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Summary. We give a methodology-oriented perspective on directional image analysis
and rotation-invariant processing. We review the state of the art in the field and make
connections with recent mathematical developments in functional analysis and wavelet
theory. We unify our perspective within a common framework using operators. The in-
tent is to provide image-processing methods that can be deployed in algorithms that an-
alyze biomedical images with improved rotation invariance and high directional sensi-
tivity. We start our survey with classical methods such as directional-gradient and the
structure tensor. Then, we discuss how these methods can be improved with respect to
robustness, invariance to geometric transformations (with a particular interest in scal-
ing), and computation cost. To address robustness against noise, we move forward to
higher degrees of directional selectivity and discuss Hessian-based detection schemes. To
present multiscale approaches, we explain the differences between Fourier filters, direc-
tional wavelets, curvelets, and shearlets. To reduce the computational cost, we address the
problem of matching directional patterns by proposing steerable filters, where one might
perform arbitrary rotations and optimizations without discretizing the orientation. We de-
fine the property of steerability and give an introduction to the design of steerable filters.
We cover the spectrum from simple steerable filters through pyramid schemes up to steer-
able wavelets. We also present illustrations on the design of steerable wavelets and their
application to pattern recognition.

1 Introduction

Directionality and orientation information is very useful for the quantitative analysis of
images. By those terms, we refer to local directional cues and features that one can identify
in natural images. The area of applications based on the detection of orientation is contin-
uously growing as the importance of directionality is becoming more and more relevant
in image processing. The range of applications spans topics from astronomy (Bernasconi
et al, 2005; Schuh et al, 2014; Yuan et al, 2011), aerial and satellite imagery (Jiuxiang et al,
2007; Tupin et al, 1998), material sciences (Dan et al, 2012), to biological and medical ap-
plications. Focusing on the last two categories, the palette is quite broad: detection of nod-
ules in the lungs (Agam et al, 2005) and vessels in retinal fundus images (Lam et al, 2010;
Patton et al, 2006), bioimaging (Honnorat et al, 2011), neuroimaging (Gonzalez et al, 2009;
Meijering et al, 2004). Investigations of collagen in the arterial adventitia also rely on di-
rectional analysis (Rezakhaniha et al, 2012). Neuron tracking is of primal importance to
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understand the development of the brain and requires robust directional image-analysis
tools to capture dendrites in 2D and 3D (Meijering, 2010). In (Jacob et al, 2006), the au-
thors used steerable ridge detector (based on (Canny, 1986)) to study the aging of elastin
in human cerebral arteries. In (Aguet et al, 2009), 3D steerable filters were applied to the
estimation of orientation and localization of fluorescent dipoles.

Researchers in image analysis are getting inspiration from the human visual system.
In the early 1960s, it was demonstrated that directionality plays a key role in visual per-
ception: The neurophysiological findings of Huber and Wiesel initiated a field of research
for decades to come (Hubel and Wiesel, 1962). Follow-up studies confirmed that the or-
ganization of the primary visual cortex makes our visual perception particularly sensitive
to the directional clues carried by edges, ridges, and corners (Marr and Hildreth, 1980; Ol-
shausen and Field, 1996). Our visual system is able to efficiently capture and summarize
this information using a small number of neuronal cells.

Based on these structures, many image-analysis methods have been proposed, but
they face several challenges. One of them is efficiency with respect to computational re-
sources, because real-time applications and the processing of large multidimensional data
(e.g., multichannel time-lapse sequences of images or volumes) demand fast algorithms.
Another challenge is to design algorithmic detectors of orientation that acknowledge that
patterns in natural images usually have an unknown size and location. Robustness to noise
is another desirable trait.

This survey aims at providing the reader with a broad overview of techniques for the
directional analysis of images. It is intended to be used as a guide to state of the art meth-
ods and techniques in the field. In this paper, we focus on the applications in bioimaging,
presenting and comparing the described methods on experimental data.

We focus on the continuous domain setup for explaining the relevant concepts be-
cause it allows for convenient, compact, and intuitive formulation. It primarily involves
differential and convolution operators (smoothing filters and wavelets) that are acting on
continuously defined images, f (x), x = (x1, x2) ∈ R

2. The final transcription of a continu-
ous domain formula into an algorithm requires the discretisation of the underlying filters
which can be achieved using standard techniques. For instance, partial derivatives can be
closely approximated using finite differences, while there are well-established techniques
for computing wavelets using digital filters. For further implementation details, we are giv-
ing pointers to the specialised literature.

2 Derivative-Based Approaches

2.1 Gradient Information and Directional Derivatives

Some of the earliest and simplest techniques in image analysis to account for orientation
rely on gradient information. Intuitively, the direction of the gradient corresponds to the
direction of steepest ascent. The local direction of an image f at x0 can be estimated in
terms of the direction orthogonal to its gradient. A direction is specified in R

2 by a unit
vector u = (u1,u2) ∈ R

2 with ‖u‖ = 1. The first-order directional derivative Du f along the
direction u can be expressed in terms of the gradient

