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Microalgae comprise a biodiverse group of photosynthetic organisms that reside in water

sources and sediments. The green microalgae Chlamydomonas reinhardtii was adopted

as a useful model organism for studying various physiological systems. Its ability to

grow under both photosynthetic and heterotrophic conditions allows efficient growth

of non-photosynthetic mutants, making Chlamydomonas a useful genetic tool to study

photosynthesis. In addition, this green alga can grow as haploid or diploid cells, similar to

yeast, providing a powerful genetic system. As a result, easy and efficient transformation

systems have been developed for Chlamydomonas, targeting both the chloroplast and

nuclear genomes. Since microalgae comprise a rich repertoire of species that offer

variable advantages for biotech and biomed industries, gene transfer technologies were

further developed for many microalgae to allow for the expression of foreign proteins of

interest. Expressing foreign genes in the chloroplast enables the targeting of foreign DNA

to specific sites by homologous recombination. Chloroplast transformation also allows for

the introduction of genes encoding several enzymes from a complex pathway, possibly

as an operon. Expressing foreign proteins in the chloroplast can also be achieved by

introducing the target gene into the nuclear genome, with the protein product bearing a

targeting signal that directs import of the transgene-product into the chloroplast, like

other endogenous chloroplast proteins. Integration of foreign genes into the nuclear

genome is mostly random, resulting in large variability between different clones, such

that extensive screening is required. The use of different selection modalities is also

described, with special emphasis on the use of herbicides and metabolic markers

which are considered to be friendly to the environment, as compared to drug-resistance

genes that are commonly used. Finally, despite the development of a wide range of

transformation tools and approaches, expression of foreign genes in microalgae suffers

from low efficiency. Thus, novel tools have appeared in recent years to deal with this

problem. Finally, while C. reinhardtii was traditionally used as a model organism for

the development of transformation systems and their subsequent improvement, similar

technologies can be adapted for other microalgae that may have higher biotechnological

value.
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INTRODUCTION

Microalgae first attracted the attention of the biotech industry
several decades ago as a potential platform for extracting natural
products, with further improvements in their production relying
on advanced technologies. Microalgae provide a manufacturing
platform for the expression of foreign genes due to their
quick growth under photoautotrophic conditions and their low
cost of maintenance, as compared to land plants, mammalian
cells, yeast, and bacteria. In addition, many algal species have
developed unique metabolic pathways that produce compounds
of commercial value (Priyadarshani and Rath, 2012; Rasala and
Mayfield, 2014). Certain algal species, such as Dunaliella, are
adapted for growth under extreme conditions, in this case high
salinity (Ben-Amotz and Avron, 1972), thereby reducing the risk
of contamination.

The plethora of high-value chemicals that can be extracted
from both cyanobacteria and eukaryote microalgae include
compounds used in the food industry, medicine, and cosmetics.
The possibility of advancing the use of microalgae for future
development of biofuel production and additional health-
related products has also been examined. Microalgae have been
exploited for the production of food additives, such as β-carotene
(Varela et al., 2015) and astaxanthine, as well as long-chain
polyunsaturated fatty acids (PUFAs; Borowitzka, 2013; Sharon-
Gojman et al., 2015). Another line of industrial exploitation
makes use of cell-wall sulfated polysaccharides, mainly for the
cosmetics industry (Arad and Levy-Ontman, 2010). However,
competition from cheaper parallel compounds extracted from
macroalgae reveals the need for improvements to microlalgal
systems. Efforts have long been directed at the industrial
use of microalgal biomass for biofuel production, although
the relatively high cost and low yield are of concern. Thus,
biotechnological improvements combined with global market
changes may, however, have major implications for the future use
of microalgae as a biofuel source. Algae can also contribute in the
development of novel and sensitive biosensors for environmental
uses, such as monitoring pollutants in soil and water sources (Viji
et al., 2014; Diaz et al., 2015). Finally, algae are an important
component of the marine aquaculture, and can be used in
ecological reef rehabilitation, especially in view of their ability to
form symbiontic relationships with coral (Hagedorn and Carter,
2015).

Heterotrophic growth of microalgae is usually limited to
bioreactors, whereas photoautotrophic growth can be carried
out in open ponds. Still, the use of open ponds is restricted to
extreme conditions (salt, temperature, pH) that allow exclusive
growth of the organism of interest and avoid contamination by
opportunistic organisms. This has been shown for Dunaliella,
which is adopted to grow at high salt concentrations (Ben-Amotz
and Avron, 1983), as well as for Spirulina, a photoautotrophic
cyanobacteria that grows at high pH (Nolla-Ardevol et al., 2015).

In view of the above, genetic manipulations of microalga
can lead to major changes in microalgal biotechnology-
based industries. Such manipulations include the transfer of
biosynthetic cascades into organisms that are suitable for growth
in open ponds, or alternatively, adapting organisms that produce

compounds of interest to grow under extreme conditions, thus
reducing the risk of contamination. Recent developments in
genome sequencing, combined with old and new systems for
genetic manipulation, act synergistically to advance all aspects of
microalgal research, both basic and applied. This review focuses
on available systems and approaches for genetic manipulation of
the chloroplast and nuclear genomes of microalgae, addressing
unsolved issues, as well as points that await improvement.

Significant efforts have been invested in establishing tools
that will allow for realization of the promise that algae
hold for the production of high value bio-products, with
most such tools having been originally developed for the
model alga Chlamydomonas reinhardtii (Kindle et al., 1989).
Transgene expression in Chlamydomonas was based on the
accumulated identification of regulatory elements, such as
promoters and untranslated regions (UTRs; Harris, 2009).
Subsequently, successful nuclear transformation systems were
also developed for ∼25 microalgae species (see Tables 1, 2).
In many cases, microalgal transformation resulted in stable
expression of transgenes from either the nuclear or plastid
genomes. The large amount of genomic and EST data from
different algae contribute to the rich molecular toolbox currently
available.

CHLOROPLAST TRANSFORMATION
SYSTEMS

Technical Approaches Used for
Chloroplast Transformation
Although stable transformation of microalgae was first developed
for the chloroplast of C. reinhardtii, there are still fewer
transformation systems that target the chloroplast, as compared
to those targeting the microalgal nucleus. One great advantage
of chloroplast transformation is that transgenes can be easily
directed to integrate via homologous recombination, whereas
nuclear transformation of microalgae usually results in random
integration events. The development of the CRISPR-CAS9
system inmicroalgaemay offer a solution for targeting transgenes
into specific sites in the nuclear genome. The improvement
of chloroplast transformation tools is also a dynamic field, as
discussed elsewhere for microalgae (Purton, 2007; Purton et al.,
2013) and higher plants (Bock, 2015).

The first stable transformation system for the chloroplast
of C. reinhardtii was established using biolistic delivery. The
foreign DNA was designed to rescue three mutants of the
chloroplast atpB gene by homologous recombination of the
transgenic marker into the target mutant strain and restore
photosynthetic activity (Boynton et al., 1988). It was further
shown that Chlamydomonas chloroplast transformation could
be achieved by agitating cell wall-deficient cells with the DNA
of interest in the presence of glass beads (Kindle et al., 1991;
Economou et al., 2014; Rochaix et al., 2014). A chloroplast
transformation system that was based on integration into the
inverted repeat of the plastid genome using electroporation was
also developed for Phaeodactylum tricornutum (Xie et al., 2014).
Thus, similar technologies can be used for both chloroplast and
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TABLE 1 | List of selection markers and selection modes for chloroplast transformation.

Type of selection marker Selection gene Gene product Selection mode Species/Genetic

background

References

Antibiotic resistance aadA Aminoglycoside

3′ adenylyltransferase

Resistance to

Spectinomycin/Streptomycin

Chlamydomonas

reinhardtii

Goldschmidt-

Clermont,

1991

Euglena gracilis Doetsch et al.,

2001

Haematococcus

pluvialis

Gutiérrez et al.,

2012

aphA6 Aminoglycoside

3′- transferase

Resistance to

Kanamycin

Chlamydomonas

reinhardtii

Bateman and

Purton, 2000

ereB Erythromycin

esterase

Resistance to

Erythromycin

Dunaliella

tertiolecta

Georgianna et al.,

2013

rrnS and rrnL point mutation 16S and 23S Resistance to

Spectinomycin,

Streptomycin,

Kanamycin and

Erythromycin

Chlamydomonas

reinhardtii

Newman et al.,

1990

Cat Chloramphenicol

acetyltransferase

Resistance to

Chloramphenicol

Phaeodactylum

tricornutum

Xie et al., 2014

Herbicide resistance psbA mutant Photosystem II

protein D1

Resistance to

3-(3,4-Dichlorophenyl)-

1,1-dimethylurea

(DCMU)

Chlamydomonas

reinhardtii

Przibilla et al.,

1991; Newman

et al., 1992

ahas(W492S) Acetohydroxyacid

synthase

Resistance to

Sulfometuron methyl

Porphyridium sp. Lapidot et al.,

1999, 2002

Parietochloris

incisa

Grundman et al.,

2012

Bar Phosphinothricin

acetyltransferase

Tolerance to

Glufosinate, or its

ammonium salt DL-

Phosphinothricin

Platymonas

subcordiformis

Cui et al., 2014

Metabolic markers atpB β subunit of ATP

synthase

Photoautotrophic

growth

Chlamydomonas

reinhardtii cc-373

(atpB-)

Boynton et al.,

1988

nifH β-glucuronidase Photoautotrophic

growth

Chlamydomonas

reinhardtii (chlL-)

Cheng et al., 2005

psbA Photosystem II

protein D1

Photoautotrophic

growth

Chlamydomonas

reinhardtii FUD7

Michelet et al.,

2011

tscA Small RNA that

participates in

trans-splicing of

the psaA transcript

Photoautotrophic

growth

Chlamydomonas

reinhardtii (tscA-)

Goldschmidt-

Clermont, 1991;

Kindle et al., 1991

arg9 Acetylornithine

aminotransferase

Arginine free media Chlamydomonas

reinhardtii (arg9-)

Remacle et al.,

2009

nuclear transformations. The various markers for chloroplast
transformation systems available today are summarized in
Table 1.

