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TRANSGRESSIONS, CHERN-SIMONS INVARIANTS
AND THE CLASSICAL GROUPS

JAMES L. HEΓΓSCH & H. BLAINE LAWSON, JR.

1. Introduction

Generalizing the work in [6], J. Simons has defined a family of natural
transformations from principal bundles with connection over a manifold M to
characters on the integral cycles of M. Provided that certain Pontryagin forms
vanish identically, these characters determine R/Z cohomology classes, which
for the tangent frame bundle of a riemannian manifold constitute a set of
obstructions to conformally immersing the manifold into euclidean space.

In this paper we give a short proof that the Simons characters associated to
any biinvariant metric connection on a compact Lie group G are identically
zero. At the same time we are able to compute the Chern-Simons invariants
in the frame bundle of G and by using the more delicate obstructions in [6]
obtain nonimmersion theorems for certain group manifolds.

The paper is organized as follows. In § 2 we summarize relevant facts from
[6] and [9]. In § 3 we reduce the problem of computing the Chern-Simons
invariants to that of computing the map induced on cohomology by the adjoint
representation. In § 4 we apply these results to classical groups.

2. Transgression classes and Chern-Simons theory

The material in this section is presented without proof. For details see [6]
and [9].

We begin by fixing notation. Let G be a Lie group with Lie algebra g, and
denote by /*(G) the graded ring of adjoint-invariant multilinear functions on g.

Denote by E a principal G-bundle over a manifold M, and let θ be a con-
nection on E with curvature Ω. To any P e Ik(G) we associate a real-valued
2Λ;-form P(Ω, , Ω) on E. This form is closed, horizontal and invariant, and
hence it projects to a closed form on M. The element in H2k(M R) so
determined is independent of the connection θ, and is therefore an invariant
of the bundle E.

While P(Ω, , Ω) may project to something nontrivial in the cohomology
of M, it is always exact on E. In fact, if we set
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Ωt = tΩ + ±(? - t)[θ,β] = d(θt) + i[θt9θt] ,

where θt = tθ, and define the transgression form TP{0) of P by

(2.1)

then we have d(TP(θ)) = P(fl, , fl). Thus, if P(Ω, , Ω) = 0, then ΓP(0)
determines an i? cohomology class on E, denoted {TP(Θ)}> which is in general
not independent of θ. For connections associated to riemannian metrics the
theorem is the following

Theorem 2.1 (Chern-Simons [6, Theorem 4.5]). Let E be the bundle of
tangent frames on a manifold M, and suppose that θ and θf are the Levi-Civita
connections of conformally related riemannian metrics g and g/ on M. Then
for all P e I*(GLn) such that P(fl) = 0, we have P(Ω;) = 0 and

{TP(Θ)} = {TP(Θ')} .

Recall that the ring I*(GLn) is generated by classes p19 ,P[n / 2 ], where
degree pά = 2/, with the following property. If we let pj be the /-th integral
Pontrjagin class of E, and let

r: H*(M\Z)-^H*{M\R)

be the natural map, then the projection of Pj(Ω, >,Ω) er(pj). For our
purposes we need to consider also the inverse Pontryagin forms coming from
polynomials pj- given by the following identity in t:

PIA(Σ PiA = ί>

where pQ = p± = 1. We say that P e I*(GLn) is integral if it is mapped to
H*(BGLn; Z) by the Weil homomorphism. The pj- are integral polynomials.

Before stating the next results we shall make a notational convention. For
any space X, we denote by Hk(X; Z) the image of Hk(X; Z) in Hk(X; R)
under the coefficient homomorphism.

Theorem 1.2 (Chern-Simons [6, Theorem 5.14]). Let M be a compact
oriented riemannian manifold of dimension n. Let θ denote the riemannian
connection on the bundle of frames E. Suppose M admits a conformal immer-
sion in Rn+k. Then for all j with [k/2] + 1 < / < [n/2]

2)
Corollary 2.3. Let M, E, θ be as above, and suppose σ: M —> E is a cross-

section. Then a necessary condition that M admit a conformal immersion in
Rn+k is that σ*({jrTpj-(θ)})εHV-\M; Z) for all j with [k/2] + 1 < / <
[n/2].



