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Transgenerational inheritance of impaired larval T
cell development in zebrafish
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Evidence for transgenerational inheritance of epigenetic information in vertebrates is scarce.

Aberrant patterns of DNA methylation in gametes may set the stage for transmission into

future generations. Here, we describe a viable hypomorphic allele of dnmt1 in zebrafish that

causes widespread demethylation of CpG dinucleotides in sperm and somatic tissues. We

find that homozygous mutants are essentially normal, with the exception of drastically

impaired lymphopoiesis, affecting both larval and adult phases of T cell development. The

phenotype of impaired larval (but not adult) T cell development is transmitted to subsequent

generations by genotypically wildtype fish. We further find that about 200 differentially

methylated regions in sperm DNA of transmitting and non-transmitting males, including

hypermethylated sites associated with runx3 and rptor genes, whose reduced activities are

associated with impaired larval T cell development. Our results indicate a particular sensi-

tivity of larval T cell development to transgenerationally inherited epimutations.
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T
he transgenerational inheritance of epigenetic information
is an attractive mechanism by which the phenotypic con-
sequences of exposure of parents to certain environmental

conditions could be transmitted to the next generation1,2.
Although this phenomenon is well described in yeast and plants,
and in some invertebrates, such as D. melanogaster and C. ele-
gans, the presence of transgenerational inheritance in vertebrates
is unclear3. Among the mechanisms that are known or suspected
to be involved in mediating the propagation of epigenetic infor-
mation to subsequent generations, the process of enzymatic DNA
methylation is of particular interest4–6. In the context of epige-
netic inheritance, the induction of aberrant methylation patterns
in gametes may set the stage for transmission into future
generations1,2,7. With respect to the fate of germ cell DNA
methylation patterns during early embryogenesis, important dif-
ferences exist among vertebrate species. During the expansion of
mouse primordial germ cells of mammals, global loss DNA
methylation occurs8,9; a similar reversion to the native ground
state is observed during early stages of human development10,11.
Thus, the global erasure of methylation patterns in mammals
constitutes a strong barrier to epigenetic memory mediated by
altered patterns of DNA methylation12. By contrast, the dynamics
of DNA methylation during early stages of development in zeb-
rafish are very different and may be conducive to transgenera-
tional inheritance. The methylome of zebrafish sperm is
significantly hypermethylated when compared to that of oocytes;
during the course of development, the methylome of the oocyte is
gradually reprogrammed to a pattern that is similar to that of the
sperm, such that by the midblastula stage, the embryo´s methy-
lation pattern is virtually identical to the sperm methylome13,14.
Of note, the reprogramming process does not encompass the
entire genome, but depends, at least in part, on the activity of so-
called placeholder nucleosomes15. The stability of the paternal
methylome throughout development16,17 raises the possibility
that aberrations in the DNA methylation pattern of sperm DNA
might be transmitted to the next generation.

Methylation of cytosines in DNA is established by de novo
methylases Dnmt3a and Dnmt3b, whereas its propagation after
DNA replication and repair depends on the maintenance
methylase Dnmt1, which recognizes the hemi-methylated DNA
duplex and copies the methylation pattern of the parental strand
to the newly synthesized DNA strand18. Mice lacking Dnmt1 die
at around day 9.5 of embryonic development19; likewise, zebrafish
homozygous for a mutant dnmt1 allele predicted to encode an
enzyme with impaired function of the catalytic domain die at
8 days post fertilization (dpf)20. These findings attest to central
cellular function of Dnmt118, but conceal a possible tissue-specific
function of this protein in the adult organism. However, evidence
for tissue-specific requirement of Dnmt1 has come from condi-
tional mutants in mice (for instance, see ref. 21), and the phe-
notype of zebrafish dnmt1 morphants22. However, these models
fall short of providing a pan-organismic view of DNMT1 function
in vertebrates.

Here, using a forward genetics approach23, we describe the
identification and characterization of viable recessive allele of
zebrafish dnmt1. Our results provide evidence for the transge-
nerational inheritance of aberrant DNA methylation patterns
associated with impaired larval T cell development.

Results
Identification of a recessive viable allele of dnmt1. In a forward
genetic screen for aberrant T cell development, we identified a
large number of recessive mutations, all characterized by reduced
numbers of rag1-expressing immature thymocytes in larvae
5 days after fertilization (dpf)23,24. The mutation in the

IY071 line23 (Fig. 1a) affected the gene encoding the maintenance
DNA methyltransferase DNMT1. The recessive viable dnmt1
allele (dnmt1t25501) exhibits a missense mutation (N1391K) in the
target recognition domain (TRD) of the catalytic domain of the
enzyme (Fig. 1b)23; since a previously identified dnmt1 mutant
allele is embryonic lethal20, we consider the dnmt1t25501 allele to
be a hypomorph. The mutation in dnmt1t25501 occurs in an
evolutionarily conserved region of the protein (equivalent to
N1510K in the mouse protein) (Fig. 1c), and affects an amino
acid residue whose side chain in the mouse protein projects
towards the major groove of the substrate DNA25,26 (Fig. 1d).

