

integrating separate, heterogeneous data sources over the web.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,

2010, Singapore.

Proceedings of the VLDB Endowment, Vol. 3, No. 2

Copyright 2010 VLDB Endowment 21508097/10/09... $ 10.00.

1577

Such sources may have dramatically different schemas with only

small parts in common. When two schemas to be mapped come

from a single database and describe the same concept they will,

most likely, have a big overlap. It is desirable to exploit this

property to create a schema matching and mapping tool geared

towards dealing with evolving schemas rather than those coming

from heterogeneous, hence very different sources.

The most popular among XML specific query and transformation

languages are XQuery and XSLT. XQuery was designed to

provide concise syntax and querying capabilities. XSLT

stylesheets were initially used to specify how an XML document

is to be presented. Currently, W3C recommends XQuery as a

language to be used by human programmers, while XSLT is better

suited to be used and generated by programs. Thus, in this work,

we use the latter.

In the field of static XML transformation type checking,

interesting XML transformation models (languages) have been

proposed, like XSLT0 and k-pebble transducers. Those

approaches are presented in [5] and [6]. However, only a few

methods deal with popular XML transformation languages, like

XSLT and XQuery. Notable examples of static XSLT code

analysis can be found in [1] and [3].

3. TRANSFORMATION TOOLKIT

DESIGN
The schema evolution transformation toolkit presented in this

demo consists of four parts: schema matcher, transform

generator, data migration module, and an XSLT visualizing

editor. In this paper, we focus on the description of the XSLT

editor which also provides a user interface for the demo. Schema

matcher and transform generator are briefly described below. The

data migration module is omitted for lack of space.

Consider an introduction of a new specification (spec) format of a

document. Two scenarios are possible here. First, the spec format

can be changed in such a way that all the existing documents will

conform to the new XML schema. An example of such a change

is when the user adds some optional elements. In this case, no

spec value migration is necessary.

The second scenario is more interesting. When the new version of

the schema is not compatible with old one, the existing XML

documents need to be migrated to remain usable. The system tries

to automatically generate a transform to apply to existing

documents to bring them to the new format. If it does not succeed,

then the user must provide an XSLT using external tools and

upload it to the server.

Assuming that the XSLT transform is available, the system

estimates the amount of work that needs to be performed during

the migration. If it is below some configured threshold, then the

whole migration can be performed immediately after updating the

spec format and within the same application server transaction.

On the other hand, if there are too many spec values to migrate,

the migration cannot be executed immediately and needs to be

scheduled later (this is handled by the migration module). It can

also be split into several sub-tasks. The whole schema evolution

scenario ends when all spec values that were in the old format

have been updated.

3.1 Transform Generation
The automatic transform generation module attempts to match

XML elements between source and target schemas and to

generate an executable transformation (XSLT stylesheet). Clearly,

it is not always possible to create a matcher that would work in all

scenarios. In general, we cannot always relieve the user of the

need to inspect the matching or to manually create a

transformation. However, in many situations the user may benefit

from an automatically created matching, even if it is incomplete.

The design of the automated transform generation module is

based on following principles:

 The generator is a “best-effort” tool. It attempts to create a

complete mapping but in some cases it will only be able to

generate a partial mapping.

 The matching algorithm has to be simple so that the user can

understand why some nodes were matched and some were

not.

 The matching routine is modular. It consists of several

matching rules that are applied to source and target schemas.

Therefore, it is configurable and extendable.

 Due to our assumption that source and target schemas have a

substantial overlap (as we are interested in schema evolution)

the matcher uses strongest matching rules first and removes

matched attributes from consideration. This assures

correctness of the matching and speeds up processing.

The transform generator consists of two parts, a Matcher and a

XSLT Generator. The matcher is given two XML trees

representing the source and target schema and produces a

matching between them. The matching rules (identity, linguistic

similarity, etc.) are pretty standard for XML matching tasks. The

routine is recursive and attempts to match sets of children of two

already matched nodes (see Figure 1). Then, using this

information, XSLT generator creates an XSLT file describing the

transform.