Selection Systems
Selection Markers for Chloroplast Transformation

Based on Photoautotrophic Growth
Chlamydomonas offers the advantage of being able to grow under
non-photosynthetic conditions, using acetate as a carbon energy
source. Thus, using non-photosynthetic mutants as recipient

strains and recovery of their photosynthetic activity as a reporter
system was used for reconstituting expression of the mutated
atpB gene, encoding for ATP synthase (Boynton et al., 1988), and
the tscA gene, encoding a small RNA that participates in trans-
splicing of the psaA transcript (Goldschmidt-Clermont, 1991;
Kindle et al., 1991).

Marker rotation is an approach that was originally aimed
at examining whether the bacterial nifH gene from Klebsiella
pneumoniae could replace the algal ChlL gene, which is
responsible for chlorophyll biosynthesis in the dark. Both
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TABLE 2 | Commonly used nuclear control elements for constitutive or inducible transgene expression.

Functional

elements

Originally controlling

expression of

Property Source of element Comments Algal species used with this

control element

CaMV35S promoter 35S Viral protein from

the Cauliflower mosaic

virus

Strong heterologous

constitutive promoter

which functions well in

land plants and some

algae species

Cauliflower mosaic

virus

Contradictory data for

Chlamydomonas

Chlamydomonas reinhardtii,

Successful transformation: (Kumar

et al., 2004)

Unsuccessful transformation: (Day

et al., 1990; Diaz-Santos et al., 2013)

High efficiency for different

Chlorella species,

Dunalliela, diatoms,

Haematoccoccus and

Nanochloropsis

Chlorella kessleri, (El-Sheekh, 1999)

Chlorella ellipsoidea, (Jarvis and

Brown, 1991)

Chlorella vulgaris, (Chow and Tung,

1999; Wang C. et al., 2007; Cha

et al., 2012)

Dunaliella salina (Tan et al., 2005)

Amphidinium sp. and Symbiodinium

microadriaticum, (ten Lohuis and

Miller, 1998)

Phaeodactylum tricornutum, (Sakaue

et al., 2008)

Haematococcus pluvialis, (Kathiresan

et al., 2015)

Nannochloropsis sp., (Cha et al.,

2011)

RBCS2 promoter Small subunit of the

ribulose bisphosphate

carboxylase

Strong endogenous

constitutive promoter

Chlamydomonas

reinhardtii

Introducing the first intron

of RBCS2 into the coding

region or fusing the

HSP70A promoter

upstream to the RBCS2

promoter greatly improves

the expression of

transgenes

Chlamydomonas reinhardtii, (Stevens

et al., 1996; Lumbreras et al., 1998;

Fuhrmann et al., 1999; Schroda et al.,

2000)

Dunaliella salina, (Sun et al., 2005)

Chlorella ellipsoidea, (Kim et al., 2002)

Volvox carteri, (Hallmann and

Wodniok, 2006)

Pseudochoricystis ellipsoidea,

(Imamura et al., 2012)

Nannochloropsis sp., (Chen et al.,

2008; Li and Tsai, 2009)

Dunaliella salina Adding a nuclear matrix

attachment regions (MAR)

before the promoter

region and after the

terminator sequence was

shown to increase

transgene expression

Dunaliella salina (Wang T. Y. et al.,

2007)

Dunaliella tertiolecta Only one transgenic line

was recovered when used

to transform Dunaliella

tertiolecta

Chlamydomonas reinhardtii, (Walker

et al., 2005a)

Dunaliella tertiolecta, (Walker et al.,

2005b)

Lobosphaera

(Parietochloris) incisa

The upstream region of

the Lobosphaera incisa

RBCS promoter (ranging

from −1000 to −450)

contains elements

counteracting

transformation or gene

expression

Chlamydomonas reinhardtii, (Zorin

et al., 2014)

Lobosphaera (Parietochloris) incise,

(Zorin et al., 2014)

(Continued)
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TABLE 2 | Continued

Functional

elements

Originally controlling

expression of

Property Source of element Comments Algal species used with this

control element

PSAD promoter An abundant

chloroplast protein of

Photosystem I

complex, encoded by

the nuclear genome

A strong endogenous

constitutive promoter

Chlamydomonas

reinhardtii

Expression driven by the

PSAD promoter can be

enhanced by high light

Chlamydomonas reinhardtii, (Fischer

and Rochaix, 2001)

FCP promoter Fucoxanthin-

chlorophyll binding

protein of the

light-harvesting

antennae complexes

Strong Endogenous

and constitutive

promoter

Phaeodactylum

tricornutum

FCP promoters (A-E) are

capable of driving

expression of the bacterial

ble gene at levels

sufficient to confer

resistance to Zeocin

Phaeodactylum tricornutum, (Apt

et al., 1996; Falciatore et al., 1999;

Zaslavskaia et al., 2000; Kilian and

Kroth, 2005)

Thalassiosira weissflogii, (Falciatore

et al., 1999)

Cylindrotheca

fusiformis

Cylindrotheca fusiformis, (Poulsen

and Kroger, 2005)

Thalassiosira pseudonana, (Poulsen

et al., 2006)
Thalassiosira pseudonana

The transformation of

Cylindrotheca fusiformis

using a pFCP-based

vector improved the

transformation efficiency

about four fold as

compared to the

Pδ-containing vectors

Pδ ε Frustulin–member of

the calcium-binding

glycoproteins

Endogenous

constitutive promoter

Cylindrotheca

fusiformis

Used to drive functional

expression of a

membrane protein

Cylindrotheca fusiformis, (Fischer

et al., 1999)

Ubi1-� promoter Ubiquitin promoter

fused with the

TMV-omega translation

enhancer element

Strong heterologous

constitutive promoter

Zea maize Highly efficient for

transformation of Chlorella

ellipsoidea and Dunaliella

salina cells

Chlorella ellipsoidea, (Chen et al.,

2001)

Dunaliella salina, (Geng et al., 2003,

2004)

GAPDH Glyceraldehyde

-3-phosphate

dehydrogenase

Endogenous

constitutive promoter

Dunaliella salina Used to drive expression

of the heterologous gene

encoding bialaphos

resistance (bar) and of the

N-terminal fragment of

human canstatin

Dunaliella salina, (Jia et al., 2012)

CABII-1 Light-harvesting

chlorophyll a/b-binding

proteins of

photosystem II

Endogenous promoter Chlamydomonas

reinhardtii

The NIT1 gene expressed

under the control of the

CABII-1 promoter was

highly stimulated by light

Chlamydomonas reinhardtii,

(Blankenship and Kindle, 1992)

NIT1 Nitrate reductase

promoter

Strong inducible

endogenous promoter

Chlamydomonas

reinhardt

Expression of the nitrate

reductase is switched off

when cells are grown in

the presence of

ammonium ions and

becomes switched on

within 4 h when cells are

transferred to a medium

containing nitrate. An

expression vector with the

NIT1 promoter is widely

used in many studies

Chlamydomonas reinhardtii,

(Ohresser et al., 1997; Koblenz and

Lechtreck, 2005; Schmollinger et al.,

2010)
Chlorella ellipsoidea Chlorella ellipsoidea, (Wang et al.,

2004)

Phaeodactylum

tricornutum

Phaeodactylum tricornutum, (Niu

et al., 2012); Chlorella vulgaris, (Niu

et al., 2011)

Dunaliella salina Dunaliella salina, (Li et al., 2007, 2008)

Cylindrotheca

fusiformis

Cylindrotheca fusiformis, (Poulsen

and Kroger, 2005); Phaeodactylum

tricornutum, (Miyagawa et al., 2009)

Thalassiosira

pseudonana

Thalassiosira pseudonana, (Poulsen

et al., 2006)

Volvox carteri Volvox carteri, (von der Heyde et al.,

2015)

(Continued)
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TABLE 2 | Continued

Functional

elements

Originally controlling

expression of

Property Source of element Comments Algal species used with this

control element

LIP Light-induced protein Dunaliella sp. The LIP promoter can be

used for conditional gene

expression in response to

high light

Chlamydomonas reinhardtii, (Park

et al., 2013; Baek et al., 2016)

B12-responsive

element

B12-independent

methionine synthase

(METE)

Chlamydomonas

reinhardtii

The B12-responsive

element can repress

expression of a reporter

gene following the

addition of B12

Chlamydomonas reinhardtii, (Helliwell

et al., 2014)

TPP riboswitch Thiamine

pyrophosphate (TPP)

A riboswitch-regulated

element based on the

thiamine

pyrophosphate

Chlamydomonas

reinhardtii

The TPP riboswitch

regulates expression in

response to the presence

or absence of TPP in the

growth medium

Chlamydomonas reinhardtii,

(Ramundo et al., 2013)

CYC6 promoter Cytochrome c6 An inducible

endogenous promoter

Metal-responsive element

that is responsive to both

nickel and cobalt ions and

could be inhibited by

EDTA

Chlamydomonas reinhardtii, (Quinn

and Merchant, 1995)

genes show a remarkable similarity in their domain structure,
suggesting that nifH could replace ChlL for binding to a [4Fe–
4S] cluster, thereby directly introducing the nitrogenase Fe
protein into the Chlamydomonas plastome. In addition to using
this approach for investigating the nitrogenase-like complex
in the chloroplast, it could serve as a platform for plastid
engineering into a functional nitrogenase-containing organelle.
Accordingly, petB (cytochrome b6) was initially replaced by the
selection marker aadA, and non-photosynthetic transformants
were selected. A second round of transformation with the mutant
strain restored the petB gene product and, moreover, introduced
nifH (or uidA, encoding β-glucuronidase), allowing selection
based on the ability to grow under photoautotrophic conditions
(Cheng et al., 2005).