Hypomethylation of DNA in dnmt1 mutants. Fish homozygous
for the N1391K mutation exhibit drastically reduced levels of
cytosine methylation in 5´-CpG dinucleotides of genomic DNA.
In DNA extracted from wild-type whole fish at 18 days after
fertilization (dpf), 89.08% (median; median absolute deviation
[mad] 8.79%) of CpG dinucleotides are methylated whereas the
methylation levels in mutants are much lower reaching a mere
56.72% (median; mad 23.04%) (Fig. 1e). The methylation levels in
sperm DNAs are generally higher than in somatic tissues,
reaching 97.62% (median; mad 3.09%) in the wild-type situation;
in dnmt1m/m males, in which germ cells develop in the absence of
zygotically provided dnmt1 protein, methylation levels fall to
71.81% (median; mad 21.52%) (Fig. 1f). The extent of hypo-
methylation is more pronounced in DNA extracted from whole
body as compared to mutant sperm, falling to 63.6% and 73.6% of
wild-type values, respectively (Fig. 1g). Remarkably, despite the
dramatic hypomethylation of somatic DNA, dnmt1 hypomorphs
are viable, making this zebrafish strain an unprecedented model
with which to explore the physiological consequences of low
DNA methylation levels in an organismic context.

Hematopoietic abnormalities in dnmt1 mutants. Next, we
examined the hematopoietic system in dnmt1m/m animals during
larval and adult stages (Fig. 2a). At 5 dpf, no changes were
recorded for the expression levels of markers for hemogenic
endothelium (gata2b) and haematopoietic stem cells (c-myb).
Slightly reduced levels were found for genes indicative of ery-
throid (gata1a) and myeloid (cebpa) lineages, although expression
of mpx as a marker of mature myeloid cells was more sub-
stantially reduced (Fig. 2b). At this stage of development, the
most drastic changes in expression were seen for genes associated
with T cell development (lck; zap70) and for genes whose
expression is associated with, but not restricted to, developing
T cells (rag1; ikzf1; gata3) (Fig. 1a; Fig. 2b). Next we examined the
status of adult hematopoiesis in whole kidney marrow. Among
the cell populations discernable by their light-scatter character-
istics, the most consistent reduction was seen for lymphocytes,
whereas erythroid and myeloid cell populations were not affected
(Fig. 2c). In order to substantiate this conclusion, we introduced
an ikzf1:egfp transgene27 into the IY071 line; in adult fish, the
reporter marks T and B cells. As suggested by the aberrant flow
cytometric profile, the lymphocyte population is greatly dimin-
ished in dnmt1m/m fish (Fig. 2c). Collectively, our results suggest
the lymphopoietic capacity of adult dnmt1m/m animals is drasti-
cally impaired, indicating that the genetically separable waves of
larval and adult T cell development in zebrafish28,29 (Fig. 2a) are
equally affected.

Hematopoietic abnormalities in dnmt1 mutant offspring. We
found that the offspring (designated as generation 3 [G3] in
Fig. 3a) of male mutant fish crossed with wild-type females are
viable, as are those of male mutant fish crossed with heterozygous
females. Therefore, it was possible to examine the hematopoietic
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compartments of larval and adult stages of G3 fish. In contrast to
heterozygous G2 animals arising from a cross of heterozygous
males and females, we observed that many of the heterozygous
G3 animals resulting from a cross of homozygous mutant males
with wild-type females (Fig. 3a) exhibited impaired larval T cell
development (Fig. 3b, c). By contrast, the adult T cell compart-
ment of these heterozygous G2 and G3 fish develops normally
(Fig. 3d). The striking discrepancy between the hematopoietic
phenotypes of G2 and G3 fish suggests that the functionally
distinct phases of T cell development in zebrafish are not only
genetically28,29, but also epigenetically separable. Moreover, the
present results suggest a particular sensitivity of larval T cell
development to aberrations of DNA methylation.

The unexpected finding of impaired larval T cell development
in heterozygous fish arising from crosses of mutant males and
wild-type females prompted us to extend the analysis to include
further generations (Fig. 4a). To this end, the G1 mutant carrier
was out-crossed to wild-type fish twice, to establish two separate

pedigrees. The extent of larval and adult T cell development was
examined at each generation, but no differences were observed
between these two separate populations. We found that in contrast
to the situation of G2 mutant males, the progeny of a cross of G2
mutant females with wild-type males succumbed to an early
developmental arrest before body axis formation. During early
development, the maternal methylome is gradually reprogrammed
to the paternal methylation pattern13–15,30, indicating that the
enzymatic activity of the mutant Dnmt1 protein deposited in the
eggs is not sufficient to support this remodeling. Because full
Dnmt1 activity appears to be required before the onset of zygotic
gene activation, only mutant males could be used to establish
heterozygous G3 progeny; these fish were crossed to wild-type fish
to generate dnmt1+/+ and dnmt1+/m animals of the G4
generation (Fig. 4a). When we crossed male or female fish of
the G4 generation that are genotypically wildtype for dnmt1 with
wild-type females or males (Fig. 4a), G5 fish with strikingly
reduced larval T cell development were observed in ~50% of the
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Fig. 1 Characterization of a hypomorphic allele of dnmt1. a Impaired larval T cell development in mutant fish. Diagnostic whole-mount RNA in situ

hybridization pattern 23in wild-type and dnmt1 mutant fish at 5 dpf using rag1 (thymus encircled in black), and gh (hypophysis encircled in blue) specific

probes (left panel); hybridization pattern for foxn1, a marker of thymic epithelium59,60 (right panel). Scale bar, 100 μm. Panels are representative of 25

animals each. b Schematic of functional domains in the dnmt1 protein (not to scale); NLS, nuclear localization signal; RFTS, replication foci targeting site;