Du f (x0) = lim
h→0

f (x0)− f (x0 −hu)

h
= 〈u,∇∇∇ f (x0)〉, (1)
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Fig. 1. Illustration of the use of gradient operators, from left to right: (1) Input image: con-
focal micrograph showing nerve cells growing along fibers made from a specially modi-
fied silk that is similar to that made by spiders and silkworms. This input image is from
the Cell Image Library (http://www.cellimagelibrary.org/images/38921). Right lower cor-
ner: bright arcs with different scales, artificially added. (2) the x1 (or horizontal) compo-
nent of the gradient is the directional derivative along u = (1,0). (3) the x2 (or vertical)
component of the gradient is the directional derivative along u = (0,1). (4) Magnitude of
the gradient vector. Highlighted window A: Horizontal edges are attenuated in case of di-
rectional derivative along u = (1,0) and enhanced/kept in case of directional derivative
along u = (0,1). Highlighted window B: Vertical edges are attenuated in case of direc-
tional derivative along u = (0,1) and enhanced/kept in case of directional derivative along
u = (1,0). All the images were produced by the ImageJ/Fiji plugin OrientationJ.

where the right hand side is the inner product between u and the gradient vector ∇∇∇ f (x0)
evaluated at x0. We note that (1) is maximum when u is collinear to ∇∇∇ f (x0) (by the Cauchy
- Schwartz inequality). Conversely, Du0 f (x0) vanishes when u0 ⊥∇∇∇ f , so that u0 provides
us with a local estimate of the directionality of the image. Figure 1 illustrates the applica-
tion of the gradient operators.

Gradient-based orientation estimators are frequently used as they can be discretized
and implemented easily. However, the gradient-based estimation of the orientations is
sensitive to noise. The robustness can be improved by smoothing the image by a Gaus-
sian kernel before taking the derivative. A still very popular method based on gradients is
Canny’s classical edge detector (Canny, 1986).

2.2 Improving Robustness by the Structure Tensor

The estimation of the local orientation using derivatives can be made more robust by us-
ing the structure tensor (Jahne, 1997). The structure tensor is a matrix derived from the
gradient of the image and can be interpreted as a localized covariance matrix of the gra-
dient. Since the pioneering work of Förstner (Förstner, 1986), Bigün (Bigun, 1987), and
Harris and Stephens (Harris and Stephens, 1988), the structure tensor has become a tool
for the analysis of low-level features, in particular for corner and edge detection as well as
texture analysis. In 2D, the structure tensor at location x0 is defined by

J (x0) =
∫

R2
w(x −x0)

(
∇∇∇ f (x)

)
∇∇∇T f (x)dx1dx2, (2)

where w is a nonnegative isotropic observation window (e.g., a Gaussian) centered at x0.
More explicitly, the (2×2) matrix J (x0) reads
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J (x0) =
∫

R2
w(x −x0)

(
f 2

x1
(x) fx1 (x) fx2 (x)

fx2 (x) fx1 (x) f 2
x2

(x)

)
dx1dx2 (3)

=
(

(w ∗ f 2
x1

)(x0) (w ∗ fx1 fx2 )(x0)
(w ∗ fx2 fx1 )(x0) (w ∗ f 2

x2
)(x0)

)
, (4)

where w ∗ f denotes the convolution of w and f . The partial derivative of f with respect
to some variable xi is denoted by fxi . This reveals that J is a smoothed version of

(
f 2

x1
(x) fx1 (x) fx2 (x)

fx2 (x) fx1 (x) f 2
x2

(x)

)
. (5)

The eigenvalues of the structure tensor are noted λmax and λmin, with λmin,λmax ∈R.
They carry information about the distribution of the gradient within the window w . De-
pending on the eigenvalues, one can discriminate between homogenous regions, rota-
tional symmetric regions without predominant direction, regions where the eigenvector is
well-aligned with one of the gradient directions, or regions where the dominant direction
lies in between the gradient directions. For such purpose, two measures are defined, the
so called energy E and the coherence C . The energy is defined based on the eigenvalues of
the structure tensor as E = |λ1|+|λ2|. If E ≈ 0, which corresponds to λmax =λmin ≈ 0, then
the region is homogenous. If E ≫ 0, then the characteristic of the structure is determined
by the coherency information. The coherency information C is a measure of confidence,
defined as

0 ≤C =
λmax −λmin

λmax +λmin
=

√
(J22 − J11)2 +4J 2

12

J22 + J11
≤ 1, (6)

where Jij denotes an element of the structure tensor. If C ≈ 0, which corresponds to
λmax ≈ λmin, then the region is rotational symmetric without predominant direction,
the structure has no orientation. If C ≈ 1, which corresponds to λmax > 0,λmin ≈ 0 or
λmax ≫ λmin, the eigenvector is well-aligned with one of the gradient directions. For
0 < C < 1, the predominant orientation lies between the gradient directions. In general,
a coherency close to 1 indicates that the structure in the image is locally 1D, a coherency
close to 0 indicates that there is no preferred direction.

The energy of the derivative in the direction u can be expressed as

‖Du f ‖2
w = 〈u

T ∇∇∇ f ,u
T ∇∇∇ f 〉w = u

T 〈∇∇∇ f ,∇∇∇ f 〉w u = u
T Ju. (7)

This means that, in the window centered around x0, the dominant orientation of the
neighborhood can be computed by

u1 = arg max
‖u‖=1

‖Du f ‖2
w . (8)

We interpret ‖Du f ‖2
w as the average energy in the window defined by w and centered at

x0. Moreover, Du f = 〈∇∇∇ f ,u〉 is the derivative in the direction of u. The maximizing ar-
gument corresponds to the eigenvector with the largest eigenvalue of the structure ten-
sor at x0. The dominant orientation of the pattern in the local window w is computed as

u1 = (cosθ, sinθ), with θ = 1
2 arctan

(
2J12

J22−J11

)
.