The use of FUD7 as a recipient strain offered a selection
mechanism based on the ability of the transformed algae to
grow under photoautotrophic conditions. FUD7 is a mutant that
carries a deletion between exon 1 of psbA and the 5S gene. Thus,
a cassette that reinstalls the open reading frame of psbA, along
with a tagged gene of interest flanked by 3′UTR sequences, was
established (Michelet et al., 2011).

Selection Markers for Chloroplast Transformation

Based on Metabolic Enzymes
Metabolic selection of transformed cells provides a great
advantage over the use of genes encoding for resistance to
antibiotics and herbicides, as metabolic selection is considered to
be more environmental friendly. Metabolic selection is common
in yeast and animal cells, especially since many markers offer
positive and negative selections. For instance, acetylornithine
aminotransferase (ARG9) is a key enzyme in the metabolic
pathway of arginine. It is encoded in the nucleus of C. reinhardtii,

with the protein translocating into the chloroplast. A mutation in
ARG9 resulted in an auxotrophic phenotype, such that the algal
cells could only grow if arginine was added to the medium. The
Arabidopsis thaliana ARG9 gene, known for its high A/T content
that is typical of the chloroplast genome (Nakamura et al., 2000),
was expressed in the plastid of a Chlamydomonas mutant strain
that was originally deficient of ARG9 expression. The foreign
ARG9 gene, now encoded by the chloroplast genome, was able to
rescue the auxotrophic phenotype and restore arginine synthesis.
This elegant approach created a metabolic selection system for
chloroplast transformation in Chlamydomonas (Remacle et al.,
2009).

Selection Markers for Chloroplast Transformation

Based on Resistance to Antibiotics
Mutations in the sequence of the 16S (rrnS) and 23S (rrnL)
rRNA that confer resistance to spectinomycin, streptomycin,
kanamycin and erythromycin in C. reinhardtii (Harris et al.,
1989) were previously used to establish an antibiotic-based
selective marker that exchanged wild type RNA with the gene
encoding resistant RNA (Newman et al., 1990). Later, resistance
to spectinomycin was conferred by introducing the bacterial-
derived aadA gene into the chloroplast genome, encoding
aminoglycoside 3′ adenyl transferase. This gene is still the
most frequently used marker for chloroplast transformations in
algae and higher plants. The aadA-rbcL expression cassette was
adapted and used to transform the genome of theHaematococcus
pluvialis chloroplast (Gutiérrez et al., 2012).

An additional bacterial gene, aphA6, encoding
aminoglycoside (3′) transferase that confers resistance to
aminoglycoside antibiotics was used with Chlamydomnas
reinhardtii. The combination of aadA with aphA6 extended
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the possibility for expressing multiple foreign genes in the
chloroplast (Bateman and Purton, 2000). In 2013, the group of
Stephan Mayfield constructed a cassette for Dunaliella tertiolecta
chloroplast transformation. The construct that encodes both
the gene of interest and the erythromycin esterase gene, ereB,
was successfully introduced into D. tertiolecta cells via particle
bombardment (Georgianna et al., 2013). A chloroplast-based
expression system developed for the diatom P. tricornutum uses
the chloramphenicol acetyltransferase (CAT) gene as a selection
marker, as it confers resistance to chloramphenicol. This cassette
promoted the expression of a foreign gene, along with the
selection marker (Xie et al., 2014).

Finally, there is a strong demand for marker removal systems
due to biotechnological concerns and commercial requests. Such
a system was first established for Chlamydomonas by designing
a dedicated cassette for promoting a recombination event that
allows for removal of the selection marker, once the selection
pressure is removed. The additional foreign gene in this cassette
was maintained in the genome despite the removal of the
selection gene marker because it was located outside of the
sequence repeats that drive the recombination event (Fischer
et al., 1996).

Selection Markers for Chloroplast Transformation

Based on Resistance to Herbicides
A mutation in the fifth exon of the psbA coding region conferred
resistance of Chlamydomonas cells to 3-(3,4-dichlorophenyl)-
1,1-dimethylurea (DCMU), a herbicide that blocks the electron
transfer pathway in PSII. Thus, DCMU resistance was initially
used as a selection marker for understanding the occurrence of
integration hotspots in the chloroplast genome (Newman et al.,
1992). A different mutation in psbA also provides the cells with
herbicide resistance to metribuzin (Przibilla et al., 1991).

The herbicide sulfometuron methyl (SMM) that inhibits
growth of bacteria, yeast, algae and plants is commonly used
as a selection marker in plants and algae. The target of SMM
is the gene encoding acetohydroxyacid synthase (AHAS), an
enzyme involved in the biosynthesis of branched amino acids.
Since AHAS is encoded by the chloroplast genome of the red
microalgae Porphyridium sp., it was found to be an ideal marker
for chloroplast transformation. As such, a naturally occurring
W492S mutation in the algal AHAS gene that confers resistance
to SMM was used to establish a transformation system for
Porphyridium sp. (Lapidot et al., 1999, 2002). During evolution,
the gene encoding AHAS moved to the nucleus in land plants
and green algae (Mazur et al., 1987), therefore allowing for its
use as a selection marker in nuclear transformations in plants (Li
et al., 1992; Ott et al., 1996) and green algae (Kovar et al., 2002).
The AHAS-encoding gene was also later used as a transformation
marker for the green microalgae Lobosphaera (Parietochloris)
incisa, an algae with added value for biotechnological purposes
(Grundman et al., 2012). In this case, the endogenous gene was
first cloned, the W605S mutation in the active site of the enzyme
that confers resistance to SMM was introduced, and the mutated
gene was used for nuclear transformation.

Another chloroplast transformation system based on
resistance to herbicides was developed for Platymonas

subcordiformis using the bacterial bar gene encoding
phosphinothricin acetyltransferase, which confers tolerance
to glufosinate, or its ammonium salt, DL-phosphinothricin. This
latter compound is the active ingredient in several herbicides,
including the widely used Basta. The bar gene was also described
as a selection marker in tobacco (Lutz et al., 2001). The use of
this system in algae resulted in the development of a useful tool
and a suitable selection system for this algae that is not sensitive
to most commonly used antibiotics, such as spectinomycin,
streptomycin or kanamycin (Cui et al., 2014).

Finally, as will be discussed below (see Section
Biotechnological Exploitation of Microalgae), antibiotic and
herbicide markers may raise biosafety concerns when genetic
engineering is recruited for biotechnological purposes. Thus,
selections involving metabolic markers that offer functional
complementation of a missing endogenous gene product provide
a clear advantage.

Regulatory Elements: Promoters, UTRs,
and Codon Optimization
Efficient expression of foreign genes in algal chloroplasts is
usually best obtained through the use of endogenous regulatory
elements, derived from genes that are abundantly expressed.
Thus, promoters that drive expression of the large subunit
of ribulose bisphosphate carboxylase/oxygenase (rbcL), the D1
protein of the photosystem II reaction center (psbA), and the Y
subunit of ATP synthase (atpA), were recruited for this purpose.
The highest expression of soluble GUS was recorded for the
atpA promoter and the 5′UTR (Ishikura et al., 1999). In another
study, the atpA and psbD promoters and 5′UTRs were shown
to drive the highest expression of a GFP reporter gene, when
compared to the promoter and 5′UTRs of the rbcL and psbA
genes. The presence of a 3′UTR derived from the different
genes was required but had little effect on the accumulation
of the transcript and foreign protein (Barnes et al., 2005). In
later studies, the Goldschmidt-Clermont group demonstrated
that the use of the psaA-exon1, its promoter and its 5′UTR
increased foreign protein expression levels in the chloroplast.
The authors also suggested that the variable expression observed
among the different transformants that were derived from the
same construct was related to the number and location of the
recombination events (Michelet et al., 2011).

For a long time, foreign gene expression in the chloroplast
suffered from low yields. With this in mind, limiting factors
that could explain the low expression were extensively sought.
It should be noted that gene expression in the chloroplast is
tightly regulated at the translational level, and is less sensitive to
transcriptional regulation. This was demonstrated in studies that
inhibited the accumulation of specific chloroplast transcripts (by
90%) without affecting their translation rates. Gene dosage also
proved to have little effect on the level of proteins encoded by
these genes (Eberhard et al., 2002). The bottleneck in transgene
expression from the chloroplast genome was addressed by the
Mayfield group in 2007. They demonstrated that instead of
targeting the expression cassette to the inverted repeats of the
chloroplast genome, which yielded a low expression level of 0.5%
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relative to the total protein content in the cell, direct replacement
of the psbA gene with a foreign coding region increased the
production yield of the foreign protein to >5%. The authors
suggested that the increased level of expression was due to a lack
of competition encountered by regulatory factors (Mayfield and
Schultz, 2004; Manuell et al., 2007).

Further improvements increased the level of transgene
expression in the chloroplast of C. reinhardtii up to 20% of
the total soluble protein content by focusing on optimization
of codon usage and inhibition of ATP-dependent proteases.
In addition, the toxicity of the transgene product may have a
dramatic effect on its level of expression, and finally, large screens
are usually required in order to isolate clones that efficiently
express a transgene, possibly due to transformation-associated
genotypic modifications that occur due to the random insertion
of the foreign gene into the nuclear genome. Thus, the type of
promoter and UTRs used are not the only factors that affect
expression levels. The site of integration in the chloroplast, as well
as accompanying random integration events in the nucleus, may
also affect expression (Surzycki et al., 2009).