CXXC, cysteine-rich domain; BAH, bromo-adjacent homology domains 1 and 2; MTase, catalytic domain. Arrow, approximate position of the amino acid

replacement in the target recognition domain, TRD. c The asparagine residue mutated in the dnmt1t25501 allele occurs in an evolutionarily conserved region

of the enzyme. d In the structure of the mouse Dnmt1 protein in complex with a hemi-methylated substrate, close apposition of the mutated asparagine

residue to the substrate DNA in the catalytic site is observed26 (PDB ID: 4DA4). e, f Hypomethylation of cytosine residues in CpG dinucleotides of DNA

extracted from whole body of 18 dpf larvae (e) (n= 3) and sperm of adult homozygous mutants (f) (n= 3). In (e) and (f), density refers to the fraction

of CG sites with a particular methylation ratio. g Mean methylation levels of CG dinucleotides for DNAs shown in (e) and (f). Values shown represent

mean ±mad; n= 3. Source data are provided as Source Data file.
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crosses (Fig. 4b); this phenotype was observed in both pedigrees,
arguing against the fortuitous co-segregation of an unknown
mutation. Henceforth, G4 fish that yield normal offspring are
designated as G4+, whereas those that sire offspring with impaired
larval T cell development are designated as G4*. As expected, the
cellular composition of the hematopoietic cell populations in the
kidney marrow was normal for genotypically wild-type adult
males and females that gave rise to offspring with impaired larval
T cell development (Fig. 4c).

Transgenerational inheritance of larval T cell impairment. In
G4* x wild-type crosses, ~1/3 of fish of the clutch presented with
T cell deficiency; this phenomenon was observed in both male
(Fig. 5a) and female (Fig. 5b) G4 animals. Indeed, when the range

of rag1/gh values observed in the resulting G5 off-spring is
determined and expressed as “noise” (variance normalized to the
mean), G4+ and G4* animals can be clearly distinguished; G4*
animals exhibit a 7-fold higher noise in rag1/gh values (Fig. 5c).
The phenomenon of reduced larval T cell development in gen-
otypically wild-type G5 fish was also seen in crosses of dnmt1+/m

G4 males with wild-type females, again accompanied by increased
noise in the rag1/gh ratios in the two resulting genotypes
(Fig. 5d). Collectively, these data suggest that the transgenera-
tional inheritance of an aberrant DNA methylation mark(s) may
underlie the aberrant larval T cell development.

In order to exclude the possibility that this phenomenon is the
result of non-specific demethylation of the parental genomes, we
repeated the crosses using wild-type parents treated with 5-aza-
2′-deoxcytidine (aza-dC), an irreversible inhibitor of DNA
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Fig. 2 Hematopoietic abnormalities in dnmt1 mutant fish. a Schematic indicating the two waves of T cell development in zebrafish, operationally referred

to as larval and adult phases; the larval phase depends on the activity of the ikzf1 transcripton factor28,46. In the forward genetic screen, fish were analyzed

at 5 dpf. b Expression patterns of selected genes associated with hematopoietic development in 5 dpf G2 embryos. Levels were determined by qPCR and

normalized to the levels of actb1 (n= 4; mean; whiskers represent maximum and minimum values; individual data points are indicated). c Adult

lymphopoiesis fails in mutant fish. Flow cytometric analyses of whole kidney marrow (WKM) cells47 of wild-type and dnmt1mutants, both transgenic for an

ikzf1-EGFP reporter27,28 (left panels). Circles denote different blood cell populations in adult wild-type fish: red, erythrocytes; blue, lymphocytes; magenta,

precursors; green, myelomonocytes. Percentages (mean ± SD) of each population in WKM preparations are indicated (n= 4, for both genotypes; left

panels). Analysis of EGFP-positive cells in the lymphocyte gates; percentages of positive cells are indicated in the histograms (n= 4, for both

genotypes; middle panel), and enumerated (right panels). FSC, forward light scatter; SSC, side light scatter. Source data are provided as Source Data file.

For b, c, unpaired two-tailed t test with Welch´s for unequal variance and Bonferroni´s correction for multiple tests.
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methylases31. However, while aza-dC treatment reduced the
extent of larval T cell development, no abnormalities were
observed at later stages (Supplementary Fig. 1); most importantly,
the adults exposed to the demethylating agent during the
embryonic period did not produce offspring with aberrant T cell
development, suggesting that the particular nature of changes in
methylation patterns associated with the N1391K mutation
underlies the transgenerational phenotype.

Characterization of DNA methylation patterns in G4 sperm.
Next, we analyzed the methylation patterns of G2 wild-type and
mutant sperm. In the DNA of G2 dnmt1m/m sperm, we detected
223,956 hypomethylated and 175 hypermethylated differentially
methylated regions (DMRs); for simplicity, we refer to the
methylation pattern in G2 mutant sperm as pattern A. Interest-
ingly, G2 fish homozygous for the dnmt1 mutation exhibit
increased expression levels of the de novo DNA methyltransferase
dnmt3bb.2 at 5 dpf, suggesting the activation of compensatory
mechanism(s) partially counteracting impaired maintenance
activity of dnmt1; only minor differences were noted for other
genes encoding modulators of DNA methylation (Supplementary
Fig. 2a).