TRANSGRESSIONS, CHERN-SIMONS INVARIANTS 425

Suppose now that π: E —> M is a principal GLn bundle with connection Θ
and curvature Ω. To every integral P e Pk(GLn), Simons associates a homo-
morphism SP(θ): ZAk_x(M) —• R/Z where Z^_X{M) denotes the integral
(4k — l)-cycles. If P(Ω, , Ω) = 0, then SP(Θ) defines a cohomology class
{SP(Θ)} e H4kl(M; R/Z). For trivial principal bundles this class is related to
{TP(Θ)} as follows. Let σ: M -> E be any cross-section, and let p: Hik~\M R)
-> H*k~ι(M; R/Z) be the natural reduction m o d Z . Then

We conclude this section by recalling the transgression map for compact Lie
groups. Let G be such a group, BG its classifying space, and π: EG —> BG
the universal principal G bundle over BG. The transgression map is a mapping
τ: Hk(BG; A)^Hk~l(G', A) for k > 1, where A is some coefficient ring,
defined as follows. Let γ e Hk(BG; A) and choose c e γ. The cocycle π*c is
exact in EG since EG is contractible. Hence there is a cochain d on EG such
that δc' = π*c. Then i*c' is a cocycle in G where ί: G —• £ G is the fiber
inclusion. The cohomology class τ(c) = {i*c'} is independent of the choices
involved because of the acyclicity of EG.

We will need the following facts about the transgression map. The reference
is Borel [2].

Lemma 2.4. Suppose f: G —> Gr is a smooth homomorphism, and Bf: BG
—> BG' is the induced map. Then the following diagram commutes:

Hkl(G' A) ^— Hk(BGf A)

f*\ \βf*

The map τ is not a homomorphism, but it does have the following rela-
tionship to the multiplicative structure in cohomology.

Lemma 2.5. τ maps primitive elements to primitive elements, and maps
products to zero.

For G = GLn we have the following special result (cf. [4]).
Lemma 2.6. Let pj,pf e HAj(BGLn; R) be the classes discussed above.

Then

n Z) ,

and, in fact, these classes are generators in the group

Over the real numbers the transgression map can be given explicitly in terms
of de Rham cohomology. Let E —> M be any principal G-bundle over a
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manifold M with connection θ. Let P e P(G). We may consider P as an element
in H2k(BG R) via the Weil homomorphism. Notice that the form TP{0) defined
in (2.1), when restricted to the fiber G c E, is closed, since dTP{θ)\G =
P(Ω,>-,Ω)\G = 0. The deRhamclass of TP(Θ)\G is exactly τP e H2k~\G R).
(Consider E embedded in the universal bundle EG.) A straightforward calcu-
lation now shows that

(2.2) τP — ( — —) * ~ ,' P(ωG, [ωβ9ωG], -9[ωG9ω0]) ,
\ 2 / (2k — 1)!

where ωG is the Maurer-Cartan form on G.
Note that the form in (2.2) is biinvariant and therefore harmonic if G is

compact.

3. Compact Lie groups

Let G be a compact Lie group of dimension n with Lie algebra Q, and
denote by <•, •> a biinvariant riemannian metric on G. (<•, •> corresponds to
an AdG-invariant inner-product in g.) Let θ be the associated riemannian con-
nection on the frame bundle of G, and let Ω denote its curvature. Following
Chern we shall adopt the convention that for P e Ik(G), P(a2, a29 , at) for
/ < k means that the argument at is repeated in the final n — I slots. For
example, P(β) = P(Ω, , Ω).

Lemma 3.1. For any P <= P(GLn), P(Ω) = 0.
Proof. Let π: E —• G denote the frame bundle of G, and consider the

section

(3.1) σ : G - * £

given by choosing an orthonormal basis of left-invariant vector fields. From
Lemma 3.4 below we have

σ*Ω= -i<7*([0,0]),

and therefore

Using the adjoint-invariance of P (see [5, (65)]), we have

P(lθ,θ]) = (k- 1)P(09 [Θ[Θ9Θ]]9 [Θ9Θ]) .

Since [θ, [θ, θ]] = 0 and π*σ*P(Ω) = P(Ω), we have P(Ω) = 0.