Figure 2 illustrates the improved robustness of the structure tensor in terms of the es-
timation of the orientation. Figure 3 provides another concrete example on the structure-
tensor analysis produced by the freely available OrientationJ plugin for Fiji/ImageJ.1 We

1Software available at http://bigwww.epfl.ch/demo/orientation/
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Fig. 2. Illustration of the robustness of the structure tensor in terms of estimation of the
orientation, from left to right: (1) Input image: confocal micrograph, same as the original
image in Figure 1. (2) Local dominant orientation, color-coded, no filtering applied. (3)
Orientation given by the structure tensor with a small window size (standard deviation
of the Gaussian window = 1). (4) Orientation given by the structure tensor large window
size (standard deviation of the Gaussian window = 1). All the images were produced by the
ImageJ/Fiji plugin OrientationJ.

have chosen a HSB (hue, saturation, and brightness) cylindrical-coordinate color repre-
sentation to visualize the results. The HSB components correspond to the following val-
ues: angle of the orientation, coherency, and input image, respectively. The advantage of
the proposed model is that it gives a direct link between the quantities to display and the
color coding. In the cylindrical-coordinate color representation, the angle around the cen-
tral vertical axis corresponds to hue. The distance along the axis corresponds to brightness,
thus we preserve the visibility of the original structures. The distance from the axis corre-
sponds to saturation: the higher the coherency is, the more saturated the corresponding
colors are.

In the 3D shape estimation of DNA molecules from stereo cryo-electron micrographs
(Fonck et al, 2008), the authors took advantage of its structure-tensor method. Other ap-
plications can be found in (Köthe, 2003) and (Bigun et al, 2004).

While simple and computationally efficient, the structure-tensor method has draw-
backs: it only takes into account one specific scale, the localization accuracy for corners is
low, and the integration of edge and corner detection is ad hoc (e.g. Harris’ corner detec-
tor).

2.3 Higher-Order Directional Structures and the Hessian

To capture higher-order directional structures, the gradient information is replaced by
higher-order derivatives. In general, an nth-order directional derivative is associated with
n directions. Taking all of these to be the same, the directional derivative of order n in R

2

is defined as

Dn
u f (x) =

n∑

k=0

(
n

k

)

uk
1 un−k

2 ∂k
x1
∂n−k

x2
f (x), (9)

which is a linear combination of partial derivatives of order n. More specifically, if we fix
n = 2 and the unit vector uθ = (cosθ, sinθ), we obtain

D2
uθ

f (x) = cos2(θ)∂2
x1

f (x)+2cos(θ)sin(θ)∂x1∂x2 f (x)+ sin2(θ)∂2
x2

f (x). (10)
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Fig. 3. Illustration of the use of structure tensors. Large images, from left to right: (1) Input
image (800 x 800 pixels): immunofluorescence cytoskeleton (actin fibers), courtesy of Car-
oline Aemisegger, University of Zürich. (2) Coherency map: coherency values close to 1.0
are represented in white, coherency values close to 0.0 are represented in black. (3) Con-
struction of color representation in HSB, H: angle of the orientation, S: coherency, B: input
image. Small images in the left bottom corners, from left to right: (1) Input image: wave
pattern with constant wavelength. (2) Coherency map: coherency values are close to 1.0
as expected. (3) The color representation reflects the different orientations. All the images
were produced by the ImageJ/Fiji plugin OrientationJ.

The Hessian filter is a square matrix of second-order partial derivatives of a function. For
example, in 2D, the smoothed Hessian matrix, useful for ridge detection at location x0, can
be written as

H(x0) =
(
(w11 ∗ f )(x0) (w12 ∗ f )(x0)
(w21 ∗ f )(x0) (w22 ∗ f )(x0)

)
, (11)

where w is a smoothing kernel and wij = ∂xi∂xj w denotes its derivatives with respect to
the coordinates xi and xj. In the window centered around x0, the dominant orientation of
the ridge is

u2 = arg max
‖u‖=1

(
u

T Hu

)
. (12)

The maximizing argument corresponds to the eigenvector with the largest eigenvalue of
the Hessian at x0. The eigenvectors of the Hessian are orthogonal to each other, so the
eigenvector with the smallest eigenvalue corresponds to the direction orthogonal to the
ridge.

A sample application of the Hessian filter is vessel enhancement (Frangi et al, 1998).
There, the authors define a measure called vesselness which corresponds to the likeliness
of an image region to contain vessels or other image ridges. The vesselness measure is de-
rived based on the eigenvalues of the steerable Hessian filter. In 2D, a vessel is detected
when one of the eigenvalues is close to zero (λ1 ≈ 0) and the other one is much larger
|λ2| ≫ |λ1|. The direction of the ridge is given by the eigenvector of the Hessian filter out-
put corresponding to λ1. In (Frangi et al, 1998), Frangi et al. defines the measure of vessel-
ness as

V (x) =






0, if λ1 > 0

exp
(
− (λ1/λ2)2

2β1

)(
1−exp

(
−λ2

1+λ
2
2

2β2

))
, otherwise,

(13)
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Fig. 4. Rotation-invariant enhancement of filaments. From top to bottom, left to right: (1)
Input image (512 x 256 pixels) with neuron, cell body, and dendrites (maximum-intensity
projection of a z-stack, fluorescence microscopy, inverted scale). (2) Output of the Hes-
sian filter. The largest eigenvalue of the Hessian matrix was obtained after a Gaussian
smoothing (standard deviation = 5). The image was produced using the ImageJ/Fiji plu-
gin FeatureJ available at: http://www.imagescience.org/meijering/software/featurej/. (3)
Output of the vesselness index obtained by the Fiji plugin Frangi-Vesselness. (4) Output of
the steerable filters (Gaussian-based, 4th order). The image was produced using the Im-
ageJ/Fiji plugin SteerableJ.