Chloroplast transformation systems that were developed for
other algal species revealed differences with those developed
for Chlamydomonas. For example, chloroplast transformation
of Euglena revealed that the cassette containing the aadA
gene flanked by the endogenous psbA promoter/5′UTR
and 3′UTR generated drug resistant clones in which the
DNA was maintained on a high molecular weight episomal
element. Additional experiments using the aadA cassette
introduced into the independently expressed Euglena gracilis
psbK operon demonstrated proper splicing of the group III
intron derived from the operon (Doetsch et al., 2001). Episomal
elements carrying resistance genes are also common in non-
photosynthetic kinetoplastids, such as Leishmania (Kapler et al.,
1990), although the algal case describes a stable chloroplast
episome.

Inducible Expression in the Chloroplast
Inducible expression offers considerable advantages, especially
when the product of the transgene may interfere with cell growth
or be toxic. NAC2 is essential for stabilization of the psbDmRNA
(Kuchka et al., 1989), binding a unique target site in the psbD
5′UTR, and regulating the expression of any foreign gene under
control of the psbD 5′UTR. The group of Rochaix introduced
the NAC2 gene into Chlamydomonas cells under control of the
cytochrome C6 promoter, which can be induced upon depletion
of copper ions, by exposure to anaerobic conditions and in the
presence of nickel ions (Merchant and Bogorad, 1987; Nickelsen
et al., 1994; Quinn et al., 2002, 2003; Surzycki et al., 2007; Rochaix
et al., 2014). Thus, manipulating the NAC2 gene to be induced by
any of these conditions resulted in a similar pattern of regulation
of a foreign gene that was driven by the psbD 5′UTR (Rochaix
et al., 2014).

NUCLEAR TRANSFORMATION

Nuclear expression of transgenes in microalgae offers several
advantages, including targeting of foreign proteins for expression

in organelles, such as the chloroplast, and protein glycosylation
and/or additional post-translational modifications, as well as
secretion (León-Bañares et al., 2004). These advantages are
especially required for the exploitation of microalgae for
industrial production for recombinant proteins, especially in
view of the known difficulties to obtain efficient expression of
foreign genes in microalgae (Eichler-Stahlberg et al., 2009). A
collection of protocols for nuclear transformation, combined
with the availability of several constitutive or inducible promoters
and the availability of multiple selectable markers, offers a
multitude of approaches for expression of transgenes in the
nucleus.

Gene Delivery Methods
Generation of Protoplasts
The algal cell wall represents a physical barrier preventing the
entry of foreign DNA through the cell membrane. Thus, many
protocols for transformation rely on the use of protoplasts,
which are cell wall-deficient. However, in many cases, generating
protoplasts is a major bottleneck due to the diverse composition
of the cell wall in different algae species, which, in many
cases, remain poorly characterized (Popper and Tuohy, 2010).
The Chlamydomonas cell wall is built from glycoproteins and
contains little cellulose or chitin. As such, polysaccharide-
degrading enzymes are ineffective, with protoplasts instead
being generated by incubation with autolysins, namely hydroxyl-
proline-specific proteases that are active during gametogenesis
and mating (Jaenicke et al., 1987; Imam and Snell, 1988). Unlike
Chlamydomonas, the cell wall in Chlorella consists of sugar
polymers that can be degraded by sugar digesting-enzymes
(Takeda, 1991). Thus, protoplasts of different Chlorella species
can be generated by incubation with different sugar-degrading
enzyme mixes (Braun and Aach, 1975; Yamada and Sakaguchi,
1982; Afi et al., 1996). Protoplasts from red and brown algae
have been prepared using numerous cell wall-digesting enzymes
extracted from marine mollusks or echinoderms (Liu et al., 1984;
Cheney et al., 1986; Reddy et al., 2010).

Biolistic Delivery
The most frequently used method of gene delivery is
biolistic transformation, also referred to as micro-projectile
bombardment. This method utilizes DNA-coated gold or
tungsten micro-particles that are delivered through a particle
delivery system at high velocity into algal cells, surpassing the
physiological barrier of the cell wall. Successful transformation
by this approach have been reported for C. reinhardtii (Kindle
et al., 1989), Dunaliella salina (Tan et al., 2005), Haematoccucs
pluvialis (Steinbrenner and Sandmann, 2006), and diatoms
(Dunahay et al., 1995; Apt et al., 1996; Falciatore et al., 1999;
Zaslavskaia et al., 2000).

Glass Beads Method
A simple method that is often used for gene delivery is based
on agitating protoplasts or cell wall-deficient mutants in the
presence of glass beads, polyethylene glycol (PEG) and foreign
DNA (Kindle et al., 1989). Successful transformations by this
method were reported for C. reinhardtii (Kindle et al., 1989)
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and Chlorella ellipsoidea (Jarvis and Brown, 1991). In the
case of C. reinhardtii, linearized plasmids usually yield higher
transformation frequencies than supercoiled DNA when using
glass beads or silicon carbide whiskers to mediate DNA entry
(Kindle, 1990; Dunahay, 1993).

Electroporation
Applying an electric pulse is a commonly used method to
introduce DNA into cells. This technique was used to transform
microalgal protoplasts, cell wall-deficient mutants, and other
thin walled algal cells. It was used to transform C. reinhardtii
(Brown et al., 1991; Shimogawara et al., 1998; Yamano et al.,
2013), D. salina (Walker et al., 2005b), Chlorella vulgaris (Chow
and Tung, 1999), Scenedesmus obliquus (Guo et al., 2013),
and Nannochloropsis sp. (Kilian et al., 2011). The use of cell
wall-deficient strains improves transformation efficiency, with
successful transformation using this methodology having been
reported for Lobosphaera (Zorin et al., 2014). However, successful
transformation without using cell wall mutants was also shown
in P. tricornutum, either by electroporation (Niu et al., 2012;
Zhang and Hu, 2014) or multi-pulse electroporation (Miyahara
et al., 2013). In all these cases, the cells were grown without silica,
which probably influenced cell wall structure. Overall, reducing
cell wall thickness improves the transformation of microalga by
electroporation.

Agrobacterium-Based Transformation of Microalgae
The highly popular system for nuclear transformation of land
plants using Agrobacterium tumefaciens was also adapted
for transformation of microalga, using the pCAMBIA
transformation vector. Several microalgal species were
transformed by Agrobacterium, including Chlamydomonas
(Kumar et al., 2004; Pratheesh et al., 2014), as well as other algae
of biotechnological value, such as H. pluvialis (Kathiresan et al.,
2015), Schizochytrium (Cheng et al., 2012), Isochrysis galbana,
and Isochrysis sp. (Prasad et al., 2014).

Nuclear Promoters and Control Elements
Gene Promoters
Efficient expression of foreign genes is achieved under the
control of strong promoters. These are often derived from
viruses, especially in land plants (Sanger et al., 1990), or from
highly abundant endogenous genes, such as the small subunit of
Rubisco (Goldschmidt-Clermont and Rahire, 1986). The use of
a Cauliflower Mosaic Virus (CaMV35S) heterologous promoter
that functions well in land plants gave inconsistent results when
used to transform different algae species. Whereas, this promoter
could drive the expression of reporter genes or chimeric genes in
D. salina (Tan et al., 2005), Chlorella kessleri (El-Sheekh, 1999),
and the dinoflagellates Amphidinium sp. and Symbiodinium
microadriaticum (ten Lohuis andMiller, 1998; seeTable 2) it gave
contradictory results in C. ellipsoidea (Jarvis and Brown, 1991;
Kim et al., 2002) and C. reinhardtii (Day et al., 1990; Blankenship
and Kindle, 1992; Kumar et al., 2004; Diaz-Santos et al., 2013).

The use of strong endogenous promoters is recommended for
nuclear transformation in algae, since heterologous promoters

did not have an advantage, although they were active (Diaz-
Santos et al., 2013). Among the endogenous regulatory elements,
the RBCS2 promoter that drives expression of the small subunit
of Rubisco, and PSAD (an abundant chloroplast protein of
the Photosystem I complex) from C. reinhardtii drove efficient
expression of transgenes (Stevens et al., 1996; Lumbreras
et al., 1998; Fuhrmann et al., 1999; Fischer and Rochaix,
2001). Improved expression of transgenes was demonstrated
in C. reinhardtii when the RBCS2 promoter was fused with
the HSP70A (heat shock protein 70A) promoter, which acts
as a transcriptional enhancer when placed upstream of the
RBCS2 promoter (Schroda et al., 2000). Driving expression
by the HSP70A/RBCS2 regulatory elements has become highly
recommended for nuclear transformation of Chlamydomonas.

Other endogenous promoters have been used to drive the
expression in other algal species, such as the promoter of the
fucoxanthin-chlorophyll binding protein (FCP; Falciatore et al.,
1999; Zaslavskaia et al., 2000; Poulsen et al., 2006). In the
unicellular green alga Lobosphaera (Parietochloris) incisa, the
endogenous RBCS promoter was used to drive expression of
the ble gene, thus developing a platform for future successful
engineering of this alga, which has great biotechnological
potential due to its long-chain polyunsaturated fatty acid (PUFA)
metabolism (Zorin et al., 2014).

Elements in the promoter region may occasionally have a
negative effect on the expression of a transgene. Expression of the
ble gene was silenced in 80% of transformants when it was driven
from the RBCS promoter alone. However, when it was introduced
under the control of the HSP70A/RBCS tandem promoter,
silencing occurred in only 36% of transformed cells (Schroda
et al., 2002). Modifying the HSP70A/RBCS2 promoter so that it
contained four copies of the first RBCS2 gene intron between
the HSP70A and RBCS2 promoters significantly increased the
expression of the downstream gene (Rasala et al., 2012).

A recent study described the use of the constitutive
endogenous promoter that drives expression of the
Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH), for
expression of the bacterial gene encoding bialaphos resistance
(bar) and of the N-terminal fragment of human canstatin in D.
salina (Jia et al., 2012).