It follows from Lemma 3.1 that for each integral form P e Ik(GLn) there
are classes {TP(Θ)} e H2k~\E\R) and {SP(Θ)} = p.σ*{TP(0)} € Wk~\G\R\Z)
defined. Our first main result is the following.
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Theorem 3.2. Let Ad: G —> GLn be the adjoint representation, and let θ
be the Levi-Cίvita connection of a biinvariant metric on G. Then for any
integral form P e P(GLn) we have

(3.2) σ*{TP(θ)} = Ad*(irP) .

In particular, {SP(β)} = 0.
The result that {Sp±(θ)} = 0 for G = SO(k) and all i is also due to J.

Simons.
Proof. Let eu , en be an orthonormal basis of left-invariant vector fields

on G, and let ω19 , ωn be the dual 1-forms. Then ωG = Σi=i eι ® ωι *s t n e

Maurer-Cartan form on G. The cross-section σ: G —• £ of the frame-bundle
is given by σ{g) = (g e^g), , en(g)) for g e G. We recall that the connection
θ is a gl^-valued 1-form on E. Thus σ*θ is a gΓn-valued 1-form on G. Our
first step will be to compute this form.

Let Ad^ denote the differential of the adjoint transformation, and let ad: g
—> $ίn be the associated Lie algebra homomorphism.

Lemma 3.3. σ*θ = | a d o ω β = \ωGL o Ad^.
Proof. The second equality follows immediately from the fact that ad =

Ad* at the identity of G and that Ad is a C°° homomorphism.
To establish the first equality we need only to compute (σ*θ)ij(X) —

ζei9 Vxe^} for 1 < i, j < n where Vx is covariant differentiation with respect
to the vector field X on G (see [7, p. 44] and [5]). For left-invariant vector
fields X and Y, covariant differentiation for a biinvariant metric is given by

(see [8, pp. 113-114]). It follows that

(σ*θ)ij = Σ <ei> \ a d ** ej>°>k = <eu i
k = l

that is, σ*θ = | ad o ωG as claimed.
Let Ω denote the curvature of the connection θ. Recall that Ω is a gl^-

2-form.
Lemma 3.4.

(3.4)

/. By definition, Ω = dθ + £[0, 0]. However, σ*d0 = dσ*θ =
d(Ad*QωGL)) = Ad*(JdωG L) = A d * ( - [ | ω ^ , | ω G J ) (by the Maurer-Cartan
equations) = - [J Ad* c^ L , | Ad* ωGL] = - [σ*0, cy*0] = -σ*[0, θ].

We can now complete the proof of the theorem. Recall that

= k\1P(θ,Ωt)dt,
Jo

where
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Ωt = tΩ + Ϊ(t2-t)[θ,θ] .

Thus

σ*TP(θ) = k f P(σ*θ, σ*Ωt)dt
Jo

= A Γ P(Ad*iωβL9 (it2 - t)Ad* [iωGL, iωGL\)
U

= Ad*lP(ωGL, [ωGL, ωGL])k φ 2 * " 1 ^ * 2 — t)k~
\ Jo

Using the fact that

ί r ( i — ί)srfί = r ! > y !

Jo (r + j + 1)!

and (2.2), we have

= Ad*(lτP) .

This proves (3.2).
The fact that {SP(0)} = 0 follows from (3.2), Lemmas 2.5 and 2.6, and the

fact (cf. [2]) that ίϊ*(BGLn Z) is generated as a ring by the classes Pj. This
completes the proof of Theorem 3.2.

We would now like to use Corollary 2.3 to obtain results on the nonexistence
of conformal immersions. Theorem 3.2 reduces this problem to computing the
map

Ad*: H*(GLn Z) - #*(G Z)

modulo torsion. In particular we are interested in this map on the elements

To simplify matters in the following discussion, we shall replace GLn with
the subgroup 0(ή). Since Ad is an orthogonal representation and BO(ή) has
the homotopy-type of BGLn, everything remains essentially unchanged.

