00 1999 Oxford University Press Human Molecular Genetics, 1999, Vol. 8, No. 1 99-106

Transgenic mice harboring a full-length human
mutant DRPLA gene exhibit age-dependent
intergenerational and somatic instabilities of CAG
repeats comparable with those in DRPLA patients
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Dentatorubral-pallidoluysian atrophy (DRPLA) is one
among an increasing number of hereditary neurode-
generative diseases determined as being caused by
unstable expansion of CAG repeats coding for poly-
glutamine stretches. To investigate the molecular
mechanisms underlying CAG repeat instability, we es-
tablished three transgenic lines each harboring a
single copy of a full-length human mutant
carrying a CAG repeat expansion. These transgenic
mice exhibited an age-dependent increase (+0.31 per
year) in male transmission and an age-dependent con-
traction (—1.21 per year) in female transmission. Similar
tendencies in intergenerational instabilities were also

observed in human DRPLA parent—offspring pairs.
The intergenerational instabilities of the CAG repeats

may be interpreted as being derived from the instability

DRPLA gene

also exhibited an age-dependent increase in the de-
gree of somatic mosaicism which occurred in a cell

lineage-dependent manner, with the size range of CAG
repeats being smaller in the cerebellum than in other
tissues including the cerebrum, consistent with ob-

servations in autopsied tissues of DRPLA patients.
Thus, the transgenic mice described in this study ex-

hibited age-dependent intergenerational as well as so-
matic instabilities of expanded CAG repeats compar-
able with those observed in human DRPLA patients,
and are therefore expected to serve as good models for
investigating the molecular mechanisms of instabil-

ities of CAG repeats.

INTRODUCTION
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Dentatorubral-pallidoluysian atrophy (DRPLA) is an autosomal
dominant neurodegenerative disease caused by unstable expan
sion of CAG repeats in thBRPLA gene on chromosome
12p13.31(1-3). Unstable expansion of CAG repeats has been

occurring during continuous cell division of spermato-
gonia in the male, and that occurring during the period
of meiotic arrest in the female. The transgenic mice
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Figure 1. Schematic diagram illustrating the structure of the transgene (DRPLA18E), positions of probe A and Neo (stippled btinél) mstriction fragments
(lines) used to identify the transgenic mice. DRPLA18E containing the entire M&RBhIAgene was cloned by screening a cosmid genomic DNA library derived
from a DRPLA patient. The exons of tB&PLAgene are depicted by solid boxes, and exon numbers are given below the boxes. Flanking regions and introns a
depicted by lines. The restriction map Findlll (H), Bglll (B) andClal (C) is shown at the top of the figure. This construct includes regions flankibiRREA
gene (17 kb upstream and 5 kb downstream) and the SuperCos1 cosmid vector containing the SV40 promoter and neomycibay@ne (open