A search for efficient endogenous promoters was performed
by a “promoter trapping approach” in C. reinhardtii, by
which a promoter-less selectable marker gene was randomly
integrated into the nuclear genome (von der Heyde et al., 2015).
The appearance of drug-resistant colonies indicated that the
selectable marker gene integrated near a strong promoter. This
approach, combined with the growing amount of species whose
genomes have been sequenced, should enable the isolation of
strong endogenous promoters in other algae as well.

Inclusion of Splicing Signals
Another point of concern is the inclusion of signals for RNA
processing in the algal nuclei, since only processed mRNAs
can exit the nucleus through the nucleopores. Thus, expression
cassettes that contain an endogenous intron were prepared for
improvement of transgene expression (Lumbreras et al., 1998;
Fischer and Rochaix, 2001; Kovar et al., 2002).
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Optimization of Codon Usage
The absence of tRNAs that are compatible with the codon usage
of a given gene can dramatically affect expression of a transgene
(Heitzer et al., 2007). Differences in codon usage were recorded
between various microalgal species, as well as for the chloroplast
and nuclear genomes of the same species (León-Bañares et al.,
2004) and between organelles (Jarvis et al., 1992). Therefore,
codon optimization of exogenous genes can significantly improve
protein expression (Zaslavskaia et al., 2000; Franklin et al.,
2002).

Inducible Expression in the Nucleus
The biotechnological exploitation of constitutive promoters
for the effective expression of toxic compounds for industrial
or pharmaceutical uses or for establishing silencing systems
may occasionally be problematic. Hence, introducing inducible
expression systems offers considerable advantages. Overall,
the use of inducible systems is also attractive for large-scale
production of recombinant proteins in microalgae, as these
enable the cells to first reach an optimal concentration before
expression of the transgene is initiated.

Nitrogen metabolism is based on the exploitation of
ammonium ions. However, some algae can adsorb nitrate and
convert it into ammonium with the help of nitrate reductase
(Fernandez et al., 1989; Berges, 1997). The promoter of the nitrate
reductase gene that is switched on and off in response to the
presence of nitrate or ammonium ions (Poulsen and Kroger,
2005) was able to promote the inducible expression of a reporter
gene in Cylindrotheca fusiformis (Poulsen and Kroger, 2005), C.
reinhardtii (Schmollinger et al., 2010), C. ellipsoidea (Wang et al.,
2004), D. salina (Li et al., 2007, 2008), Volvox carteri (von der
Heyde et al., 2015), and Phaeodactylum triornutum (Niu et al.,
2012).

The use of light for inducing expression in microalgae
has long been pursued, initially by the use of the CABII-1
promoter that was shown to respond to changing light conditions
and stimulate expression of the NIT1 gene under light in
Chlamydomonas (Blankenship and Kindle, 1992). More recently,
the light-regulated elements of the light-inducible protein (LIP)
from Dunaliella was mapped to the flanking 400 bp upstream
sequences of the LIP gene, which contains triplicates of light-
responsible motifs. These were shown to induce expression of a
heterologous reporter gene in Chlamydomonas (Park et al., 2013;
Baek et al., 2016).

The metal-responsive CYC6 promoter that is repressed by
copper was used for inducible gene expression in C. reinhardtii
(Quinn and Merchant, 1995). The copper response element
(CuRE) is responsive to both nickel and cobalt ions, and
could be inhibited by EDTA (Quinn et al., 2003). Expression
from this inducible system was improved by the addition of
the first intron of the RBCS2 gene to the CYC6 promoter
(Ferrante et al., 2011). In several marine and freshwater
algae species, a control element located upstream of the B12-
independent methionine synthase (METE) gene could repress
the expression of a reporter gene following addition of B12
(Helliwell et al., 2014). The strong repressible nature and high
sensitivity of the B12-responsive element can, therefore, be used

as another promising gene expression tool for biotechnological
applications.

Yet another element that was used to drive transgene
expression is based on riboswitch biology (Mandal and Breaker,
2004). A riboswitch-regulated element based on the thiamine
pyrophosphate (TPP) biosynthesis was identified in the THIC
genes of a variety of organisms (Breaker, 2012), including
Arabidopsis, where it affectedTHICmRNA stability by alternative
splicing of the primary mRNA (Bocobza et al., 2007; Wachter
et al., 2007; Bocobza and Aharoni, 2014). This TPP riboswitch
was later used for generating an inducible expression system in
Arabidopsis (Bocobza et al., 2013) and inC. reinhardtii (Ramundo
et al., 2013). Using the TPP system, Ramundo and colleagues
were able to conditionally repress expression of the rpoA or rps12
genes in the chloroplast, affecting their organelle transcription
or translation, respectively. Although riboswitch elements are
common in prokaryotes, and have been used to generate
inducible expression systems in bacteria (Neupert and Bock,
2009), the only riboswitch to be identified in higher eukaryotes
was the TPP riboswitch, described above. The use of riboswitch-
based regulation was recently used to develop a system for
increasing expression of chloroplast genes in Arabidopsis, via
an RNA amplification-based system that strongly improves the
efficiency of riboswitches (Emadpour et al., 2015). A summary
of the constitutive and inducible expression systems is given in
Table 2.

Nuclear Selectable Marker Genes
Stable transformation is based on the use of a proper selection
marker. These include genes that confer resistance to
antibiotics or herbicides, and various metabolic enzymes
that control growth under specific nutritional conditions.
A collection of nuclear selective genes are listed in
Table 3.

Selection of Nuclear Transformants Based on

Auxotrophic Growth
Auxotroph genes can be used as selection markers for rescuing
the phenotype of specific mutants that restrict growth under
minimal conditions. The NIT1 gene, encoding nitrate reductase,
promotes growth in the presence of nitrates as a nitrogen
source (Fernandez et al., 1989), and was introduced for the
nuclear transformation of the NIT1 mutant of C. reinhardtii
(Kindle et al., 1989). This useful selection system was also
applied for many other algal species (see Table 3). Another
metabolic marker is the ARG7 gene, encoding argininosuccinate
lyase. It was used to rescue arginine-requiring ARG7 mutants
to prototrophy (Debuchy et al., 1989; Haring and Beck, 1997),
and is commonly used for nuclear transformation of C.
reinhardtii. The ARG7 mutant strain has been widely used for
transformation of Chlamydomonas, mostly for basic research. A
similar approach for use with other algae would be welcome,
although a mutant that does not express argininosuccinate
lyase must first be isolated. Another selection marker is based
on NIC7, encoding quinolinate synthetase that is required
for NAD biosynthesis. A plasmid carrying this gene could
rescue a mutation in the C. reinhardtii NIC1 gene (Ferris,
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TABLE 3 | List of selection markers and selection modes for nuclear transformation.

Type of selection

marker

Selection gene Gene product Selection mode Species/Genetic

background

References

Antibiotic

resistance

Ble Phleomycin-

binding protein

Resistance to

Zeocine/Phleomycin

Chlamydomonas reinhardtii Stevens et al., 1996; Guo

et al., 2013

Dunaliella salina Sun et al., 2005

Volvox carteri Hallmann and Rappel, 1999

Chlorella ellipsoidea Kim et al., 2002

Phaeodactylum tricornutum Apt et al., 1996; Falciatore

et al., 1999; Zaslavskaia

et al., 2001; De Riso et al.,

2009; Kira et al., 2015

Cylindrotheca fusiformis Fischer et al., 1999; Poulsen

and Kroger, 2005

Nannochloropsis sp. Kilian et al., 2011

Nannochloropsis

granulate/gaditana/oculata/

oceanica/salina

Li et al., 2014

aphVIII Aminoglycoside

3′-phosphotransferase

Resistance to Paromomycin Chlamydomonas reinhardtii Sizova et al., 2001

Gonium pectoral Lerche and Hallmann, 2009

Eudorina elegans Lerche and Hallmann, 2013

aadA Aminoglycoside

3′-adenylyltransferase

Resistance to

Spectinomycin/Streptomycin

Chlamydomonas reinhardtii Cerutti et al., 1997b

aph7 Aminoglycoside

phosphotransferase

Resistance to Hygromycin Chlamydomonas reinhardtii Berthold et al., 2002

Haematococcus pluvialis Kathiresan et al., 2015

Volvox carteri Jakobiak et al., 2004

Chlorella vulgaris Chow and Tung, 1999

Laminaria japonica Qin et al., 1999

nptII Neomycin

phosphotransferase

Resistance to Neomycin Chlamydomonas reinhardtii Hall et al., 1993

Chlorella sorokiniana,

Chlorella vulgaris

Hawkins and Nakamura,

1999

Amphidinium sp., and

Symbiodinium

microadriaticum

ten Lohuis and Miller, 1998

Cyclotella cryptica, Navicula

saprophila

Dunahay et al., 1995

Phaeodactylum tricornutum Zaslavskaia et al., 2000

cat Chloramphenicol

acetyltransferase

Resistance to

Chloramphenicol

Dunaliella salina Geng et al., 2004; Sun

et al., 2008

Chlorella vulgaris Niu et al., 2011

CRY1-1 Cytosolic

ribosomal protein

S14

Resistance to Emetine Chlamydomonas reinhardtii Nelson et al., 1994; Neupert

et al., 2009

Herbicide

resistance

GAT Glyphosate

aminotransferase

Resistance to Glyphosate Chlamydomonas reinhardtii Bruggeman et al., 2014

ALS Acetolacetate

synthase

Resistance to Sulfometuron

methyl

Chlamydomonas reinhardtii Kovar et al., 2002

Porphyridium sp. Lapidot et al., 2002

Parietochloris incisa Grundman et al., 2012

PDS1 Phytoene

desaturase

Resistance to Norflurazon Haematoccucs pluvialis Steinbrenner and

Sandmann, 2006;

Sharon-Gojman et al., 2015

Chlorella zofingiensis Huang et al., 2008; Liu

et al., 2014

(Continued)
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TABLE 3 | Continued

Type of selection

marker

Selection gene Gene product Selection mode Species/Genetic

background

References

Metabolic markers NIT1 Nitrate reductase Growth in the presence of

nitrate salt

Chlamydomonas reinhardtii

(nit1-)

Kindle et al., 1989

Volvox carteri (nit1-) Schiedlmeier et al., 1994;

Hallmann and Sumper,

1996

Dunaliella viridis (nit1-) Sun et al., 2006

Chlorella sorokiniana (nit1-) Dawson et al., 1997

Chlorella ellipsoidea (nit1-) Bai et al., 2013

ARG7 Argininosuccinate

lyase

Growth in Arginine free

media

Chlamydomonas reinhardtii

(arg7-)

Debuchy et al., 1989;

Haring and Beck, 1997;

Molnar et al., 2009

NIC7 Quinolinate

synthetase

Growth in Nicotinamide free

media

Chlamydomonas reinhardtii

(nic7-)

Ferris, 1995; Adam et al.,

2006; Lin et al., 2010

OEE1 Oxygen-evolving

enhancer protein1

Photoautotrophic growth Chlamydomonas reinhardtii

(oee1-)

Mayfield and Kindle, 1990

1995; Lin et al., 2010), allowing growth in the absence of
nicotinamide.