Let G be an ^-dimensional compact Lie group, and Ad: G —> 0(n) its
adjoint representation, and suppose TG c G is a maximal torus. Consider the
following commutative diagram (cf. Lemma 2.4):

Hk'l(0(n) Z ) ̂ - Hk(BO(n) Z )

Ad* I Ad* I

Hk-\G;Z) <^— Hk(BG;Z) -^+Hk(BTG;Z)
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where τ denotes the transgression map, and /* is the map induced by inclusion.
We are interested in computing the left vertical map. When G is a classical
group, the maps τ are well known (cf. [2]), and it will suffice to compute the
right vertical map. Since the map i* is injective modulo torsion, and for the
classical groups the images of i* are well-known, we need in fact only to
compute the map /* o Ad*. This is accomplished by computing the weights of
the adjoint representation.

Specifically, we proceed as follows. Let G be a compact π-dimensional Lie
group, and p: G -+ 0(n) a homomorphism, and choose maximal tori TG c G
and Γo C 0(n) so that p(TG) C To. Let ώ19 , ώ[n/2] € H\TG Z) denote the
weights of the representation (the images under p* of canonical generators for
H\TQ Z)), and ω19 , ω[n/2] their preimages in H2(BTG Z) under transgres-
sion. We recall that r: H\BTG Z) —> H\TG Z) is an isomorphism, and
H*(BTG Z) is a polynomial algebra on 2-dimensional generators. If p = 1 +
Pi + P2 + ''' + V\niΐ\ is the universal total Pontrjagin class in H*{BO(n) Z),
then a theorem of Borel-Hirzebruch gives us the following

Theorem 3.5 ([3, Theorem 10.3]).

[n/2]

(3.5) iV(P) = Π (1 + ω}) ,

where i*: H*(BG; Z) -> H*(BTG Z) is the natural map.
Ultimately we wish to know if i*p*(p) is an even class in i*(H*(BG; Z)).

For this we need a precise knowledge of the image, which can be had from
the fact that i*(H*(BG; Z) is the subring of H*(BTG; Z) invariant by the
induced action of the Weyl group.

4. Computations for the classical groups

We shall now carry out the computations just indicated for the case where
G is a compact classical Lie group. We begin by recalling some basic facts
concerning these groups (cf. [1], [2], [4]). Suppose G has rank k, and let
i: TG C G denote a maximal torus. In what follows θ19 , θk will denote a set
of generators for H\TG Z), and will also denote the corresponding elements
in H2(BTG; Z). All of our computations will take place in the group
ΪΪ*(BG; Z) = /*H*(BG; Z) c H*(BTG\ Z).

Let G = SO(2k). Then the weights of the adjoint representation are θt + θj
and θi - θj for 1 < ί < j < k. Hence, by (3.5),

(4.1) i* Ad* p = Π (1 + tit - W l + (ft + θj)2) .

The ring ίϊ*(BG; Z) is generated by the classes

Pj = σj(θl,'",θl) ίoτj= 1 , - . . , * ,
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andj = θx θk with χ2 = Pk. The class %τPά, 1 < / < k — 1, is a generator
of H*j-\SO(2k) Z), and τPfe = τχ2 = 0. σ.; is the j-th symmetric function.

Let G = SO(2k + 1). Then the weights of the adjoint representation are
θi + θj9 θt - θj for 1 < i < j < k and θt for 1 < / < k. Hence

(4.2) i* Ad* p = Π (1 + (fl, - 0, )2)(1 + (fl, + θj)2) Π (1 + flϊ) .

The ring H*(BG; Z) is generated by the classes

and \τPj is a generator in H4j~ι(G\ Z)
Let G = U(k). Then the weights of the adjoint representation are θt — θj

for 1 < i < j < k. Hence

(4.3) i* Ad* p = Π (1 + (θi - θj)2) .

The ring H*(BG; Z) is generated by the classes

Cj = σ/tfj, , θk) for / = 1, , k .