We then analyzed the DNA methylation patterns of sperm of
the two groups of genotypically wild-type G4 males, G4+ and

G4*, respectively, and found that they differed by a mere 243
DMRs; 164 DMRs are hypomethylated in G4* (Supplementary
Data 1), and 79 DMRs are hypermethylated in G4* sperm
(Supplementary Data 2); we refer to the methylation patterns
in G4 mutant sperm as patterns B+ and B*, respectively. For for
G4+ sperm, the degree of methylation of CpG dinucleotides
across the genomes is 97.57% (median; mad 2.99%); for G4*, this
value is 97.53% (median; mad 3.02%) (Fig. 6a); these methylation
levels are very close to those of wild-type sperm (Fig. 1f). The vast
majority of DMRs identified in the comparison of G2+/+ and
G2m/m sperm could also be evaluated in G4 sperm. Of the
222,449 hypomethylated G2 DMRs, the methylation levels of
222,390 DMRs (99.3%) were identical between G4+ and G4*
sperm DNAs; of the 171 hypermethylated G2 DMRs, 170 DMRs
(99.4%) were no longer distinguishable in G4 sperm. Collectively,
our observations suggest that during the transition from G2 to
G4, the germ cells developing in the presence of zygotically
provided dnmt1 protein undergo global restoration of methyla-
tion patterns.

Next, we examined the history of the DMRs distinguishing
G4+ and G4* sperm DNAs (Fig. 6b). Of the 164 hypomethylated
DMRs, 162 DMRs were also observed in the G2 comparison and
could thus be included in our analysis; 101 DMRs were still
hypomethylated in G4* sperm, whereas a further 61 DMRs that
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were originally indistinguishable in G2 exhibit lower methylation
levels in G4* (Fig. 6b; Supplementary Data 3). Of the 79
hypermethylated DMRs distinguishing G4+ and G4* sperm
DNAs, the status of 75 DMRs could be assessed in G2; 58 of these
DMRs exhibited similar methylation levels in wild-type and
mutant G2 sperm, whereas 17 DMRs were found to have lower
methylation levels in G2m/m sperm as compared to wildtype
(Fig. 6b; Supplementary Data 3). The DMRs distinguishing G4+

and G4* sperm DNAs are non-randomly distributed across the
genome (Fig. 6c), with chromosomes 6, 9, 10, and 16 being
particularly affected (Fig. 6d).

Gene regulatory context of DMRs. Next, we wished to gain sight
into the distribution of DMRs in G2 and G4 with respect to
known gene regulatory elements. We found that CpG islands,
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indicated to the right; TLEK and Assam represent wild-type strains. Note the normal lymphoid/myeloid ratios in adult G4* animals. Each data point

represents one animal. Source data are provided as Source Data file.
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promoters, exons, introns and intergenic regions were similarly
affected by the extensive changes in methylation of G2 mutant
sperm DNA. Moreover, none of these features was associated
with the methylation differences observed between G4+ and G4*
sperm DNAs (Supplementary Fig. 2b). As expected, genomic
regions marked by placeholder nucleosomes15 were found to be
mostly unmethylated, and no changes in methylation patterns at
these sites were observed in any of the experimental groups.
Moreover, DMRs exhibiting dynamic changes during early zeb-
rafish development, such as those changing between the epiboly
stage and the 24 hpf time point, and those changing between the
24 hpf time point and the 48 hpf time point32 also could not
distinguish G4+ and G4* sperm DNAs (Supplementary Fig. 2c).
The analysis of repetitive sequences indicated that all classes of
repeats were uniformly affected by hypomethylation in G2
mutant sperm DNA; in G4 sperm, all repeats participated in the
restoration of methylation levels equally well (Supplementary
Fig. 2d).

We then asked whether any particular chromatin signature
would explain the differences between the methylation patterns of
G4+ and G4* sperm DNAs and examined the enrichment of
specific chromatin marks at the hypo- and hypermethylated G4
DMRs. None of the distinct DNA methylation patterns could be
explained by histone modification combinations (Supplementary

Fig. 3). Since we observed a disproportionately high number of
G4 DMRs on chromosome 6 (Fig. 6c, d), we investigated DMR
distribution in context of chromosome-scale features. To this end,
we compared chromosome 6 (large number of DMRs discovered)
with chromosome 7 (no DMRs discovered) (Supplementary
Fig. 4). We found that neither the positions of topologically
associated domains (TADs), nor the presence of specific
chromatin marks (H3K4me3; H3K27me3; H3K9me3), CpG
islands, or repetitive sequences were associated with clusters of
hypo- and hypermethylated DMRs (Supplementary Fig. 4).
Further studies are required to determine the mechanistic basis
of the uneven distribution of DMRs distinguishing the methyla-
tion patterns of G4+ and G4* sperm DNAs.

Characterization of hypermethylated DMRs in G4* sperm. Our
results suggest that the hematopoietic abnormalities of G2
mutants have their origin in a progenitor common to both T and
B lymphoid lineages in larvae and adult fish. By contrast, G4*
animals give rise to a more circumscribed aberration in their
offspring, originating in the incapacitation or lack of a larval T
cell progenitor only. This in turn suggests that the failure of T cell
development observed in G4* progeny may have a different or
only partially overlapping epigenetic basis than that in earlier
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generations. Hence, we focused our attention on those DMRs in
G4 sperm whose methylation levels are discordant to G2 mutant
sperm (Fig. 6b; Supplementary Data 3). To this end, we searched
for DMRs associated with genes known to be important for T cell
development. Notably, in G4* sperm, we identified one hyper-
methylated DMR each that is associated with runx3 and rptor

genes, respectively (Fig. 7a, b; Supplementary Fig. 5a, b); previous
studies in mice have shown that these genes are both required for
intrathymic T cell development33,34. In both cases, the hyper-
methylated DMR overlaps with a region distinguished by chro-
matin marks, such as H3K4me1, H3K4me3, and H2AFV,
indicative of regulatory function(s)15. Although we consider it
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likely that genes other than runx3 and rptor and/or their con-
certed activities contribute to the observed T cell phenotype in the
offspring of G4* animals, we found that simultaneous knock-
down of these two genes led to impaired larval T cell development
(Fig. 7c). Moreover, despite the fact that the expression of runx3
and rptor are not exclusive to the T cell lineage, a trend towards
lower expression levels of both genes was observed in 5 dpf
mutant larvae (Supplementary Fig. 5c). Collectively, our findings
suggest that runx3 and rptor are functionally relevant for zebra-
fish T cell development and that their epigenetic regulation
contributes to the transgenerational phenomenon observed here.