Fig. 5. Illustration of the gradient at different scales, from left to right: (1) Input image:
confocal micrograph, same as the original image in Figure 1. (2) Magnitude of the gradient
at scale 1. (3) Magnitude of the gradient at scale 2. (4) Magnitude of the gradient at scale 4.
All the images were produced by the ImageJ/Fiji plugin OrientationJ.

where β1 and β2 control the sensitivity of the filter2. A particular application of the vessel-
ness index on filament enhancement is shown in Figure 4. Alternative vesselness measures
based on the Hessian have been proposed by Lorenz et al. (Lorenz et al, 1997) and Sato et
al. (Sato et al, 1998).

2Plugin available at http://fiji.sc/Frangi/
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3 Directional Multiscale Approaches

In natural images, oriented patterns are typically living on different scales, for example,
thin and thick blood vessels. To analyze them, methods that extract oriented structures
separately at different scales are required. The classical tools for a multiscale analysis are
wavelets. In a nutshell, a wavelet is a bandpass filter that responds almost exclusively to
features of a certain scale. The separable wavelet transform that is commonly used is com-
putationally very efficient but provides only limited directional information. Its operation
consists of filtering with 1D wavelets with respect to the horizontal and vertical directions.
As a result, two pure orientations (vertical and horizontal), and a mixed channel of diag-
onal directions are extracted. Using the dual-tree complex wavelet transform (Kingsbury,
1998)3, one can increase the number of directions to six while retaining the computational
efficiency of the separable wavelet transform. (We refer to (Selesnick et al, 2005) for a de-
tailed treatment of this transform.) Next, we describe how to achieve wavelets with an even
higher orientational selectivity at the price of higher computational costs.

Figure 5 illustrates the gradient at different scales. We can observe that different fea-
tures are kept at different scales.

3.1 Construction of Directional Filters in the Fourier Domain

In order to construct orientation-selective filters, methods based on the Fourier transform
are powerful. From now on, we denote the Cartesian and polar representations of the same
2D function f by f (x) with x ∈ R

2 and fpol(r,θ) with r ∈ R
+, θ ∈ [0,2π) (similarly in the

Fourier domain: f̂ (ω) and f̂pol(ρ,φ)). The key property for directional analysis is that ro-
tations in the spatial domain propagate as rotations to the Fourier domain. Formally, we
write that

f (Rθx)
F←→ f̂ (Rθω), (14)

where Rθ denotes a rotation by the angle θ. The construction is based on a filter ψ whose
Fourier transform ψ̂ is supported on a wedge around the ω1 axis; see Figure 6. In order to
avoid favoring special orientations, one typically requires that ψ̂ be nonnegative and that
it forms (at least approximately) a partition of unity of the Fourier plane under rotation,
like ∑

θi

|ψ̂(Rθi
ω)|2 = 1, for allω ∈R

2 \ {0}. (15)

Here, θ1, ...,θn are arbitrary orientations which are typically selected to be equidistant,
with θi = (i −1)π/n. To get filters that are well localized in the spatial domain, one chooses
ψ̂ to be a smooth function; for example the Meyer window function (Daubechies, 1992;
Ma and Plonka, 2010). A directionally filtered image fθi

can be easily computed by rotating

the window ψ̂ by θi and multiplying it with the Fourier transform f̂ of the image, and by
transforming back to the spatial domain. This is written

fθi
(x) =F

−1{ψ̂(Rθi
···) f̂ }(x). (16)

(We refer to (Chaudhury et al, 2010) for filterings based on convolutions in the spatial
domain.) The resulting image fθi

contains structures that are oriented along the direction
θi . The local orientation θ is given by the orientation of the maximum filter response

3Available at http://eeweb.poly.edu/iselesni/WaveletSoftware/
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Fig. 6. Top row (from left to right): schematic tilings of the frequency plane by Fourier fil-
ters, directional wavelets, curvelets, and shearlets (the origin of the Fourier domain lies
in the center of the images); Middle row: a representative Fourier multiplier. Bottom row:

Corresponding filtering result for the image of Figure 1. The Fourier filter extracts oriented
patterns at all scales whereas the wavelet-type approaches are sensitive to oriented pat-
terns of a specific scale. Curvelets and shearlets additionally increase the directional se-
lectivity at the finer scales.

θ(x) = argmax
θi

| fθi
(x)|. (17)

Such directional filters have been used in fingerprint enhancement (Sherlock et al, 1994)
and in crossing-preserving smoothing of images (Franken and Duits, 2009; Franken et al,
2007).

3.2 Directional Wavelets with a Fixed Number of Directions

Now we augment the directional filters by scale-selectivity. Our starting point is the radial
windowing function of (15). The simplest way to construct a directional wavelet trans-
form is to partition the Fourier domain into dyadic frequency bands (“octaves”). To en-
sure a complete covering of the frequency plane, we postulate again nonnegativity and a
partition-of-unity property of the form

∑

s∈Z

∑

θi

|ψ̂(2−s Rθi
ω)|2 = 1, forω ∈R

2 \ {0}. (18)

Classical examples of this type are the Gabor wavelets that cover the frequency plane us-
ing Gaussian windows which approximate (rescaled) partition-of-unity (Lee, 1996; Mal-
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lat, 2008). These serve as model for the filters in the mammalian visual system (Daug-
man, 1985, 1988). Alternative constructions are Cauchy wavelets (Antoine et al, 1999) or
constructions based on the Meyer window functions (Daubechies, 1992; Ma and Plonka,
2010). We refer to (Vandergheynst and Gobbers, 2002) and (Jacques et al, 2011) for further
information on the design of directional wavelets. In particular, sharply direction-selective
Cauchy wavelets have been used for symmetry detection (Antoine et al, 1999).