ojumoq

identified as a mutation common to eight neurodegeneratiy@5). The common ldotypes in HD, MJD and DRPLA are alséL
diseases including spinal and bulbar muscular atrophy (SBMAghared with large CAG repeats within the normal range which
Huntington’s disease (HD), spinocerebellar ataxia type 1 (SCAljgpresent intermediate alleles. Based on these observations,
Machado—-Joseph disease (MJD), spinocerebellar ataxia typeigelements in the genomic structure are presumed tozbe
(SCA2), spinocerebellar ataxia type 6 (SCA6) and spinocerebealssociated with CAG repeat instability. In addition, previo‘_Ei_’s
lar ataxia type 7 (SCA7); many other neurodegenerative diseastgdies have shown that transgenic mice carrying cDNAs with
are also speculated to be caused by similar mutgtei). expanded CAG repeats do not exhibit intergenerational instabil-
In these diseases, the CAG repeat instability is relataty (26—28). On the other hand, intergem’eraal instability has &
intimately to various clinical and genetic features. First, inversbeen observed in transgenic mice carrying a genomic fragment
correlations exist between the size of expanded CAG repeats amith expanded CAG repeats (29,30). Thesalteslso suggestc
the age at onset. Secondly, mtergeneratlonal increases in the sthad the genomic structure and tiiselements in the genomicg
of expanded CAG repeats result in genetic anticipation arldNA are prerequisites for CAG repeat instability. i
accelerated age at onset in successive generations. Thirdly, the/ith this perspective, we determined that transgenic rm;ce
broad spectra of clinical presentations are a function of the sibarboring an entire mutant gene including flanking regiqns
of the expanded CAG repeats. The CAG repeat instability ierived from a mutant allele would be required to investigate #he
observed not only in germline cells but also in somatic cells. Thaolecular mechanisms of CAG repeat instability. Generatlorgof
latter leads to somatic mosaicism resulting in considerabkich mice has, however, not been successful due to difficulties in
variations in the size and range of expanded CAG repeats amdhg cloning and introduction of the large genes for these diseases.
various tissuegl3-17). On the other hand, tH@RPLAgene spans only 20 kb (31), an§
The DRPLA gene contains one of the most highly unstabl¢he disease is among those such as SCA7 characterized byJarge
CAG repeats identified, with intergenerational changes of +5.8ttergenerational changék3,32—34). Thus, we determined thgt
+0.92 and +1.2% 1.55 in paternal and maternal transmissionghe DRPLA gene was quite suitable for investigating tive
respectively(18). As a result of the intergengomal instability — molecular mechanisms of CAG repeat instability, and generagted
of expanded CAG repeats, a mean acceleration of age at onsetrahsgenic mice harboring a single copy of a miD&RLAgene.
25.6+ 2.4 and 14.& 4.0 years per descendant has been observed
in paternal and maternal transmissions, respect{¢8ly On the RESULTS
other hand, the involvement of somatic mosaicism in the
pathogenesis of DRPLA remains to be determined, because I'i‘i@ergenerational instability of CAG repeats in
direct relationship between the degree of somatic mosaicism agglnsgenic mice
the distribution of neuropathological changes in this disease has
been establishgd5,16). Intereingly, it has been demonstrated We cloned 24 overlapping cosmid clones by screening a cosmid
that the expanded CAG repeats in the cerebellum exhibit tlgnomic DNA library constructed using the genomic DNA of a
smallest degree of somatic mosaicism in HD, SCA1, MJD andRPLA patient. A cosmid clone (DRPLA18E) carrying a 36 kb
DRPLA. Furthermore, we proposed that the degree of somatienomic insert was selected for further analysis, because the
mosaicism increases with age, on the basis of the analysisabdéne contained the entire mutddRPLA gene with 78 CAG
somatic mosaicism in autopsied brains of DRPLA patients a&peats and the largest upstream region iDRIBLAgene (Fig.
various ages at deafh6). These data raise the pbsisy that  1). Indeed, DRPLA18E included the genes for neuron-specific
somatic mosaicism of expanded CAG repeats changes in a aaflolase 4.6 kb upstream of fARPLAgene and for snRNA U7
lineage-dependent and time-dependent manner. 1.3 kb downstream (35). This result confirmed that DRPLA18E
Although the molecular mechanisms underlying CAG repeatontained the entire mutaDRPLAgene.
instability are not well understood, it has been demonstrated byTo generate transgenic mice harboring a single copy of a
haplotype analysis that founder chromosomes are present in Hi-length human mutaf@RPLAgene, we used embryonic stem
(19-21), MJID (22,23), DRPLA (24) and SCA7 chromosome¢$ES) cells as a route for transferring DRPLA18E. Five ES clones
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Figure 2. Mutation rates (%) per descendant in the Drm21 line. Parental ages at the time of birth of offspring are shown aboversiod tnansigenic offspring
in each subgroup are shown below the histografv)dn(male transmission, the expansion rate increased with age from 3.8 t@)3dfefnale transmission, the
contraction rate increased from 10 to 41%.