Discussion
The present study documents a rare example of transgenerational
inheritance of epimutations in vertebrates, and, to the best of our
knowledge, the first case of such a phenomenon that is linked
with a specific immunological phenotype. When mutant sperm
fertilize an egg produced by wild-type or dnmt1+/m heterozygous
females, developmentally programmed changes of DNA methy-
lation patterns during germ cell development occur in the pre-
sence of maternally provided dnmt1 protein. Paternal
methylomes are known to be stably propagated throughout
embryogenesis, and the heavily methylated sperm DNA deter-
mines the DNA methylome of the early embryo13–15. However,
remodeling of an aberrant paternal methylation pattern can still
occur, otherwise the low levels of methylation observed in mutant
sperm would have been preserved over the course of several
generations. As a result of the combined activities of dnmt1 and
other dnmts, such as those with de novo activities, as well as other
pathways modulating the DNA methylation pattern in direct or
indirect fashion, nearly complete restoration of the original wild-
type methylation pattern is achieved in G4 sperm. Hence, it
appears that the developmentally programmed changes in DNA
methylation patterns are controlled by a rheostat that is blind to
the origin of the parental genomes, supporting the notion that the
paternal methylation pattern does not serve as a template for the
remodeling of the maternal methylome13. Our results also indi-
cate that the partially restored methylation pattern appears to
exist in two subtly different forms; one of these segregating epi-
alleles fails to support larval T cell development, the other is
seemingly compatible with normal lymphopoiesis. Overall, the
differences in DNA methylation between G4+ and G4* sperm
appear limited; in analogy to the situation in plants35,36, it may be
possible to use epigenetic inbred lines to precisely identify the
crucial epigenetic signature that supports larval T cell develop-
ment. Unfortunately, at present, methods for the purification of
zebrafish lymphoid precursors are not available. Once this
becomes possible, it will be interesting to compare the methyla-
tion patterns of gametes with those of somatic cells giving rise to
the specific phenotype observed here.

Our results support the notion that lymphoid development is
particularly sensitive to perturbation of DNA methylation; this
phenomenon is not restricted to fish, since the phenotype of
impaired lymphopoiesis is reminiscent of that of mice with low
expression levels of wild-type protein37,38. Collectively, these

findings suggest that DNA methylation serves as a mechanism to
protect the development of lymphoid cells39. Since lymphocytes
represent an evolutionarily recent innovation in the haemato-
poietic system40, it attests to the flexibility of epigenetic regulation
to integrate evolutionary novelties into pre-existing physiology.
Certain immunodeficiency syndromes in animals and humans are
caused by genetic alterations of DNMTs41–43 or are linked to
sporadic epigenetic variations44. However, given the differences
in the processes of parental reprogramming between fish and
mammals, we consider it improbable that the mechanism
underlying the particular immunodeficiency disorder described
here also applies to so far unexplained immunodeficiency dis-
orders in human patients.

Methods
Animals. The zebrafish (D. rerio) wild-type strain TLEK (Tüpfel long fin/Ekkwill)
is maintained in the animal facility of the Max Planck Institute of Immunobiology
and Epigenetics, Freiburg, Germany and was used for crosses with the dnmt1
mutants. The IY071 mutant line has been described23, as has been the ikaros:eGFP
transgenic reporter line27,28. All animal experiments were performed in accordance
with relevant guidelines and regulations, approved by the review committee of the
Max Planck Institute of Immunobiology and Epigenetics and the Regierung-
spräsidium Freiburg, Germany (license Az 35-9185.81/G-14/106).

Morphants. Morphants were generated by injection of anti-sense morpholino
oligonucleotides (Gene Tools, Philomath, OR) to block translation of both
maternal and zygotic mRNAs (“ATG morpholinos”), or to block splicing of zygotic
pre-mRNAs (“splice morpholinos”). To block zygotic rptor activity, a morpholino
targeting the splice donor site of exon 3 of the rptor gene was used (5´-
TGGATGGATGGATGCTCACCTATC; final concentration in injection buffer
0.067 mM); to inhibit translation of runx3 mRNA, a morpholino overlapping the
initiation site was used (5´- ACGGGAATATGCATCACAACAGATT; final con-
centration in injection buffer 0.133 mM). Stock solutions of morpholinos were
diluted as required in injection buffer (0.05% (v/v) phenol red; 1x Danieau Buffer
(http://cshprotocols.cshlp.org/content/2011/7/pdb.rec12467.full). Approximately
1–2 nL of solution were injected into fertilized eggs23. The morphants were ana-
lyzed at 5 dpf by RNA in situ hybridization using a combination of rag1- and gh-
specific probes, and the results expressed as a thymopoietic index, a dimensionless
number (see below).