3.3 Curvelets, Shearlets, Contourlets, and Related Transforms

Over the past decade, curvelets (Candès and Donoho, 2004), shearlets (Kutyniok and La-
bate, 2012; Labate et al, 2005; Yi et al, 2009), and contourlets (Do and Vetterli, 2005) have
attracted a lot of interest. They are constructed similarly to the directional wavelets. The
relevant difference in this context is that they increase the directional selectivity on the
finer scales according to a parabolic scaling law. This means that the number of orienta-
tions is increased by a factor of about

p
2 at every scale or by 2 at every other scale; see

Figure 6. Therefore, they are collectively called parabolic molecules (Grohs and Kutyniok,
2014). Curvelets are created by using a set of basis functions from a series of rotated and
dilated versions of an anisotropic mother wavelet to approximate rotation and dilation
invariance. Contourlets use a tree-structured filterbank to reproduce the same frequency
partitioning as curvelets. Their structure is more flexible, enabling different subsampling
rates. To overcome the limitations of the Cartesian grid (i.e., exact rotation invariance is
not achievable on it), shearlets are designed in the discrete Fourier domain with con-
straints on exact sheer invariance.

These transforms are well suited to the analysis and synthesis of images with highly
directional features. Applications include texture classification of tissues in computed to-
mography (Semler and Dettori, 2006), texture analysis (Dong et al, 2015), image denois-
ing (Starck et al, 2002), contrast enhancement (Starck et al, 2003), and reconstruction in
limited-angle tomography (Frikel, 2013). Furthermore, they are closely related to a mathe-
matically rigorous notion of the orientation of image features, the so-called wavefront set
(Candès and Donoho, 2005; Kutyniok and Labate, 2009). Loosely speaking, the wavefront
set is the collection of all edges along with their normal directions. This property is used
for the geometric separation of points from curvilinear structures, for instance, to separate
spines and dendrites (Kutyniok, 2012) and for edge detection with resolution of overlaying
edges (Guo et al, 2009; Storath, 2011b; Yi et al, 2009). We show in Figure 7 the result of the
curvelet/shearlet-based edge-detection scheme of (Storath, 2011b) which is obtained as
follows: For every location (pixel) b and every available orientation θ, the rate of decay db,θ
of the absolute values of the curvelet/shearlet coefficients over the scale is computed. The
reason for computing the rate of decay of the coefficients is their connection to the local
regularity: the faster the decay rate, the smoother the image at location b and orientation
θ (see (Candès and Donoho, 2005; Guo et al, 2009; Kutyniok and Labate, 2009)). We denote
the curvelet/shearlet coefficients at scale a, location b, and orientation θ by ca,b,θ . Then,

db,θ corresponds to the least-squares fit to the set of constraints |ca,b,θ | =C ′
b,θadb,θ , where

a runs over all available scales (in the example of Figure 7, a = 2−s/3 with s = 0, . . . ,15).
Note that this reduces to solving a system of linear equations in terms of logC ′

b,θ and

db,θ , after having taken a logarithm on both sides. Having computed d , we perform for
each orientation θ a non-maximum suppression on d ; that is, we set to (−∞) all pixels
that are not a local maximum of the image d·,θ with respect to the direction θ. Finally, a
threshold is applied and the connected components of the (3D-array) d are determined
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Fig. 7. Edge detection with resolution of crossing edges using the curvelet transform. The
colors correspond to connected edge segments. Note that crossing edges are resolved, for
instance near the shoulder bones. [Original image courtesy of Dr. Jeremy Jones, Radiopae-
dia.org]

(and colored). The image displayed in Figure 7 is the maximum-intensity projection of the
three-dimensional image d with respect to the θ component.

Relevant software packages implementing these transforms are the Matlab toolboxes
CurveLab4, ShearLab5, FFST6, and the 2D Shearlet Toolbox7.

4 Steerable Filters

For the purpose of detecting or enhancing a given type of directional pattern (edge, line,
ridge, corner), a natural inclination is to try to match directional patterns. The simplest
way to do that is to construct a template and try to align it with the pattern of interest.
Usually, such algorithms rely on the discretization of the orientation. To obtain accurate
results, a fine discretization is required. In general, Fourier filters and wavelet transforms
are computationally expensive in this role because a full 2D filter operation has to be
computed for each discretized direction. However, an important exception is provided by
steerable filters, where one may perform arbitrary (continuous) rotations and optimiza-
tions with a substantially reduced computational overhead. The basics of steerability were
formulated by Freeman and Adelson in the early nineties (Freeman and Adelson, 1990,
1991; Freeman, 1992) and developed further by Perona (Perona, 1992), Simoncelli and
Farid (Simoncelli and Farid, 1996), and Unser et al. (Unser and Chenouard, 2013; Unser
and Van De Ville, 2010; Ward and Unser, 2014; Ward et al, 2013). We now explain the prop-
erty of steerability and show the development of steerable wavelets.