Order

Addres

PostalCode

Date

Item

Price

Quantity

Order

shipTo

Address

Date

Item

Price

Amount

PostalCode

Figure 1 Source and target schema trees with final matching.

Red dotted lines connecting two nodes represent they are

matched.

XSLT generator is the second module of the transform generation

tool. It works on the information provided by the schema matcher.

The information includes source and target schema trees and

matching information. The output of the generator is an

executable XSLT stylesheet that when applied to a valid XML

document in the source schema will output a valid XML

document in the target schema that preserves all possible

information contained in the input document.

1578

3.2 XSLT Visualization
The last problem that we address in this work is that of static type

checking or validation of XSLT stylesheets. This problem is

important in the context of XML schema evolution, because

creation of XSLT (or any other) transforms cannot be entirely

automated with guarantees of their correctness. XSLT stylesheets

are not particularly user-friendly, hence it may be hard for the user

to follow the execution flow of more complex transforms. That is

why it is desirable to know the format of outputs of particular

XSLT. In other words, we would like to know the XML schema

that defines the set of all possible output documents. In general,

this problem, also known as static type checking for XSLT, is

intractable [6][7]. However, we provide an approximate solution

to it. Also, in the environment considered in this work the task is

simpler than in the general case, because specification values in

MDM system are more restricted than for arbitrary XML

documents.

Assuming we have an algorithm for static type checking for XSL

there still remains a question of how to present its result to the

user. The simplest idea is just to compare the schema of the

resulting document with the target schema and tell the user

whether or not the former is contained in the latter (yes/no

answer). Another idea is to show the user a graph representing the

execution of an XSLT stylesheet, which gives the user an idea

what the output format is (as in [1]). Finally, one may try to

generate the schema constraining the output documents and let the

user compare it to the desired one.

Figure 2 Visualizing editor. Top part of the figure shows the

editor with the text editing tab active. The bottom part shows

the editor with Visualization tab active. Both source schema

tree and template execution tree are shown.

In our approach, we combine the last two ideas. We show both a

representation of the execution flow and the resulting schema.

Also, we combine the visualization with a simple text editor for

transformations. The idea is to let the user navigate between the

visual representation of the transformation and the code.

Additionally, modifications to the transform are immediately

reflected in the XSLT execution flow representation, as well as in

the resulting schema. The editor is shown in Figure 2.

Both schemas and the structure of the execution flow of an XSL

template are represented by trees. We chose “flattened” tree

shape, which is frequently used to show file system directory

structure as shown in Figure 3. For each node we include

additionally the cardinality boundaries as defined in the schema,

in the form “(minimal # occurences:maximal # of occurences)”.

For example, a mandatory node in a schema will be labeled with

“(1:1)”, while an optional node that can appear any number of

times will be labeled with “(0:*)”.

/

BoxDimensions

RentalBox

BoxLock FeeData

FeeBoxDepth BoxHeight BoxWidth

Figure 3 Two visual representations of the same XML schema

tree. "Regular" representation on the left. "Flattened"

representation on the right.

The complete Visualization tab contains all of the following:

 Source schema representation

 XSLT execution tree

 Transform result schema representation

 Target schema representation

An example of the visualization is shown in Figure 4.The user can

click on any box representing a template to select it. Selected

template box is highlighted (see “..x2Formats/FeeData” template

in Figure 4). When a template box is selected the Visualizer

displays lines connecting it with the element it matches in the

source schema (line going to the left) and elements that it

generates in the resulting schema (lines going to the right of the

template). Additionally, the user may right-click on a template

box to navigate to the template definition in the XSLT editor tab.

This functionality should help the user quickly fix problems with

a stylesheet. For example, when he sees that a template is

generating wrong type of content the Visualizer will take him

straight to that template.