each carrying a single copy of the transgene were obtained frages were significant in both male£ 0.16P < 0.05) and female
24 independent G418-resistant clones. Further analysis with tfrs = —0.29,P < 0.001) transmissions (Fig. 3).
probe Neo which was a 1321 Apd andHindlll fragment of the
SuperCosl cosmid vector excluded the pOSS|b|I|ty of integrati
of a truncated insert including the neomycin gene or additio
rearrangements (unpublished data). From these ES clones, Teeinvestigate if similar mtergeneratlonal instabilities underffil
generated three transgenic lines, Drm12, Drm21 and Drm2Ransmission of the mutaDRPLAgene in DRPLA patients, Wew
carrying 78, 76 and 77 CAG repeats, respectwely Although ttenalyzed 83 transmissions, including 56 paternal and 27 mate:t‘nal
expression of transgenes in the brain in each of the three lines wassmissions, in 56 DRPLA pedigrees (Fig. 4). The mtergenera—
confirmed by RT-PCR analysis, these transgenic mice revealgohal changes were +7.290.69 (= 56) and +1.3% 0.58 o= <
no obvious phenotype for over a year (unpubhshed data).  27)in paternal and maternal transmissions, respectively, an%thls
Intergenerational changes in the sizes of expanded CAdiference between paternal and maternal transmissions E‘q’fvas
repeats were analyzed mainly in the Drm21 line. The segregatisignificant £ < 0.001). In paternal transmission, there wa53a
ratios of transgenes were 51% in both male and fematignificant correlation between the intergenerational changes-and
transmissions. In male transmission, expansion and contractithe paternal age € 0.30,P < 0.05). Furthermore, there was §
of CAG repeats were observed in 6.2 and 1.4% per descendamgnificant increase in variance at paternal ag& compared G
respectively if = 211). In female transmission, contraction waswith that at paternal ages < 35< 0.005) and a similar increase;
observed in 27%n(= 215), while expansion was not observed ain variance was observed from paternal ages 32—-39. In matégnal
all. The mean increases in the sizes of CAG repeats per generatimmsmission, there was an increasing trend toward contraction of
were +0.043t 0.020 and —0.34@ 0.043 in male and female CAG repeatsr(=—0.19), but this was not significaRt£ 0.338).
transmissions, respectively. This parental bias in the intergeneta-should be noted, however, that contraction events were
tional changes in the sizes of CAG repeats was highly significanbserved exclusively in maternal transmissions, suggesting that
(P <0.001). contraction events are phenomena highly specific to oogenesis.
In order to investigate the effect of aging, the intergenerational
changes were compared among four subgroups classified on §&ntic mosaicism in transgenic mice
basis of parental ages at the birth of the offspring. Interestingly,
the mutation rate per descendant increased with the parental athe age of 64 weeks, genomic DNAs from various tissues were
In male transmission, the expansion rate increased with age framalyzed and the sizes and ranges of the CAG repeat expansions
3.8 to 13%. In contrast, in female transmission, the contractiamere determined in all three lines. Among the tissues, consider-
rate increased from 10 to 41% (Fig. 2). Furthermore, thesble variations in the size ranges of CAG repeats similarly were
correlations between the intergenerational changes and parewtaserved in both male and female mice of the Drm21 line (Fig.
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changes in the sizes of CAG repeats per year (regression coefficients) were
+0.27 and —0.15 in paternal and maternal transmissions, respectively. Althotfgh
there was a trend toward inverse correlation between the intergeneratidial
changes in the sizes of expanded CAG repeats and the maternal age, it waSnot
Figure 3. Relationships between the intergenerational changes in the sizes ofsignificant ¢ = —0.19,P = 0.338). .
CAG repeats and parental ages in the Drm21 line. Each value indicates the

meart: SEM for the subgroup corresponding to that in Figure 2. Significantly

positive and inverse correlations were observed in mate ¢.16,P < 0.05)

(A) and femalerg = —0.29,P < 0.001) B) transmissions, respectively. The

mean changes in the sizes of CAG repeats per year (regression coefficient)lSCUSSION
were +0.31 and —1.21 in male and female transmissions, respectively.
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We established three transgenic lines each harboring a singlegopy
of an entire human mutaBRPLAgene. These transgenic micg
exhibited a strong parental bias with respect to the intergengra-
tional changes in the sizes of CAG repeats. Furthermore,xwe
5A). In the other two lines, an identical pattern was observesbserved somatic mosaicism which varied among tissues ifsan
reproducibly (unpublished data). Of particular note was the mucge-dependent manner, and the pattern was identical in the three
smaller size range of CAG repeats in the cerebellum comparties. These data suggest that the instabilities of the CAG repeats
with the cerebrum and other somatic tissues. Similarly, a smalte independent of the integration sites of the transgene.