A function f on the plane is steerable in the finite basis { f1, . . . , fN } if, for any rotation
matrix Rθ0

, we can find coefficients c1(θ0), . . . ,cN (θ0) such that

4Available at http://www.curvelet.org/
5Available at http://www.shearlab.org/
6Available at http://www.mathematik.uni-kl.de/imagepro/members/haeuser/ffst/
7Available at http://www.math.uh.edu/~dlabate/software.html
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f (Rθ0
x) =

N∑

n=1
cn (θ0) fn (x). (19)

It means that a function f in R
2 is steerable if all of its rotations can be expressed in the

same finite basis as the function itself. Thus, any rotation of f can be computed with a
systematic modification (i.e., matrix multiplication) of the coefficients. The importance
of this property is that, when doing pattern matching, it is enough to compute the coef-
ficients only once, for one particular angle. Based on that, one can then easily determine
the coefficients for arbitrary angles. A simple example of steerable functions are the polar-
separable functions, whose amplitude (radial part) is 1 and angular part is cos(θ) or sin(θ).
All rotations of these functions can be expressed in the basis {sin(θ),cos(θ)}. The rotations
of cos(θ) and sin(θ) by θ0 are determined by

(
cos(θ+θ0)
sin(θ+θ0)

)
=

(
cos(θ0) −sin(θ0)
sin(θ0) cos(θ0)

)(
cos(θ)
sin(θ)

)
. (20)

Instead of setting the amplitude to 1, one can choose any nonvanishing isotropic function
for the radial part. Also, replacing sin and cos with exponentials will preserve the property
(since ej(θ+θ0) = ejθ0 ejθ).

The simplest examples of steerable filters are the ones that are based on the gradi-
ent or the Hessian. Starting from an isotropic lowpass function ϕ(x1, x2), one can create a
subspace of steerable derivative-based templates which can serve as basic edge or ridge
detectors. In 2D, let ϕk,l = ∂k

x1
∂l

x2
ϕ be anisotropic derivatives of the isotropic function ϕ.

By the chain rule of differentiation, for any rotation matrix Rθ0
, the function ∂k

x1
∂l

x2
ϕ(Rθ0

·)
can be written as a linear combination of ϕi , j with i + j = k + l . Therefore, any anisotropic
filter of the form

h(x1, x2) =
M∑

m=1

∑

k+l=m

αk,lϕk,l (x1, x2) (21)

is steerable. Consequently, for any rotation matrix Rθ0
, an application of the rotated filter

to an image f yields

( f ∗h(Rθ ·))(x) =
M∑

m=1

∑

k+l=m

αk,l (θ) fk,l (x), (22)

where fk,l = f ∗∂k
x1
∂l

x2
ϕ and αk,l (θ) is a trigonometric polynomial in cos(θ) and sin(θ).

Once every fk,l is precomputed, the linear combination (22) allows us to quickly evaluate
the filtering of the image by the anisotropic filter rotated by any angle. We can then „steer”
h by manipulating θ, typically to determine the direction along which the response is max-
imized and across which is minimized.

Figure 4 contains the outcome of three derivative-based methods used to enhance fil-
aments in a rotation-invariant way. The computation complexity is the same for the differ-
ent methods, with approximatively the same number of filters with the same computation
time. The directionality is best captured in the steerable case.

Jacob and Unser (Jacob and Unser, 2004) improved the basic steerable filters by im-
posing Canny-like criteria of optimality (Canny, 1986) on the properties of the detector:
reasonable approximation of the ideal detector, maximum signal-to-noise ratio, good spa-
tial localization, and reduced oscillations. Their formalism boils down to a constrained
optimization of the expansion coefficients αk,i using Lagrange multipliers.
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5 Steerable Multiscale Approaches

In (Simoncelli and W.T., 1995), Simoncelli et al. proposed a new take on steerable filters:
the steerable pyramid. The goal of his design was to combine steerability with a multi-
scale detection scheme. His pioneering work had many successful applications: contour
detection (Perona, 1992), image filtering and denoising (Bharath and Ng, 2005), orienta-
tion analysis (Simoncelli and Farid, 1996), and texture analysis and synthesis (Portilla and
Simoncelli, 2000). In (Karssemeijer and te Brake, 1996) multiscale steerable filters were in-
volved in the detection of stellate distortions in mammograms. Classical multiresolution
steerable methods use a purely discrete framework with no functional analytic counter-
part. They are not amenable to extensions to dimensions higher than two. Fortunately, it
is possible to address these limitations. In this section we overview a continuous-domain
formulation that extends the technique proposed by Simoncelli et al. in (Simoncelli and
W.T., 1995). Multiresolution directional techniques were motivated by their invariance
with respect to primary geometric transformations: translation, dilation, and rotation.
Translation and dilation invariance is satisfied by the application of the wavelet transform.
Rotation invariance is achieved by the Riesz transform, which also gives a connection to
gradient-like signal analysis (Held et al, 2010).

5.1 The Riesz Transform

The complex Riesz transform was introduced to the literature by Larkin (Larkin, 2001;
Larkin et al, 2001) as a multidimensional extension of the Hilbert transform. The Hilbert
transform is a 1D shift-invariant operator that maps all cosine functions into sine func-
tions without affecting their amplitude (allpass filter). Expressed in the Fourier domain,
the Hilbert transform of a function f is

F
{
H { f }

}
(ω) =−

jω

|ω|
f̂ (ω) =−j sgn(ω) f̂ (ω). (23)

Similarly to the Hilbert transform, the Riesz transform is defined in the Fourier domain as

F
{
R{ f }

}
(ω) =

(ωx + jωy )

‖ω‖
f̂ (ω) = ejφ f̂pol(ρ,φ), (24)

where the subscript ‘pol” denotes the polar representation of the function. The transform
is a convolution-type operator that also acts as an allpass filter, with a phase response that
is completely encoded in the orientation.