1579

Figure 4 XSLT visualization. From left to right: source

schema, XSLT execution tree, resulting schema, target

schema. Note: some template patterns are too long and don’t

fit entirely in a template box. In such case only suffix of the

pattern is shown (…suffix)

The visualization tab has another feature that enables the user to

immediately see potential problems with the transformation. Note

that the resulting schema and the target schema are shown next to

each other. If they were displayed in the same way as the source

schema, that is, independently from each other, it could be hard

for the user to see all differences between them. This problem is

exacerbated when the schemas are huge, perhaps containing

hundreds of attributes. To alleviate this problem the Visualizer

aligns matching elements of both schemas. Figure 4 shows how

this feature works. First five elements in the result and the target

schema trees are identical, hence, they all are rendered next to

each other. The only difference is that FeeData element of the

resulting schema is optional (minOccurs = 0) while it is

mandatory in the target schema. It means that the transform is not

guaranteed to return this element and that indicates a potential

problem with the transformation. The Visualizer uses a different

color for optional and mandatory schema element so it is easy for

the user to spot the difference.

Below the first five matching schema elements, there are five

further elements that do not have a match: “FeeDescription”,

“InitialFee” and “FeePeriod” in the resulting schema and “Period”

and “FeeDescr” in the target schema. Again, it is easy for the user

to see that there is no corresponding element displayed next to any

of those schema elements. The user can immediately identify the

modifications in the code needed to fix the transformation.

Finally, both the resulting and target schemas in Figure 4 include

the “BoxDimensions’’- elements and representations of those

elements are displayed co-aligned. Their children, however, are

not in the same order, which is clearly shown in the visualization

tab.

4. DEMO PRESENTATION
Our demo presentation will be as follows. We will show a pair of

XML schemas, representing an old schema, previously used in

our database, and a new one that is being introduced to the

system. We will show a graphical representation of the result of

automatic matching of the two schemas and a generated XSL

transform.

Then we will use the visualizing editor to show the execution flow

of the aforementioned transform and how its output schema

compares to the target schema.

Then we will proceed to another example. Again, we will present

two subsequent versions of a schema with significant differences

between them. We will also supply a partial, erroneous, transform

between those schemas. We will show how it is possible to track

and quickly fix bugs in the transform, using our visualizing editor.

We will also fill in missing parts of the XSL stylesheet in several

steps. As we add more templates to the stylesheet, we will be

monitoring our progress using the visualizing editor.

We will show a fairly complex XML schema to represent an old

version of a database. We will let the users make changes to the

schema, reflecting what they think might be improved in it. Then,

we will use the automatic transform generation tool to create an

XSL transformation between the original and the updated schema.

We will examine the resulting transform in the visualizing editor.

If the stylesheet will not appear to produce correct output, we will

use the editor to quickly fix the problems.

Finally, we will accept XML schema files from the audience and

will demonstrate how our tools deal with them.

5. REFERENCES
[1] Moller, A., Olesen, M. O., Schwartzbach, M. I: Static

validation of XSL transformations. ACM Transactions on

Programming Languages and Systems (TOPLAS), 29, 4

(2007), Article No. 21.

[2] Shvaiko, P., Euzenat, J.: A Survey of Schema-based

Matching Approaches. Journal on Data Semantics IV, 146-

171, Springer Berlin/Heidelberg, 2005

[3] Martens, W., Neven, F., Gyssens, M.: Typechecking Top-

Down XML Tranformations: Fixed Input or Output Schemas

Information and Computation 206 (7), pp. 806-827 (2008).

[4] Mong Li Lee, Liang Huai Yang, Wynne Hsu, and Xia Yang:

XClust: clustering XML schemas for effective integration. In

Proceedings of the eleventh international conference on

Information and knowledge management (CIKM '02). ACM,

New York, NY, USA, pp. 292-299.

[5] Tozawa, A. 2001. Towards static type checking for XSLT. In

Proceedings of the 2001 ACM Symposium on Document

Engineering (Atlanta, Georgia, USA, November 9-10,

2001). DocEng '01. ACM, New York, NY, pp. 18-27.

[6] Milo, T., Suciu, D., and Vianu, V. 2000. Typechecking for

XML transformers. In PODS (Dallas, Texas, United States,

May 15 - 18, 2000).. ACM, New York, NY, pp. 11-22.

[7] Martens, W. and Neven, F. 2004. Frontiers of tractability for

typechecking simple XML transformations. In PODS '04

(Paris, France, June 14 - 16, 2004). ACM, New York, NY,

pp. 23-34.

1580