size range of CAG repeats was observed in the heart. To evaluat€he transgenic mice described in the present study exhibited
the age-dependent changes in the sizes of CAG repeats, GRG repeat instabilities comparable with those observed in
analyzed the genomic DNAs from various tissues at the age of8RPLA patients. First, these mice exhibited intergenerational
weeks. The size ranges of CAG repeats were much smaller ain8tability of CAG repeats. Secondly, there was a significant
weeks than at 64 weeks, and no tissue-specific differences weliference in the intergenerational changes in the sizes of CAG
observed in the size ranges at 3 weeks, suggesting that the degepeats between male and female transmissions, with the male
of somatic mosaicism of the CAG repeats increases with age. fransmission being associated with a greater increase in the size of
confirm this, the age-dependent increase in the somatic mos@AG repeats than female transmission. Thirdly, somatic mosai-
cism of the CAG repeats was demonstrated in the tail DNAGsm of CAG repeats was demonstrated. Particularly, the size range
obtained at 3 and 64 weeks from the same mice (Fig. 5B). of CAG repeats in the cerebellum was much smaller than that in
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A 3 weeks 64 weeks It is known that spermatogenesis continues throughout adult
tissue male temale mae female life; the spermatogenesis cycles are estimated to be 42 cycles per

year in mice and 23 cycles per year in humans (38,39). As shown
cerebrum _M wu ,.A/Mf\/\m_ _.MAI\{W\AM_ in Figure 3, the linear regression fits quite well with the
age-dependent increase in the intergenerational instability of
corebellum __A/\M«_ ,.,/M_ M M_ CAG repeats in transgenic mice. Furthermore, a similar age-de-
pendent increase in the intergenerational instability of CAG
wee |l il | . repeats was confirmed in human paternal transmission. Based on
) the linear regression model and the continuous cell division
wner | _all,_ I N T il required for spermatogenesis throughout adult life, the mean
increase in the size of CAG repeats in mouse male transmission
heart
> —-A/Mﬂv M"MA— A»/‘AL L was calculated to be +0.31 per year and +0.0073 per spermatoge-
nesis cycle. Interestingly, despite the fact that the actual sizes of
leen
e —~“"NL' —-“”M"— M ——"'MA“ the instabilities are very small in the transgenic mice, these values
were comparable with those observed in DRPLA patients, which
gonad k )
*"M— W M_ ‘“M were calculated to be +0.27 and +0.012, respectively, on the basis
sall M of the aforementioned assumptions (Fig. 6). These restits
—”’\M"— —“'M W strongly suggest that the difference in the actual intergeneratignal
changes between humans and mice is due to the diffe%ent
_ reproductive lifespans and that a common mechanism undetlies
(samemouse) HM\ N ﬂl\/\n WM the age-dependent increase in the sizes of CAG repeats in ?oth
humans and mice. =
In contrast to spermatogenesis, considering that oogenesjs in
_ _ S _ the mouse occurs only during fetal life and ceases at the diplotene
Figure 5. Somatic mosaicism in the Drm21 liné\)(Genescan traces of the sdlage of the first meiotic prophase by 5 days after i), the &
CAG repeats from eight tissues of male and female mice at the ages of 3 an . d d dent tracti f CAG .
64 weeks. At the age of 64 weeks, the size ranges of CAG repeats were muéﬁfore_mem'one age-dependent coniraction or L. repeats IS
smaller in the cerebellum and heart compared with those in the cerebrum, livegonsidered to occur after the cessation of meiotic DNA repli-
kidney, ovary and tail. In contrast, the size ranges of CAG repeats were muctation (Fig. 6). Similar observations have been made in ndce
smaller at 3 weeks, with no tissue-specific differences in the size raBigBse( transgenic for SCA1 and SBMA (30,36). Theseiltssstrongly ®
age-dependent changes in the sizes of CAG repeats were also observed in . . -
tail DNAs obtained at 3 and 64 weeks from the same mice. tg'ﬁggest that C(_)ntractlon of the CAG re_peats oceurs dunng_.éthe
prolonged resting stage, and mechanisms such as repair of

damaged DNA or selective degeneration of the primary ootyte
with larger CAG repeats might be involved in the contractign