Finally, the class τCj is a generator of H^-\U(k) Z).
Let G = Sp(2k). Then the weights of the adjoint representation are θi — θj9

θi + θj for 1 < i < / < k and 2θt for 1 < i < Jfc. Hence

(4.4) /* Ad* p - Π (1 + (0ι ~ Θ3)
2)(l + θj)2) Π (1 +

i

The ring H*(BG; Z) is generated by the classes

Pj = σj(θl" ,θl) ίoτj= 1,

and the class i rP 7 is a generator of Hij~\Sp(2k) Z).
Because the transgression map sends nontrivial products to zero, we need

only to compute Ad* p modulo products in ίϊ*(BG Z). The results are sum-
marized in the following table:

G

SO(ή)

Uin)

Sp(ή)

Ad* pi mod products in H*(BG; Z)

1 < / < in

in - l^-^Pi

(-iyinC2l

(n + 2«-1)Pι in even)

In each case above, Ad* pL must be a sum of nontrivial products for I > [n/2],
and for SO(2k), Ad* pk = 0 mod products.
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This information combined with Theorem 3.2 and Corollary 2.3 gives
Theorem 4.1. SO(2k + 1) with a biinvariant metric does not conjormally

immerse in euclidean space {or the sphere) in codimension 2k — 1.

Proof. %σ*{TpM} = iτAd*p f c - \{2k + 1 - 2™-ι)±τPk = \τPk Φ 0
modulo integral classes. Apply Corollary 2.3.

Theorem 4.2. U(2k + 1) with a biinvariant metric does not conjormally
immerse in euclidean space in codimension 2k — 1.

Proof. \σ*{TpM) = \τAd*pfc = ( - \)k±(2k + l)τC2k = ̂ τC2kφ0 modulo
integral classes.

Note that by the theorem of Hirsch both SO(ή) and U(n) immerse in euclid-
ean space in codimension one. These immersions cannot be conformal for n
odd. These results generalize a result of Chern and Simons [6] for SO(3).

Observing that the projection π: G —• G/Γ is a local isometry when Γ is a
discrete subgroup and G/Γ is given the induced metric, we have

Corollary 4.1. Let Γ C G be a discrete subgroup where G = SO(2k + 1)
or G — U(2k + 1). Then G/Γ with a metric induced from a biinvariant metric
on G does not conformally immerse in euclidean space in codimension 2k — 1.

We would like similar results for the spaces G/Γ where G = SO(2k), U(2k),
or Sp(2k) and Γ is a discrete subgroup. We have the following general result.

Theorem 4.3. Let G be a compact Lie group, and Γ a discrete subgroup.
If \ Ad* (τpf) does not contain a Z cochain invariant under the action of Γ,
then G/Γ with a metric induced from a biinvariant metric on G does not con-
formally immerse in euclidean space in codimension 2/ — 1.

Proof. Let π: G-+G/Γ be the projection map, and observe that
γ eH*(G/Γ; R) represents a Z class iff π*(γ) contains a Z cochain invariant
under the action of Γ. Let Θ and Θ be the Levi-Civita connections on G and
G/Γ respectively, and σ the cross-section of the tangent frame bundle of G as
before. Let σ be the corresponding cross-section for G/Γ. Then

Apply Corollary 2.3.
Proof of the formulas given in table. In the following discussion σj and Sj

will denote respectively the /-th symmetric function and the /-th power sum of
the variables indicated; i.e., Sj(X19 ,XP) = ΣU^ί We recall (cf. [10,
p. 81]) that

(4.5) St - St_iσi + St_2σ2 + (-Ό'-'Wx + (-l)1^ = 0 .

Consider the case U(k). Since σι(θ19 ,θk) = Ct and Si(θ19 -,θk) €

R[Cλ, , Cfc], we have from (4.5) that modulo products of Q's

(4.6) Sι(θ1,^^θk) = (-iy+1lCι.

We now set ytJ = (θt — θj)2 for 1 < i < j < k, and observe that by (4.3)
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/* Ad* pt =

However, σfyi^Sfyu) e R[CU , CJ, so we have from (4.5) that modulo
products of C/s

σι(ylj) = LL
1 υ -<s LJ /

2-i \"t — "j)
21

= (~lϊ+1 Σ (V - 2W?-% + (^θf-ψj + + θf).
Li i,j=i \ \2/ /

Using

k

Σ θf~rθrj = S2ι_r(θ19 , θk)sr(θι, , 0fc)

we have

( 7 ^ ) = (—1) I + 1—52 l(0!, ,0fc) = (-l)ι2kC2l .