Thymopoietic index. Thymic rag1 gene expression is a marker of ongoing
assembly of T cell receptor genes. Hence, the intensity of the RNA in situ signal
correlates with the number of differentiating T cells, which we consider to be a
measure of T cell development. In order to provide an internal control (technical,
with respect to the hybridization process as such; and, biological, with respect to
the tissue specificity of the observed genetic effects), we employed a probe specific
for the growth hormone (gh) gene, which marks a subset of cells in the hypophysis.
Determination of rag1/gh ratios was carried out as follows: after RNA in situ
hybridization with rag1 and gh probes, ventral images of 4–5 dpf zebrafish larvae
were taken on an MZFLIII (Leica) microscope using a digital camera DFC300FX
(Leica), essentially generating a two-dimensional projection of the three-
dimensional structure. The areas of rag1 and gh signals were measured using
ImageJ (ImageJ 1.52a; available at http://imagej.nih.gov/ij), and the ratio of average
of the rag1-positive area vs. gh-positive area was calculated as a measure of thy-
mopoietic activity. After photographic documentation of the RNA in situ hybri-
dization signal, larvae were processed for genomic DNA extraction for subsequent
genotyping.

RNA extraction and cDNA synthesis. Total RNA was extracted using TRI
Reagent (Sigma) following the manufacturer’s instructions. After treatment with
DNaseI (Promega), RNA extraction using TRI Reagent was repeated. Superscript II
Reverse Transcriptase (Invitrogen) and oligo(dT) were used for cDNA synthesis
from total RNA.

Fig. 6 Dynamic changes of DNA methylation patterns in the G4 generation. a Mean methylation ratios of CpG dinucleotides in sperm DNAs of G2

dnmt1+/+ and dnmt1m/m animals (left panel), and genotypically wild-type (dnmt1+/+) males of the G4 generation giving rise to off-spring with (G4*) or

without (G4+) impaired larval T cell development when crossed to wild-type females (right panel). b History of methylation of DMRs distinguishing G4+

and G4* animals. The y-axis gives the number of DMRs that are either hypermethylated or hypomethylated in sperm DNA of in G4* versus G4+ animals.

These DMRs were either indistinguishable in sperm of the G2 generation or were hypomethylated in G2m/m versus G2+/+ animals. c, d Non-random

distribution of DMRs in the genome of sperm of G4* relative to G4+ animals. Most DMRs represent hypomethylated sites c. Distribution of DMRs across

the 4 most affected chromosomes (scale in Mb); the mean methylation differences are indicated; positive values indicate hypermethylation of DMRs in

G4* sperm, negative values indicate hypomethylation of DMRs in G4* sperm (d). Source data are provided as Source Data file.
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Quantitative PCR. qPCR was carried out using SYBR Premix Ex Taq (Takara) and
7500 fast real-time PCR system (Applied Biosystems)23,45. actb1 was used as a
reference gene. The primer sets for zebrafish genes were purchased from BioRad
(https://www.bio-rad.com/de-de/product/primepcr-pcr-primers-assays-arrays?
ID=M0HROA15). gata2b, qDreCID0018645; cmyb, qDreCID0021456; mpx,
qDreCID0017849; gata1a, qDreCID0013676; cebpa, qDreCED0006492; ikzf1,
qDreCID0018943; gata3, qDreCED0006945; rag1, qDreCED0021315; lck, qDre-
CID0022016; zap70, qDreCID0014002; dnmt1, qDreCED0019976; dnmt3aa,
qDreCID0018392; dnmt3ab, qDreCID0019082; dnmt3ba (aka dnmt3b),

qDreCED0021338; dnmt3bb.1 (aka dnmt4), qDreCID0005035; dnmt3bb.2 (aka
dnmt3), qDreCID0016654; dnmt3bb.3 (aka dnmt5), qDreCED0021863; gadd45aa,
qDreCED0006281; gadd45ab, qDreCED0015505; tet1, qDreCED0015074; tet2,
qDreCED0010969; tet3, qDreCID0016164; actb1, qDreCED0020462.

Histological analysis. Histological analysis was carried out after formalin fixation,
paraffin embedding and hematoxylin/eosin staining of sections46. For image
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analysis of histological sections, JmageJ software was used (ImageJ 1.52a; available
at http://imagej.nih.gov/ij).

Flow cytometry. Flow cytometric analysis of light-scatter characteristics of WKM
cells was carried out as described by Traver et al.47; dead cells were excluded by
staining with FluoroGold (Santa Cruz).

Treatment of embryos with Dnmt inhibitors. A stock solution of 5-Aza-2′-
deoxycytidine (Sigma) was prepared in E3 medium, and diluted to the desired final
concentration. Wild-type embryos were exposed to the inhibitor48 beginning at 24
hpf for a total of 48 h; at 72 hpf, embryos were washed and continuously cultured
in E3 medium.

Whole genome bisulfite sequencing. Genomic DNA was extracted from three
dnmt1+/+ and three dnmt1−/− zebrafish of G2 generation at 18 dpf, sperm of three
dnmt1+/+ and three dnmt1−/− zebrafish of G2 generation, and sperm of three G4*
and three G4+ fish of G4 generation using the DNeasy blood and tissue kit
(Qiagen). 1 μg and 0.5 μg of DNA was used for bisulfite reactions and library
construction using the TruSeq DNA PCR-free library preparation kit (Illumina)
and the EpiGnome Methyl-Seq kit (Epicentre), respectively. The fragments were
sequenced in paired-end 100 bp mode on 1 lane of Illumina HiSeq 2500
instrument.