the cerebrum or other somatic tissues as determined in autopgRsgicess. Therefore, we would need to consider two processgs to
brains of DRPLA patients (16). Thus, the tgeiic mice explain CAG repeat instability in female transmission: {i
harboring a single copy of a humaRPLAgene used in this study instability in successive cell division from the zygote to primagy
more closely replicate the intergenerational as well as soma@®cyte and (ii) instability in the prolonged resting stage. Givenghe
instabilites of the expanded CAG repeats observed in hum&ge-dependent contraction of the CAG repeats in female
DRPLA patients than previously described transgenic mice. In tigansmission, the latter process is considered to be involved ifithe
transgenic mice harboring a single copy of a full-ler§@A1 contraction of the CAG repeats in transgenic mice. AIthouLZE;h
cDNA driven by a Purkinje cell-specific promoté36), only  there is no direct evidence, one hypothesis is that successive cell
contraction of the CAG repeats was observed in female trandivision from the zygote to the primary oocyte may result in the
mission, while expansion of the CAG repeats and somat@xpansion of CAG repeats. In human maternal transmission’i an
mosaicism were not observed. Thus, our results emphasize thtergenerational change in size of +1:30.58 ( = 27) was -
importance of the genomic structure for the expression of CAGbserved, while in the female transmission of the transgenic ngce,
repeat instabilities, especially the expansion of CAG repeats. it was —0.36: 0.043 (1= 215). Since the number of cell divisiong

In the transgenic mice used in this study, there was a significa@tcurring between the zygote and primary oocyte stages is much
age-dependent increase in the intergenerational changes in the siaeger in humans than in mice, this difference could account¥or
of expanded CAG repeats similar to that described in orfbe slightly increased intergenerational change of the CAG
transgenic line for H{29). To nvestigate whether the age-de- repeats observed in human maternal transmission. Interestingly,
pendent increase in the intergenerational changes in the sizes oftttie trend toward age-dependent contraction was also suggested
CAG repeats observed in the transgenic mice is also observedrirthe case of maternal transmission in DRPLA patients (Fig. 4),
DRPLA patients, we analyzed 83 parent—offspring pairs ofithough it did not reach a statistically significant level. To
DRPLA patients (56 paternal and 27 maternal transmissions) argplore this possibility further, a much greater number of cases
found a significant correlation between the intergenerationaksulting from maternal transmission will be required, but this is
changes in the sizes of the expanded CAG repeats and the patediiffitult in practice due to the low prevalence rate of DRPLA and
age. Although an age-dependent increase in the degree tioé relatively narrow reproductive span in female DRPLA
anticipation has been suspected previously based on clinigadtients in contrast to the broad reproductive span in male
observations (37), this study is the first termnstrate the DRPLA patients.
age-dependent increase in the intergenerational changes in the sizés conclusion, the present study clearly demonstrates that
of the expanded CAG repeats in human CAG repeat diseases.different mechanisms for CAG repeat instability are involved

B 3 weeks 64 weeks




104 Human Molecular Genetics, 1999, Vol. 8 No. 1

Spermatogenesis
Amount of DNA

2n 2n 4n 2n n
Primordial Spermatogonium Primary Secondary Mature
germ cell spermatocyte spermatocytes spermatozoa

P OO

Number of cell cycles Mean increase in the size of CAG repeats

42 /year in mice +0.31 /year in mice
23 /year in humans +0.27 /year in humans

throughout adult life

! Age-dependent expansion of CAG repeats

Oogenesis
) 2n } 2n 4n 2n n
Primordial Oogonium Primary oocyte Secondary cocyte One mature egg

germ cell

©®—-® — (@ @

Mean decrease in the

Number of cells size of CAG repats First polar body Second polar body
2.5 X 104 in mice -1.21 /year in mice
6.8 X 108 in humans -0.15 /year in humans @
from fetal stage to puberty Meiotic arrest after puberty
Expansion of CAG repeats ? ' Age-dependent contraction of CAG repeats o