The Riesz transform is translation- and scale-invariant since

∀x0 ∈R
d , R

{
f (·−x0)

}
(x) =R f (x −x0) (25)

∀a ∈R
+ \ {0}, R

{
f
( ·

a

)}
(x) =R f

( x

a

)
. (26)

The Riesz transform is also rotation-invariant.
The nth-order complex 2D Riesz transform R

n represents the n-fold iterate of R, de-
fined in the Fourier domain as

F
{
R

n { f }
}

(ρ cosφ,ρ sinφ) = ejnφ f̂pol(ρ,φ). (27)

The n-th order Riesz transform decomposes a 2D signal into n +1 distinct components. It
inherits the invariance properties of the Riesz transform since they are preserved through
iteration. This means that we can use the Riesz transform to map a set of primary wavelets
into an augmented one while preserving the scale- and shift-invariant structure.
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5.2 Connection to the Gradient and Directional Derivatives

In this section, we describe the connection between the Riesz transform, the directional
Hilbert transform, the gradient, and the directional derivatives. Assuming a zero-mean
function f , the Riesz transform is related to the complex gradient operator as

R f (x1, x2) =−j

(
∂

∂x1
+ j

∂

∂x2

)
(−∆)−1/2 f (x1, x2). (28)

Here, (−∆)α,α ∈R
+ is the isotropic fractional differential operator of order 2α. Conversely,

the corresponding fractional integrator of order 2α is (−∆)−α,α ∈R
+. The value α= 1/2 is

of special interest, providing the link between the Riesz transform and the complex gradi-
ent operator. The integral operator acts on all derivative components and has an isotropic
smoothing effect, thus, the Riesz transform acts as the smoothed version of the image gra-
dient.

Assuming a zero-mean function f , the high-order Riesz transform is related to the
partial derivatives of f by

R
n f (x1, x2) = (−∆)−

n
2

n∑

n1=0

(
n

n1

)

(−j)n1∂
n1
x1

∂
n−n1
x2

f (x1, x2). (29)

The fractional integrator acts as an isotropic lowpass filter whose smoothing strength in-
creases with n. The Riesz transform captures the same directional information as deriva-
tives. However, it has the advantage of being better conditioned since, unlike them, it does
not amplify the high frequencies.

The directional Hilbert transform is the Hilbert transform along a direction u. It is
related to the Riesz transform by

Huθ
f (x) = cosθ f1(x)+ sinθ f2(x), (30)

where f1 = Re(R f ) and f2 = Im(R f ) are the real and imaginary parts of R f . Assuming
again a zero-mean function f , the directional Hilbert transform is related to the derivative
in the direction u by

Hu f (x) =−(−∆)−
1
2 Du f (x). (31)

Here, the operator Du is the one defined in (1). This result corresponds to the interpreta-
tion that the Hilbert transform acts as a lowpass-filtered version of the derivative operator.
The n-fold version of the directional Hilbert transform acting on a zero-mean function f

along the direction specified by u can be expressed in term of the partial derivatives of f

as

H
n
u f (x) = (−1)n (−∆)−

n
2 Dn

u f (x). (32)

5.3 Steerable Wavelets

In this section, we present the construction of steerable wavelet frames that are shaped
to capture the local orientation of features in images within a multiresolution hierar-
chy. Their construction has two main parts: first, generation of circular harmonic wavelet
frames by applying the multiorder complex Riesz transform on a bandlimited isotropic
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Fig. 8. From left to right: i., Circular harmonic wavelets of order three, real part, imaginary
part, and magnitude; ii., steerable wavelets (different shapes, magnitude); iii., detections
in synthetic data exhibiting multiple scales; iv., original image and detections in a micro-
graph of embryonic stem cells.

mother wavelet; second, shaping of the wavelet frames to a particular desired profile with
an orthogonal transform.

We start our construction of steerable wavelet frames from a bandlimited isotropic
mother wavelet in L2(R2), denoted by ψ, whose shifts and dilations form a wavelet frame
(e.g., Simoncelli’s wavelet). This isotropic wavelet at scale s and grid point (location) x0 =
2s k , k ∈Z

2 (in 2D), takes the form of

ψs (x −x0) =
1

2s
ψ

( x−x0
2s

)
=

1

2s
ψ

(
x
2s −k

)
. (33)

We then apply the multiorder complex Riesz transform on ψs (· − x0). The transform
preserves the frame properties. Thus, by choosing N distinct values for the integer n (dis-
tinct set of harmonics), one can form a frame of steerable wavelets, referred to as circular
harmonic wavelets (Jacovitti and Neri, 2000). An nth-order harmonic wavelet has a rota-
tional symmetry of order n around its center, corresponding to the nth-order rotational
symmetry of ejnφ. The illustration of circular harmonics for order three is presented in
Figure 8 (i.). An application of circular harmonic wavelets on local symmetry detection is
presented in (Püspöki and Unser, 2015).

5.4 Detection of Junctions

An important step in the analysis of microscopic images is the detection of key points, or
junctions of coinciding branches. The automatic detection of these junctions can facili-
tate further image-processing tasks such as cell segmentation, counting of cells, or image
statistics. M-fold symmetric structures (including the case of ridges, assimilated to two-
fold symmetries) are present in filaments, fibers, membranes, or endothelial cells (e.g.,
in the eyes). The difficulty in the detection of these junctions is twofold. First, they can
appear at arbitrary orientation and scale; second, biological micrographs are frequently
contaminated by local variations in intensity and measurement noise. With the modified
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wavelet schemes presented above, one can design an efficient detector of the location and
orientation of local symmetries.