Whole genome bisulfite read alignment. Raw sequencing reads were trimmed
with cutadapt version 1.9.1 ref. 49 as follows: the first two (TruSeq) or six
(Epignome) 5′-most nucleotides were hard-trimmed and Illumina adapter
sequences removed. Bisulfite-specific operations on reads and reference genome
were performed with methylCtools version 0.9.4 ref. 50. Bisulfite-converted reads
were mapped to bisulfite-converted danRer10 zebrafish genome with bwa-mem
version 0.7.12 separately for the two library types. Back-converted bam files were
sorted with samtools version 1.3.1, PCR duplicates removed and read group
information added with Picard tools v1.136. The two resulting bam files per sample
were merged with samtools and methylation bias profiled with MethylDackel v0.1.7
[https://github.com/dpryan79/MethylDackel]. Bam files from this step were further
used as inputs for de novo DMR discovery in each dataset, as well as for evaluation
of methylation values of target genomic regions provided as bed files (for details,
see below).

Extraction of methylation values per CpG. Methylated and unmethylated read
counts per CpG position were extracted with methylCtools v0.9.4 with mapping
quality threshold of 10, SNP detection, counting only one of two overlapping
paired end reads, skipping 5 nucleotides from each read length and zero-padding of
uncovered positions.

Quality filtering of CpGs and data plotting. Data postprocessing was performed
in R version 3.2.3. Raw methylation values were set to NA for CpG positions with
at least 0.25 SNP allelic frequency as well as for positions with aggregate coverage
of less than 10 reads. Mean methylation ratios per CpG position were calculated as
mean over all the replicates per group. Only complete observations were used
(positions with any NA values were removed). These group-mean CpG methyla-
tion ratios were used to produce density plots in Fig. 1.

Detection of de novo methylated regions (DMRs). Methylation values for single
CpG positions (complete cases) were used as input to metilene v 0.2-6 ref. 51. Wild-
type samples were passed in as group A, and mutant as group B. Candidate DMRs
detected by metilene were re-evaluated for differential methylation in R. At least
20% of detected CpGs per DMR were required and at most 1 sample with an NA
value was allowed. Methylation values of detected CpGs were aggregated as mean
per interval per replicate sample. Differential methylation was re-evaluated using
limma on logit-transformed interval means. DMRs were filtered to retain those
with FDR <5%. Filtered DMRs were further annotated with the distance to the

nearest gene using bedtools version 2-2.19.0 and Ensembl release 83 gene models
for GRCz10.

Generation of coverage and methylation bigwig files. Bigwig files with coverage
and methylation for G2 and G4 datasets were generated by running snakePipes52

v1.2.1 with G2 and G4 bam files as input.

Evaluation of G4 sperm DMRs in G2 sperm WGBS data. Bam files obtained
through read alignment were re-analyzed with the WGBS workflow in the sna-
kePipes52 v1.2.1 modified for the purpose of this manuscript (see, https://github.
com/katsikora/snakepipes_fork). Methylation values were extracted from G2 bam
files for genomic intervals identifed as hypo- and hypermethylated DMRs in the
comparison of the G4* vs G4+ fish sperm, separately. Aggregate methylation
values per interval were obtained as above for the DMRs. The matrix of logit-
transformed methylation values per interval was input to differential analysis with
limma version 3.26.9 ref. 53. Intervals were filtered for absolute difference of at least
20% between MT and WT fish and FDR <2%.

Reanalysis of publically available zebrafish ChIP-seq data. Input and ChIP
reads for zebrafish sperm H3K4me3, H3K4me1, H2AFV, H3K27ac, H3K27me3,
H3K14ac15 were downloaded from GEO (GSE95033), as were input and ChIP
reads for 6.0hpf zebrafish embryo H3K9me354, GSE113086). This embryo stage
was chosen as there was no sufficient H3K9me3 signal in the earlier embryo
stages54. Reads were mapped to zebrafish genome danRer10 and processed with
snakePipes52 version 1.3.0 DNA-mapping and ChIP-seq workflows to produce
bigwig files with log2 ratio ChIP over input.

Reanalysis of publically available zebrafish embryo HiC data. HiC reads for
24hpf embryos55 were downloaded from GEO (GSE105013) and processed with
snakePipes 1.3.0 HiC workflow to produce HiC matrices at 20 kb resolution and to
call TAD positions.

runx3 and raptor genomic tracks plots. Genomic tracks plot was obtained with
pyGenomeTracks56 version 3.2. Used were log2 ratio ChiP over input bigwig files
obtained for H3K4me3, H3K4me1 and H2AFV marks as described above, Ensembl
version 88 gene model gtf for GRCz10, bed files with G2 and G4 DMR positions,
bed file with CpG island position for danRer10 (UCSC), bed file with positions of
all CpGs in the reference genome (“CpG density”), bigwig files with filtered CpG
coverage for G4+ and G4* replicates, bigwig files with methylation value (0–100%)
for G4+ and G4* replicates, and a repeat masker bed file for danRer10 (UCSC).
Dashed vertical lines highlight the position of the single DMR differentially
methylated (hypermethylated) in G4* vs G4+ fish. The runx3 plot was generated
for genomic interval chr13:44952862–45067319 and the rptor plot for the genomic
interval chr6:17422590–17702769, covering the gene locus and adding 3 kb
flanking regions on each side of it.