Selection of Nuclear Transformants Based on

Resistance to Antibiotics
As with animal cell systems, numerous antibiotics genes have
been successfully used as selection markers of microalgae. The
ble gene that was originally isolated from Streptoalloteichus
hindustanus, confers resistance to zeomycin and phleomycin
(Sugiyama et al., 1994) and was used for generating transgenic
clones of different algal species (see Table 3). The synthetic
aminoglycoside adenyltransferase aadA gene confers resistance
to spectinomycin and streptomycin (Svab and Maliga, 1993).
It was originally used for chloroplast transformations but was
further adopted for the nuclear system in Chlamydomonas
(Cerutti et al., 1997b), and H. pluvialis (Gutiérrez et al.,
2012). The aminoglycoside phosphotransferase genes aphVIII
(aphH) from Streptomycesrimosus and aph7 from Streptomyces
hygroscopicus confer resistance to paromomycin (Sizova et al.,
2001) and hygromycin B, respectively. These were used to
select drug-resistant algae in several species (see Table 3). The
bacterial nptII gene encoding neomycin phosphotransferase was
proven to be relatively inefficient in C. reinhardtii (Bingham
et al., 1989; Hall et al., 1993). Codon optimization of the
nptII gene, however, led to its improved function as a nuclear
selection marker (Barahimipour et al., 2016). This selection
marker was more successful when used for transforming other
algal strains (see Table 3), as well as seed plants (Elghabi
et al., 2011). The use of the cat gene, encoding CAT that
confers resistance to chloramphenicol, has also been widely used
(Table 3). Finally, the mutated version of the C. reinhardtii gene
encoding ribosomal protein S14 (CRY1) confers resistance to
emetine and cryptopleurine, and was adopted as a dominant
selection marker (Nelson et al., 1994). Indeed, most antibiotic
resistance genes have been successfully and routinely used for
algal transformations (see Table 3). Nonetheless, their use as

selection markers raises both health and ecological concerns for
large-scale production in plants and microalgae.

Selection of Nuclear Transgenic Algae Based on

Herbicide Resistance
The demand for production of plants and microalgae that
are free of antibiotic resistance markers encouraged the use
of herbicide-resistance markers, such as acetohydroxyacid
synthase (ALS/AHAS) that confers resistance to sulfometuron
methyl (SMM), phytoene desaturase (PDS) that generates
resistance to the bleaching herbicide norflurazon, and glyphosate
acetyltransferase (GAT) that contributes to resistance against
glyphosate (Malik et al., 1989).

ALS/AHAS catalyzes the first step in the biosynthesis of
the branched-chain amino acids, valine, leucine, and isoleucine
(Kishore and Shah, 1988; Chipman et al., 1998). It is the target
enzyme of the SMM herbicide that effectively inhibits growth
of bacteria, yeast, plants, and algae. A mutant form of the gene
encoding ALS/AHAS was used as a dominant selectable marker
in the green algae Lobosphaera (Parietochloris) incisa (Grundman
et al., 2012), based on experience gained from transformation
of the chloroplast of the unicellular red alga Porphyridium sp.
(Lapidot et al., 2002), and the green algae C. reinhardtii (Kovar
et al., 2002).

PDS functions in the carotenoid biosynthesis pathway.
Inhibition of this enzyme causes degradation of chlorophyll
and the chloroplast membrane, as well as photo-bleaching of
green tissues (Boger and Sandmann, 1998). Point mutations
in PDS confer enhanced resistance to the bleaching herbicide
norfurazon in the green microalgae H. pluvialis (Steinbrenner
and Sandmann, 2006; Sharon-Gojman et al., 2015) and Chlorella
zofingiensis (Huang et al., 2008; Liu et al., 2014). The use
of GAT that confers increased tolerance to glyphosate is less
recommended due to the reduced growth of GAT-expressing
transformants in response to high concentrations of glyphosate,
which were required to inhibit wild type cells (Bruggeman et al.,
2014).
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Targeting of Foreign Proteins to the Chloroplast
Targeting foreign proteins to sub-cellular compartments
can affect their expression yield through protein folding,
assembly and post-translational modifications. For example, the
chloroplast provides an oxidizing environment that promotes the
formation of disulfide bridges, and an abundance of chaperones
that are required for the folding of soluble proteins after their
import. The ability to properly fold and generate native disulfide
bridges is fundamental for generating functional proteins and
protein complexes, thus making the chloroplast an attractive
organelle for the expression of recombinant proteins. This
was demonstrated in C. reinhardtii by the production of the
disulfide-containing Pfs25 protein from Plasmodium falciparum,
which blocks transmission of the malaria parasite (Gregory
et al., 2012). The importance of disulfide bond formation was
also demonstrated by monitoring the expression and assembly
of several fully active antibodies against pathogenic agents
(Mayfield et al., 2003; Mayfield and Franklin, 2005).

Another advantage of organelle-specific expression is that
targeting of nuclear-expressed proteins to chloroplasts can
reduce the danger of proteolysis (Barnes et al., 2005; Doran,
2006; Mayfield et al., 2007). However, it still remains unclear
why the ability to accumulate high levels of exogenous proteins
in the chloroplast is heterogeneous. The plastid contains three
large families of proteases, each of bacterial origin. These include
the ATP-dependent Zn-metallo protease FtsH family (Adam
et al., 2006; Liu et al., 2010), the ATP-independent Deg/HtrA
family of serine endopeptidases (Huesgen et al., 2009; Sun et al.,
2010) and the ATP-dependent serine-type Clp family (Adam
et al., 2006). The chloroplast proteases can cleave exogenous
proteins, as demonstrated in C. reinhardtii by the use of
cyanide m-chlorophenylhydrazone (CCCP), which uncouples
chloroplast and mitochondrial energy production. The presence
of CCCP reduced degradation of the model protein VP28 from
the White Spot Syndrome Virus three-fold expressed in the
chloroplast, demonstrating that ATP-dependent proteases are
involved in degrading this protein (Surzycki et al., 2009). Most
chloroplast proteases are encoded in the nucleus, except for
ClpP1. Thus, attempts to limit proteolysis of foreign genes
expressed in the chloroplast can be controlled by knockdown
technologies, such as RNAi, an approach that still requires further
improvement in microalgae. Attempts to reduce expression
of chloroplast-encoded ClpP by riboswitch control resulted in
malfunctioning cells (Ramundo et al., 2014). However, deletion
of the gene encoding ClpP protease from the chloroplast was
achieved in A. thaliana (Zheng et al., 2006; Stanne et al., 2009),
indicating that this approach could be feasible for microalgae
as well.

Protein toxicity should also be considered when expression
of foreign proteins in photosynthetic organisms is attempted.
For example, the toxic effect of avidin, when expressed in the
cytosol of transgenic tobacco plants, can be surpassed when this
molecule is targeted to the vacuole (Murray et al., 2002). This also
holds true for the cholera toxin-B subunit that is toxic to tobacco
cells when expressed in the cytosol but not in the chloroplast
(Daniell et al., 2001). Similar aspects should be considered when
expressing foreign genes in microalgae.

Attempts to identify a consensus sequence shared by
chloroplast and mitochondrial targeting peptides (cTPs and
mTPs, respectively) were only partially successful (Habib et al.,
2007; Huang et al., 2009). For this reason, data-driven machine
learning techniques were developed (Schneider and Fechner,
2004), leading to the development of several programs, such as
TargetP and Predotar (Emanuelsson et al., 2000; Emanuelsson,
2002; Small et al., 2004), that try to predict targeting peptides
(TPs) for land plants. ChloroP is another program that predicts
cleavage sites of TPs (Emanuelsson et al., 1999). These programs
are based on the detection of an N-terminal targeting sequence
that is shared between different targeted polypeptides. However,
since green algae diverged from land plants over 725–1200
million years ago (Becker and Marin, 2009), their organelle
import machineries, as well as their TPs, differ substantially
from those of land plants. As such, most prediction programs
are less reliable when used to predict the localization of algal
proteins (Patron and Waller, 2007). With this in mind, a
new algorithm, PredAlgo, that identifies cTPs/mTPs in green
algae was developed. It is based on the accumulation of a
large dataset from large- and small-scale proteomic studies of
Chlamydomonas organelles (https://giavap-genomes.ibpc.fr/cgi-
bin/predalgodb.perl?page=main; Tardif et al., 2012).

A recent study, based on the genomes of P. tricornutum
and Thalassiosira pseudonana, provides a detailed analysis of TP
motifs that target nuclear-encoded proteins to chloroplasts in
diatoms and algae with secondary plastids of the red lineage (i.e.,
dinoflagellates, cryptophytes, and stramenopiles; Gruber et al.,
2015). Organisms that belong to these phyla are of great interest
to algae-based industry.