From the circular harmonic wavelet representation, one constructs new steerable rep-
resentations by using an orthogonal shaping matrix U to define new steerable-frame func-
tions (Unser and Chenouard, 2013). The role of the shaping matrix U is to give the wavelet
functions a desired angular profile. The transform can be formulated as





ξ
(n1)
s,k
...

ξ
(nN )
s,k



= U





ψ(1)
s,k
...

ψ(N )
s,k



 , (34)

where ψ(n)
s,k

= R
nψs,k is the nth-order circular harmonic wavelet at scale s and location

k , U is an orthonormal transformation matrix and {ξ(n)
s,k

} are the new wavelet channels at

scale s and location k . The number of channels corresponds to the number of harmonics.
The new wavelets span the same space as the wavelet frame ψ(n)

s,k
.

Specific detectors are designed by defining the right weights for U. Typically, the pro-
cess involves an optimization problem, either in the space or in the Fourier domain.
The list of coefficients to optimize can be expressed as a vector that takes the form
u = (u1, . . . ,uN ), with uuH = 1. One can specify a quadratic energy term to minimize in
the space domain like

E [ξ] = 1
2π

∫∞

0

∫π

−π
|ξ(r,θ)|2v(θ)r dθdr, (35)

or (for symmetric patterns) in the Fourier domain like

E [ξ̂] =
1

2π

∫∞

0

∫+π

−π
|ξ̂(ρ,φ)|2v(φ)ρdφdρ. (36)

The angular weighting function v(θ) ≥ 0 or v(φ) ≥ 0 should have minima on the unit cir-
cle that enforces the concentration of the energy along the desired pattern (for instance,
symmetric shape or T-shape). Minimizing E will thus force the solution ξ to be localized
at the corresponding angles. Once the mother wavelet ξ is found, its translates and dilates
naturally share the same optimal angular profile around their center. By expanding ξ as∑

n unψ
(n) and imposing unit norm on u, this formalism leads to a quadratic optimiza-

tion problem with quadratic constraints that can be solved through eigen decomposition.
In Figure 8 (ii.) are shown the amplitude of three different detectors that one can design
with the proposed method: corner, symmetric three-fold junction, and T-junction detec-
tor. Key points in the image correspond to maxima in the response of the wavelet detector.
The optimal steering angle can be determined by root finding, as presented in (Püspöki
et al, 2013, Sec. 4.1). The rest of the detection scheme is achieved by traditional tech-
niques which may combine the results at different scales, local maxima search, threshold-
ing, among others. Detections in synthetic and microscopic data is visualized in Figures 8
(iii.), and (iv.), respectively.

The construction presented here makes it possible to capture the local orientation of
features in an image within a multiresolution hierarchy (Chenouard and Unser, 2012). The
relation between the Riesz transform and steerable filters is studied in (Felsberg and Som-
mer, 2001). The properties of steerable filters using low-order harmonics are analyzed in
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(Koethe, 2006). The extension of the steerable wavelet design based on the Riesz trans-
form for higher dimensions, along with potential biomedical applications, are presented
in (Chenouard and Unser, 2012). Application of steerable wavelets in texture learning for
the analysis of CT images are presented in (Depeursinge et al, 2014b, 2015).

6 Conclusion and Outlook

We have presented a survey on the directional analysis of bioimages. We have discussed
the benefits and drawbacks of classical gradient-based methods, directional multiscale
transforms, and multiscale steerable filters. From a user perspective, we have identified
steerable wavelets and shearlets as the most attractive methods. They unify high direc-
tional selectivity and multiscale analysis, which allows the processing of oriented pat-
terns at different scales. There exist computationally efficient implementations of such
schemes that are available for the public. Finally, they are still an active field of research,
see the recent papers (Bodmann et al, 2015; Duval-Poo et al, 2015; Kutyniok, 2014; Ku-
tyniok et al, 2014) for shearlets and (Depeursinge et al, 2014a; Dumic et al, 2014; Pad et al,
2014; Schmitter et al, 2014; Ward and Unser, 2014) for steerable filters and wavelets. Fur-
thermore, the corresponding user packages and plugins are maintained and continuously
extended.

The state of the art in the field will need to be adjusted to fulfill the upcoming needs of
biomedical and biological imaging. Advances in microscopy and in some other measure-
ment systems (CT, x-ray) will shape the future of research. Currently, microscopes are al-
ready routinely producing and storing large datasets (often several GBs per measurement)
that have to be handled in a fast and efficient way. Moreover, the need to process spatio-
temporal data (2D/3D images over time) is becoming unavoidable and is going to require
the proper extension of current filter-based schemes. Along with efficiency, the robust-
ness, the precision, and the depth of the extracted information can be improved. Another
promising direction of future research is the recovery of directional phase information
using complex-valued wavelet transforms such as the monogenic wavelets (Felsberg and
Sommer, 2001; Häuser et al, 2014; Heise et al, 2014; Held et al, 2010; Olhede and Metikas,
2009; Soulard et al, 2013; Storath, 2011a; Unser et al, 2009). Preliminary applications in-
clude equalization of brightness (Held et al, 2010), detection of salient points (Storath et al,
2015), enhancement of anisotropic structures in fluorescence microscopy (Chenouard
and Unser, 2012), and texture segmentation (Storath et al, 2014). Image-analysis tools
based on monogenic wavelets are provided by the ImageJ/Fiji plugins MonogenicJ8 and
Monogenic Wavelet Toolbox9. A further possible direction is the extension of directional
wavelet transforms to nonuniform lattices such as polar grids or general graphs (Ham-
mond et al, 2011; Sandryhaila and Moura, 2013; Shuman et al, 2013).
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