Methylation values for gene regulatory elements. Genomic intervals for gene
regulatory features were obtained with the genFeatures function of the Bio-
Conductor R package systemPipeR57 v1.6.2. Input was Ensembl release 83 gtf file
and GRCz10 chromosome sizes. The genome was segmented into promoters,
introns, exons, and intergenic regions. Promoters were defined as 500nt upstream
to transcriptional start site, irrespectively of any positionwise overlap with another
feature. The other three feature types were further reduced to disjoint ranges i.e.
nonoverlapping any other feature, and of length at least 5nt. CpG island positions
for danRer10 from UCSC were used as is. To obtain genomic intervals for pla-
ceholder nucleosomal regions, H2AZ and H3K4me1 ChIP-seq peaks15 downloaded
as bed files from GEO (GSE95030) were intersected. Intersecting regions of at least
100nt length were used in further analysis. Bed files with genomic intervals spe-
cified above were input to modified snakePipes WGBS v.1.2.1 workflow, and
evaluated in both G2 and G4 datasets to obtain mean methylation ratios per
interval and violin plots.

Fig. 7 Molecular basis of transgenerational inheritance of impaired larval T cell development. a Characterization of the runx3 locus. In the first three

rows, various chromatin marks are indicated15. The structures of known transcripts across the runx3 locus are shown below. The positions of candidate

DMRs called in G2 sperm DNAs are shown underneath the transcript structures, as are the three candidate DMRs discovered in G4+ and G4* sperm DNA.

The position of the only annotated runx3 CpG island is indicated above the CpG density track. The filtered coverage across the locus in the three WGBS

replicates is indicated as well as the extent of methylation in the CpGs that were evaluated in the comparison of G4+ and G4* sperm DNAs. The bottom

row indicates the positions of repeat across the locus. Note that the hypermethylated DMR in G4* sperm DNA coincides with a peak in H3K4 methylation.

b DNA methylation levels in DMRs associated with runx3 and rptor genes in sperm of G4 males. For runx3, the data pertain to the three replicates of the

DMR marked with an asterisk in a; for rptor, the relevant DMR is indicated by an asterisk in Supplementary Fig. 5b. c Combined knock-down of runx3 and

rptor by anti-sense oligonucleotides impairs larval T cell development. Each data point represents one animal analyzed at 5 dpf by RNA in situ hybridization.

In (b, c), each data point represents one animal; t-test, two-tailed; mean ± s.e.m. Source data are provided as Source Data file.
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Methylation values for developmental DMRs. Genomic positions for zebrafish
developmental DMRs (24hpf vs epiboly, 48hpf vs 24hpf, hypo- and hypermethy-
lated) were downloaded from Supplementary materials of the original publication32

and lifted-over to danRer10 genome using the UCSC lift-over web tool. DMR lists
were input to snakePipes v.1.2.1 and evaluated in both G2 and G4 datasets to
obtain mean methylation ratios per interval and violin plots.

Methylation values for zebrafish genomic repeats. Repeat masker file for
danRer10 from UCSC was converted to bed file, and used as input to snakePipes
v.1.2.1 to evaluate in both G2 and G4 datasets and obtain mean methylation ratios per
interval and density plots. Methylation extraction for genomic repeats was done with
the same threshold on mapping quality as for the other target intervals (at least 10).

Coincidence of DMRs with chromosome-level genomic features. Genomic
tracks for chromosomes 6 and 7 were produced with pyGenomeTracks56 version
3.2. Used were HiC matrices for 24hpf embryo and bed file with TAD positions for
24hpf embryo obtained as described in sections above, log2 ratio ChiP over input
bigwig files obtained for H3K4me3, H3K27me3 and H3K9me3 marks as described
in sections above, bigwig file with filtered CpG coverage for one G4 replicate, bed
files with hypo- and hypermethylated G4 DMR positions, bed file with CpG
positions (UCSC) and bed file with repeat positions (UCSC). Dashed vertical lines
show TAD boundaries obtained as described in sections above.

Coincidence of histone modification with G4 DMRs. Bigwig files of log2 ratio
ChiP over input obtained for H3K3me1, H3K4me3, H3K27me3, H2AFV, and
H3k14ac for merged replicates were analyzed with deepTools v3.3.1. ChIP signal
aggregated over 10 nt bins was extracted for unchanged, hypo- and hypermethylated
G4 DMRs, rescaled to 500 nt with 100 nt added on each flank, to produce a matrix
with DMRs in rows and bins in columns, grouped by chromatin mark and DMR
source. Profile plots of log2 ratio ChIP signal over input with 0.95 confidence intervals
were obtained for the DMR groups using deepStats v0.4 ref. 58 with 1000 bootstraps, as
were binwise Wilcoxon-test P value plots. A cutoff adjusted P value of 0.05 was used.

Statistical methods. No randomization of animals was done in the present studies;
phenotypes were recorded by a blinded observer before genotyping. No animals were
excluded from analyses. Samples size was estimated from the degrees of variability in
previous analyses23,46 in order to be able to detect biologically meaningful differences
in examined parameters, usually 20% difference from control values. t-tests were
performed for samples with equal variance; otherwise, F-tests were used. Other sta-
tistical procedures are detailed in the respective sections above.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The original sequencing data have been deposited in the GEO database and are available

under accession number “GSE98647”. All other relevant data supporting the key findings

of this study are available within the article and its Supplementary Information files or

from the corresponding author upon reasonable request. Source data are provided with

this paper. A reporting summary for this Article is available as a Supplementary

Information file. Source data are provided with this paper.

Code availability
The R code necessary to reproduce the statistical analyses and results is reported in

Supplemental Code and is available at https://github.com/katsikora/

Iwanami2019_SupplementaryCodeAndData_A.
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