Targeting Transgene Products for Expression in

Specific Organelles or Secretion
Targeting a transgene protein product for secretion is a common
strategy for avoiding its degradation. A dedicated vector was
designed in which luciferase expression in C. reinhardtii was
greatly improved (up to 84%) by fusing the transgene with the
previously identified secretion element of carbonic anhydrase
(Lauersen et al., 2013a). This approach was further implemented
for the production of secreted ice-binding protein, a protein of
considerable industrial value (Lauersen et al., 2013b, 2015).

The targeting of nuclear transformation proteins to different
cellular compartments is achieved by the addition of a TP-
encoding sequence at the 5′-end of the transgene. TPs are
recognized by the import machineries, which direct import into
the proper organelle. Vectors that efficiently and specifically
target transgene products to different compartments were
generated (Rasala et al., 2014). Such vectors introduce TPs
to the nucleus, mitochondria, chloroplast and ER using the
nuclear localization signal (NLS) from simian virus 40, the
N-terminal mTP from the nuclear gene encoding the alpha
subunit of the mitochondrial ATP synthase, the N-terminal cTP
from the photosystem I reaction center subunit II (encoded by
psaD), and the ER-transit sequence from either BiP1 or ARS1,
respectively. The TP that targets proteins to peroxisomes was also
identified and was further shown to target a GFP transgene to the
peroxisome of C. reinhardtii (Hayashi and Shinozaki, 2012).
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In some cases, protein tagging is required for downstream
applications, such as pull-down assays, immunoprecipitation, or
protein purification. The introduction of such tags could interfere
with the targeting signals. To prevent the obscuring of subcellular
targeting signals, it is important to identify the TP of the native
protein. In Chlamydomonas, endogenous proteins are usually
tagged at their C-termini, since TPs are most frequently found at
the N-terminus (Franzen et al., 1990; Patron and Waller, 2007).

Increasing the Efficiency of Transgene
Nuclear Expression
While chloroplast transformation toolkits have been established
for several microalgae, similar tools for nuclear-based protein
expression remain under-developed, as for land plants. The
reasons that lead to the low expression of transgenes from the
nuclear genome could be varied, including the effects of position
on integration events, epigenetic-derived transgene silencing,
and difficulties related to variable codon usage systems (Jinkerson
and Jonikas, 2015). Although the precise mechanism of insertion
of DNA into the genome is unknown, it involves ligation of
the transforming DNA at a site of double-stranded genomic
DNA break, an event that occurs randomly throughout the
genome with little sequence specificity, via the non-homologous
end joining repair pathway (Kindle et al., 1989; Mayfield and
Kindle, 1990; Zhang et al., 2014). In some cases, the transformed
DNA integrates as a whole cassette, although truncated versions,
fragments, or multiple cassettes that result from enzymatic
cleavage can also be inserted (Zhang et al., 2014). Random
integration events can sometimes result in “position effects,”
in which the level of transgene expression is influenced by
the surrounding genomic regions (Leon and Fernandez, 2007).
It is generally accepted that screening of a large number of
transformants in search of a high expressing clone is necessary
(Hallmann, 2007).

Generation of Strains for Improved Transgene

Expression
Despite the great advances made in developing systems for algal
transformation, with C. reinhardtii serving as a fully sequenced
model organism (Blaby et al., 2014), transgene expression using
different methodologies and approaches remained limited until
specific mutant strains capable of increased expression were
isolated (Neupert et al., 2009). The basic assumption was that
transgene expression could be affected by epigenetic processes,
although the exact reasons remained unclear. To overcome
this, a genetic screen was established in which wild type C.
reinhardtii cells were subjected to random mutagenesis, and
further screened for colonies that showed increased expression
of the transgene. The screen used the ARG− selection system
to select for transgenic algae, although another level of selection
was introduced to screen for clones with increased expression.
This was achieved by introducing CRY1-1, a ribosomal gene that
confers resistance to emetine in a dose-responsive manner. As
such, clones with increased CRY1-1 expression could grow in the
presence of high emetine concentrations. Two clones, UVM4 and
UVM11, were selected for increased transgene expression and are
currently used for in Chlamydomonas (Lauersen et al., 2013b).

It is tempting to examine whether a parallel system could be
developed for other algae as well.

Improvement of Transgene Expression by Fusion with

a Selection Marker
An expression cassette in which the codon-optimized GFP gene
was fused to the ble selection marker increased GFP expression
in C. reinhardtii (Fuhrmann et al., 1999). A further improvement
was achieved by including the self-cleavable 2A peptide derived
from the foot and mouth disease virus (Ryan et al., 1991)
between the transgene and the ble selection marker. Its presence
resulted in processing of the fused polypeptides to yield two
independent proteins. This system led to an ∼100-fold increase
in the expression of several transgenes (Rasala et al., 2012, 2013).

The combination of using novel algal strains that promote
increased expression of foreign genes, along with the
sophisticated fusion between selection and target genes,
opens a new era in transgene expression by the green algae
Chlamydomonas, although similar developments with other
algae are called for as well. The use of Chlamydomonas
overexpressing strains (i.e., UVM11), combined with the codon
optimization of the target gene, was shown to overcome the
expression barrier of transgenes in Chlamydomonas. This
approach led to the efficient expression of an HIV vaccine
candidate, P24 (Barahimipour et al., 2016).

Expression of Transgenes from Episomes
A recent study reported the development of a nuclear episomal
vector designed to introduce foreign DNA from E. coli into
two diatom species, P. tricornutum and T. pseudonana, via
conjugation. The vector contained a yeast-derived sequence that
promoted its replication in these diatoms, even after antibiotic
selection was eliminated. This episome was maintained as a
closed circle at a copy number equivalent to the number of
native chromosomes (Karas et al., 2015). This system offers great
advantages in that it offers an easy method for introducing large
DNA fragments into the host microalga, possibly promoting
entry of several genes comprising a metabolic pathway. In
addition, it is expected, although has yet to be shown, that
expression of foreign genes from an episome would be less
interrupted by epigenetic mechanisms or positional effects, since
the DNA is not integrated into the chromosomal genome.

Gene Targeting in Algal Nuclei
Nuclear transformation of microalgae, in most studied cases,
exhibited low frequency of homologous recombination
(Sodeinde and Kindle, 1993; Nelson and Lefebvre, 1995),
as was also observed with most photosynthetic organisms,
except for mosses. Although occasional successful homologous
recombination in the nuclei of Chlamydomonas had been
reported in the past (Sodeinde and Kindle, 1993; Nelson
and Lefebvre, 1995; Dawson et al., 1997; Hallmann et al.,
1997; Minoda et al., 2004; Zorin et al., 2005), its frequency
was too low for adaptation as a recommended technology.
Efficient homologous recombination suitable for biotechnology
applications was recorded in only two eukaryotic algae,
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namely Cyanidioschyzon merolae (Minoda et al., 2004) and
Nannochloropsis sp. (Kilian et al., 2011).

Attempts to overcome difficulties that arise from positional
effects and/or random integration of transgenes included the
development of a Zn-finger nuclease system (Townsend et al.,
2009) that can recognize and cleave a relatively long specific
sequence, generating site-specific double-strand DNA breaks,
thus modifying a gene of interest, as shown for the COP3 gene
encoding a light-activated ion channel (Sizova et al., 2013).
Another methodology that is currently being developed for
microalgae is based on the CRISPR/Cas9 system, which uses a
guide RNA that directs the Cas9 nuclease to restrict a specific
sequence of DNA (Jinek et al., 2012). Components of the
CRISPR/Cas9 system have recently been shown to function in a
transient manner in C. reinhardtii, although the high toxicity of
Cas9 prevented the successful recovery of stable colonies (Jiang
et al., 2014). As such, further improvement of the CRISPR/Cas9
system is required.

Nuclear transgenic expression in microalgae is occasionally
inefficient, possibly due to gene silencing (Cerutti et al., 1997a),
or other reasons that are not yet fully understood. Still, even if all
the elements required for optimal transcription and translation
of transgene are provided, expression of exogenous genes can
be very low or even non-existent, possibly due to gene silencing
(Cerutti et al., 2011). Furthermore, expression of exogenous
genes might be eliminated if transgenic algae clones are not
maintained under constant selection conditions.

Gene Silencing in Algae through the RNAi
Machinery
The recent sequencing of several algal genomes has provided
insight into the great complexity of these species, although
algal physiology and metabolomics are still not fully resolved.
Nonetheless, key components of the RNA-mediated silencing
machinery, such as Dicer and Argonaute that can process double-
stranded RNA (dsRNA) into small interfering RNAs (siRNAs;
Sontheimer and Carthew, 2005; Ghildiyal and Zamore, 2009;
Voinnet, 2009; Fabian et al., 2010), have been found in many
algae species, including C. reinhardtii (Schroda, 2006; Merchant
et al., 2007; Kim and Cerutti, 2009), V. carteri (Ebnet et al.,
1999; Cheng et al., 2006; Prochnik et al., 2010), D. salina (Sun
et al., 2008; Jia et al., 2009), P. tricornutum (Bowler et al.,
2008; De Riso et al., 2009), and E. gracilis (Iseki et al., 2002;
Ishikawa et al., 2008). RNA-mediated silencing pathways have
been studied in the unicellular green alga C. reinhardtii, where
they are used as a reverse genetics tool for targeted knockdown
of a variety of genes (Sineshchekov et al., 2002; Rohr et al., 2004;
Soupene et al., 2004; Schroda, 2006). RNAi methodology was also
used to examine the function of Aureochrome, a photoreceptor
required for photomorphogenesis in stramenopiles. Silencing
of the AUREO2 gene by introduction of dsRNA derived from
the target gene induced the formation of sex organ primordia
instead of branches, implicating it in the initiation of the
development of a branch but not of a sex organ (Takahashi et al.,
2007).