Hence

z* AH* π = 1 4- ?k V ί ΊVΓ7

1 = 1

(Note that /* Ad* Pj is necessarily a sum of nontrivial products for / > k.)
We now consider G = SO(2k). Let JC^ = (0^ + 07)

2 and ytj = (θt — θ
for 1 < i, j < k. Then by (4.1),

i*Ad*p =

Since ai(xij9yij) and Sι(xij9 yiό) are invariant under permutations of the
and under each map θt —> —0$, they must both lie in the ring R[P19 ,
Consequently, by (4.5) we have

, ytJ) = jSfctj, yυ)

= -f Σ iβt + θj)n + (0, - θj)21

I i<j

2/ b,y=i ' <=i
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- 2« i= 4r\2 Σ (θf + (2I)θf-2θ
21 L ij=i \ \2/

Hence

(4.7)

For G = SO(2k

j*Ac

III

i

+

( -

* A

1),

III
l)ι+1(2k -

we

( '

III

have

k

1 = 1

k

- 2n-ι)Pι .

k

from

1

(4.2),

- * • -

- 2

(4.

21-

1)

) (

w

and (4

k

Σ
1 = 1

.7) that

The case G = Sp(k) is entirely similar.
We conclude with a few remarks. Since the weights of Ad are the roots of

the Lie algebra of G, the computation of Ad* p should be straightforward for
the exceptional groups. The difficulty lies in knowing the map τ: ίϊ*(BG; Z)
-*H*(G; Z) exactly.

The above results carry over easily to products of U(ή), SO(n), and Sp(n).
It would be useful to compute the Chern-Simons invariants for left invariant

metrics on compact Lie groups. However, this seems to be a difficult problem.
The invariants might not even exist since a priori P(Ω) does not have to be
identically zero. The connections in question are in 1 — 1 correspondence with
bilinear functions from g X g to g, where g is the Lie algebra of the group.
If X and Y are left invariant vector fields, the correspondence is given by
a(X, Y) = FXY, and V is biinvariant iff a(X, X) = 0 for all X <= g. This is an
extremely strong condition. It allowed us to conclude that VXY — \ ad x Y
which was the basic fact needed in our computation.

In the special case where the map a! \ g —• gtTO given by a'(X) — a(X, —)
is a multiple, say ε, of a Lie algebra homomorphism, we have

2ε

and P(Ω) = 0 by invariance. The class {TP(Θ)} depends strongly on a\ For
example if a'/ε is the differential of a Lie group homomorphism A: G —•
GL(n, R), then for P <= Ik(GLn)



434 JAMES L. HEITSCH & H. BLAINE LAWSON, JR.

where

In particular if ε =

as before.

σ*{TP(θ)} =

β(a)= P V
Jo

, then

σ*{TP(β)}

-t)k~ιdt

References

[ 1 ] A. Borel, Sur la cohomologie des espaces fibres principaux et des espaces homogenes
de groupes de Lie compacts, Ann. of Math. 57 (1953) 115-207.

[ 2 ] , Topics in the homology theory of fiber bundles, Springer, Berlin, 1967.
[ 3 ] A. Borel & F. Hirzebruch, Characteristic classes and homogeneous spaces. I, Amer.

J. Math. 80 (1958) 458-538.
[ 4 ] , Characteristic classes and homogeneous spaces. II, Amer. J. Math. 81 (1959)

315-382.
[ 5 ] S. S. Chern, Geometry of characteristic classes, Proc. Thirteenth Biennial Seminar,

Canadian Math. Congress, 1972, 1-40.
[ 6 ] S. S. Chern & J. Simons, Characteristic forms and geometric invariants, Ann. of

Math. 99 (1974)48-69.
[ 7 ] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New

York, 1962.
[ 8 ] J. Milnor, Morse theory, Annals of Math. Studies, No. 51, Princeton University

Press, Princeton, 1963.
[ 9 ] J. Simons, Characteristic forms and trangression. II: characters associated to a con-

nection, preprint.
[10] B. L. Van der Waerden, Modern algebra, Vol. I, F. Ungar, New York, 1931.

UNIVERSITY OF CALIFORNIA, BERKELEY