o!wepeoeu:sduu wioJ} pepeojumod

Figure 6. Gametogenesis and CAG repeat instability. The number of cell divisions required to produce a spermatozoon is muchhatgeqthiesd to produce
an egg, which could account for the difference in the intergenerational instability between male and female transmisgicsEelmaiogenesis, spermatogoniap
as stem cells, undergo continuous cell division throughout adult life at 42 cycles per year in mice and 23 cycles pemygees: iBdnsidering the number of cell_C
divisions per year, the mean changes in the sizes of CAG repeats per year were calculated to be +0.31 (+0.0073 per speayat)game+0.27 (+0.012 per 8
spermatogenesis cycle) in Drm21 mice and DRPLA patients, respectively. In the case of oogene3|s primordial germ celisycdividedo produce oogonia 3
during fetal life and give rise to the maximum populations 0k2.8* (= 215) and 6.8« 1(f (= 223) in mice and humans, respectively. Up to puberty, all female ge@
cells (primary oocytes) containing a tetraploid amount of DNA (4n) arrested at the diplotene stage of the first meiotcapedplihe prolonged resting stage. Thug
the aforementioned observations suggest that age-dependent contraction of CAG repeats occurs after the cessation of mplmm@NAspeually during the o)
prolonged resting stage. In addition, expansion of CAG repeats may occur during the process of cell division taking platiegmtgete and primary oocyte stages
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during spermatogenesis and oogenesis, and also that comnaegree of somatic mosaicism increases with the patients’ sage
mechanisms are involved in humans and mice. (16). The reglts of our study strongly support this hypothe5|sw
This study also demonstrated somatic instabilities of CAG It has been clearly demonstrated that transgenic mice harbdﬂmg
repeats, comparable with those observed in DRPLA patlentssmgle copy of an entire human mu2RPLAgene carrying an S
First, the size range of the CAG repeats was smaller in tlexpanded CAG repeat show age-dependent mtergeneratlonal as
cerebellum than in the cerebrum and various somatic tissues. Thisll as somatic instabilities of CAG repeats. Since instabilitiesof
observation has been well documented in HD, SCA1, MJD arekpanded CAG repeats in transgenic mice are comparable Ki\nth
DRPLA (13-17). Since the cerdloen contains a dense popula- those observed in human DRPLA patients, such transgenic mice
tion of granule cells which are neurons, it is assumed that neurcmre expected to be good models for exploring the molecular
exhibit the lowest instability because they do not undergo cethechanisms that underlie instabilities of CAG repeats.
division and that cell division is required for the development of
somatic instabilities of CAG repeais6). Similar phenomena MATERIALS AND METHODS
were observed in the granular layers of the cerebellar cortex and
hippocampal formation in autopsied DRPLA bre(hg). Inter- Clonmg of the mutant DRPLA gene
estingly, heart muscle also exhibited a small size range of CAG
repeats in the transgenic mice. The postmitotic nature of hedthigh molecular weight genomic DNA fragment extracted from
muscle cells could account for this phenomenon. To confirm that lymphoblastoid cell line of a DRPLA patient with 79 CAG
neurons show the lowest variability in CAG repeat size, direcepeats was partially digested waaBAI and size-fractionated
analysis of individual neurons would be required. Anotheby pulse-field agarose gel electrophoresis. The genomic DNA
interesting finding of the present study is the age-dependefnagments ranging in size from 30 to 42 kb were purified from the
increase in the degree of somatic mosaicism. As shown in Figugel by electroelution, dephosphorylated by alkaline phosphatase
5, the size ranges of CAG repeats were much larger at 64 weeksl ligated into th®anHI-cleaved SuperCosl cosmid vector
compared with those at 3 weeks. In our previous study on somatiétratagene). The ligation products wiergitro packaged using
mosaicism in DRPLA patients, we found that the size range @igapack Il gold packaging extract (Stratagene) and propagated
CAG repeats exhibited a strong correlation with the age at deathroughEscherichia colXL1-Blue MR. Cosmid clones carrying
Based on these findings, we proposed the hypothesis that the mutanDRPLAgene were isolated by colony hybridization

220z 1snbny Lz 8o



Human Molecular Genetics, 1999, Vol. 8, No. 1105

using a fragment of thBRPLACDNA as the probe (probe A in for Windows. A P-value <0.05 was considered statistically
Fig. 1), which was the 648 becd—EcdRI fragment of human significant.
DRPLACDNA (41).
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