RNA-mediated silencing pathways have been studied in the
unicellular green alga C. reinhardtii and used as a reverse genetics
tool for targeted knockdown of a variety of genes (Sineshchekov
et al., 2002; Rohr et al., 2004; Soupene et al., 2004; Schroda,
2006). The use of artificial miRNAs (amiRNAs), which mimic
the structure of endogenous miRNA precursors was designed to
enhance this approach (Molnar et al., 2009; Zhao et al., 2009).
AmiRNAs can be designed by the microRNA designer platform
(WMD3, http://wmd3.weigelworld.org/cgi-bin/webapp.cgi,
active on March 14, 2016), which identifies suitable amiRNA
candidates, based on optimal and specific hybridization
properties, to target mRNA (Ossowski et al., 2008). Stable RNAi
gene silencing was demonstrated in different microalgae as well,
including V. carteri (Ebnet et al., 1999; Cheng et al., 2006), D.
salina (Jia et al., 2009), P. tricornutum (De Riso et al., 2009), and
E. gracilis (Iseki et al., 2002). Non-integrative dsRNA or siRNA
was also used to trigger temporary RNAi in the green alga D.
salina (Sun et al., 2008), E. gracilis (Ishikawa et al., 2008), and
Vaucheria frigida (Takahashi et al., 2007).

BIOTECHNOLOGICAL EXPLOITATION OF
MICROALGAE

Microalgae offer substantial potential for various
biotechnological purposes, including production of animal
food, aquaculture and marine agriculture, and biosynthesis of
medical products, such as oral vaccines for animals (fish) and
humans, high-value nutritional additives (e.g., polyunsaturated
fatty acids, carotenoids, etc.), food dyes, and compounds
used in the cosmetic industry and various other chemicals, in
addition to possible future uses as a sources of energy. Moreover,
microalgae-based technologies can be developed into water
source treatments. These highly attractive goals justify the
great efforts that the scientific community is investing in the
development of molecular tools for the generation of transgenic
microalgae.

Using Synthetic Biology for the Production
of Commercial Added Value in Algae
In view of the difficulties in obtaining a high level of transgene
expression in the cytoplasm of algae, the production of numerous
therapeutic proteins was targeted to the chloroplast, including
antibodies and proteins for use as oral vaccines. For example, a
single-chain antibody was produced against the herpes simplex
virus glycoprotein D (Mayfield et al., 2003; Mayfield and
Franklin, 2005), and an IgG1monoclonal antibody was generated
against the anthrax protective antigen 83 (Tran et al., 2009).
There were also attempts to use the chloroplast for producing
oral vaccines against malaria (Gregory et al., 2012, 2013;
Jones et al., 2013; Patra et al., 2015), Staphylococcus aureus
(Dreesen et al., 2010), the white spot syndrome virus protein 28
(Surzycki et al., 2009), the P57 antigen bacterial kidney disease,
(Siripornadulsil et al., 2007), and the VP1 antigen of foot and
mouth disease virus fused to the Cholera toxin B subunit (Sun
et al., 2003). Microalgae were exploited for the production of
other immune reactive proteins, such as the human glutamic acid
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decarboxylase, a known auto-antigen in type 1 diabetes (Wang
et al., 2008).

Heterologous therapeutic proteins were expressed not only
in the chloroplast, but also in the nuclei of different algae, such
as D. salina, Porphyridium sp., Nannocholorpsis oculata, and
C. reinhardtii, to produce edible vaccines against the malaria
parasite Plasmodium berghei (Dauvillée et al., 2010), the surface
antigen of Hepatitis B virus (Geng et al., 2003) and for the
production of food additives such as the xylanase growth
hormone (Rasala et al., 2012; Georgianna et al., 2013) and
Sep15, a selenium supplement (Hou et al., 2013). Algal-derived
oral vaccines were shown to have a long shelf-life and their
administration is injection-free. However, as the use of oral
vaccines elicits mainly local immunity, their general efficacymust
be carefully monitored.

Microalga have been harnessed to express enzymes of interest
(Rasala et al., 2010, 2012), as well as for the potential production
of biofuels (Georgianna and Mayfield, 2012), although the
economical validity of this approach is still not satisfactory.
Efforts were also targeted to enhancing the metabolic engineering
of algae for enrichment of lipids, although this goal has yet to be
reached (Dunahay et al., 1996).

Genetic manipulations could also help in adapting microalgae
to different growth conditions. Attempts to convert autotrophic
algae into heterotrophs relied on introducing the HUP1 gene
form C. kessleri, which encodes for the hexose/H+ transporter
that enables growth in the dark, into V. carteri (Hallmann
and Sumper, 1996) and P. tricornutum (Zaslavskaia et al.,
2001). Increased hydrogen production (by 150%) was obtained
when the C. reinhardtii SMT6 mutant, which is a high H2-
producing strain, was transformed with the HUP1 gene. This
study established the possibility of improving the production
of H2 from H20 and glucose (Doebbe et al., 2007). Increased
hydrogen production was also obtained by a triple knockdown
of the light harvesting complex proteins LHCMB1, 2 and 3 by
RNAi, which resulted in a 180% increase in hydrogen production
(Oey et al., 2013).

Cartenoid production from D. salina and H. pluvialis is
also of great commercial interest, and is based on the natural
production of β-carotene and astaxanthin. Manipulation of
these species is possible, with increased expression of phytoene
desaturase resulting in accelerated biosynthesis of astaxanthin.
Production of an L504R mutant of phytoene desaturase resulted
in increased production of astaxanthin (Steinbrenner and
Sandmann, 2006). Furthermore, introducing the C. zofingiensis
phytoene synthase, an enzyme that participates in the carotenoid
biosynthetic pathway, into C. reinhardtii resulted in increased
levels of violaxanthin and lutein (Cordero et al., 2011). These
studies emphasize the great potential in manipulating metabolic
pathways of high value products by engineering different algal
species. Overall, microalgal systems hold great biotechnological
potential that will surely be exploited in the future.

Biosafety Considerations
In the European Union, all genetically modified organisms
(GMOs) or their products must receive approval before they can
find their way to market. This practice also applies to genetically

modified (GM) microorganisms. Thus, a guidance protocol
for risk assessment of genetically modified microorganisms
was prepared by the European Food Safety Authority (EFSA)
in 2006 (http://www.efsa.europa.eu/sites/default/files/scientific_
output/files/main_documents/374.pdf). The guiding protocols
discriminate between the contained use of microalgae and their
deliberate release into the environment, as further discussed in
an OECD meeting on the Biosafety and Environmental Uses
of Micro-Organisms (Wijffels, 2015). Contained use refers to
closed conditions in which GM microorganisms are grown,
stored, transported, destroyed and disposed, whereas deliberate
release refers to GM microorganisms that are released in
the environment without restricting their ability to spread.
Contained growth can be performed in closed bioreactors
(Chaumont, 1993), tubular reactors (Richmond et al., 1993), or
polyethylene sleeves (Cohen et al., 1991). These technologies are
designed to allow efficient growth and the harvesting of large
quantities of microalgal biomass. Examples of deliberate release
of GMmicroorganisms include their use for immunization of fish
against various pathogens in open ponds, or whenmicroalgae are
employed for cleaning polluted water sources. Risk assessment
is usually performed by testing the effects a GM microorganism
has on humans, animals, plants and/or the environment, and
comparing these effects with those of the conventional non-
transformed variant. Risk assessment refers to the toxicity and
allergenicity of the GM microorganism or its products, as well
as the potential risk of horizontal gene transfer (HGT). To
date, there are only a few reports on HGT in microalgae, and
these refer mainly to viral-mediated HGT (Monier et al., 2009;
Rosenwasser et al., 2014). However, to address this potential
risk, even if it is very rare, the use of selection modes based
on endogenous metabolic markers that complement a missing
activity in a mutant recipient strain would be advantageous over
the use of genes that confer resistance to herbicides or antibiotics.
Removal of the selection markers is also recommended.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Despite occupying the base of the plant evolutionary tree, algae
are distributed worldwide and grow in different climates, under
normal and extreme conditions. As such, algae are known
to provide a rich repertoire of chemicals and bio-molecules,
including those of interest to biotechnological industries. Algae
can also be harnessed as an important food source in the
frame of aquatic agriculture. Finally, they provide a powerful
resource for the production of bio-medical molecules, such as
vaccines, antibodies and drugs (Cadoret et al., 2012). Another
attractive achievement will enable the introduction of foreign
genes that comprise a metabolic pathway that generates a
valuable compound. A recent effort to express the complete
carotenoid pathway toward enhanced astaxanthin formation
was reported for Xanthophyllomyces dendrorhous (Gassel et al.,
2014). However, these exciting possibilities are fully dependent
on efficient expression of transgenes in microalgae. Indeed,
this bottleneck must be addressed, since for occasional cases
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transgene expression had proven to be rather inefficient, for
reasons that were not fully understood. Foreign genes can be
targeted for expression in the chloroplast either by integration
into the chloroplast genome or by their integration in the nuclear
genome as fusion genes equipped with targeting signals that
direct the import of the protein product into organelles. With
regard to the general feasibility of expressing foreign proteins
in microalgae, it appears that despite the considerable body of
knowledge accumulated, inducing high expression of transgenes
is difficult, possibly due to epigenetic mechanisms. Recent
studies have made important improvements for overcoming this
problem. Expanding the use of microalga for applied and basic
research will benefit from the development of better protocols
for gene knock-down by RNAi, as well as for successful deletion
of specific genes by gene replacement. The recent revolution in
genome editing provided by the CRISPR-Cas9 system should
be adapted to microalgae in the coming years. Finally, the

improvement of systems for inducible expression is also of great
importance, since this will allow us to control the temporal
expression of toxic molecules. Finally, rapid advancements in
genome sequencing, now routinely performed for all organisms,
will prove instrumental in advancing these goals in the near
future.
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