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INTRODUCTION

The term acoustic holography usually refers to the
method of reconstructing an acoustic source from
acoustic pressure measured over a surface lying in front
of the source. Traditionally, harmonic waves are used.
For planar, cylindrical, and spherical sources, the Fou-
rier approach is used, or, in other words, the angular
spectrum method [1–4]. The acoustic holography for
harmonic signals is in some respects identical to the
corresponding version of optical holography, and this
similarity made it possible to develop several acoustic
holography schemes [5, 6]. However, in acoustics, the
following fact is of importance: because the frequency
of acoustic signals is lower than that of light waves, the
phase of an acoustic wave can be measured directly;
i.e., one does not need to use interference with an aux-
iliary (reference) beam.

The acoustic version of holography also has other
advantages, for example, the possibility of performing
the measurements at small (compared to the wave-
length) distances from the source. In this case, not only
the waves that propagate from the source but also the
inhomogeneous waves, which exponentially decay
with distance from the radiating surface, can be
recorded. An appropriate source reconstruction tech-
nique achieves a spatial resolution that is much better
than the diffraction limit [4]. Another advantage of the
acoustic version of holography is that it can be
extended to the transient case, for example, to pulse
sources, whose spectrum is wide. Formally, the situa-
tion is reduced to the case of harmonic waves, because
any signal can be represented as a superposition of such

waves in the linear approximation. For planar surfaces,
transient acoustic holography can therefore be imple-
mented in the framework of Fourier acoustics [3, 7, 8].
An alternative approach [9] relies on the time-reversal
mirror principle [10], which requires neither the source
surface nor the measurement surface to be planar. This
paper describes and improves this version of transient
acoustic holography.

One of the important holography applications is the
characterization of vibrations of the surfaces of piezo-
electric transducers. It is important to be able to mea-
sure the normal velocity component at different points
of the radiating surface, because it specifies the acoustic
sources and, therefore, defines the structure of the
acoustic field emitted by the source. The velocity distri-
bution over the surface is usually unknown. It is deter-
mined by the transducer design (for example, in the
case of multielement arrays) and by the presence of
mechanical defects or parasitic modes (for example, of
Lamb waves) [11–13]. It should be noted that the famil-
iar laser vibrometry method fails to give correct results
when the source is immersed into a liquid, because
acoustic interaction produces strong parasitic signals
[14]. Acoustic holography is free of this disadvantage.
On the other hand, if the distance from the measure-
ment surface to the source is much greater than the
wavelength, the holographic reconstruction procedure
yields a smoothed surface velocity distribution rather
than the true function: irregularities shorter than the
wavelength are not reconstructed. This disadvantage
does not, however, reduce the importance of the
method, because small irregularities emit inhomoge-
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neous waves, which do not contribute to the acoustic
field produced by the transducer.

An important feature of the experimental investiga-
tion of the field produced by a piezoelectric source is
that the same ultrasonic field can be produced many
times, which allows one to overcome the difficulty
inherent in the time-reversal method, namely, the
necessity to measure the acoustic pressure simulta-
neously at a great number of points on the surface of the
mirror [10]. Indeed, by exciting the source periodically
by the same signal and placing the acoustic sensor at
different points of the surface, one can synthesize the
time-reversal mirror. The number of measurement
points can be as large as several tens of thousands or
more. This circumstance provides a high holographic
reconstruction quality, which is impossible with the use
of the present multielement ultrasonic transducers,
where the number of elements can at best be as large as
several hundred [10]. The cost of the high quality of the
reconstructed hologram is a longer measurement time
(up to several hours). Performing this sort of measure-
ments on present automatic facilities usually presents
no difficulties.

THEORY

Consider an acoustic transducer with the radiating
surface 
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 (Fig. 1) and the measurement surface 
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certain distance from the source. The acoustic pressure
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known from the experiment. The measured data 
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represent the hologram. Note that both surfaces 
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 can in general be nonplanar, for example, convex or
concave. In particular, this shape is used for ultrasonic
sources applied in medical diagnostics and therapy.
Due to the latter circumstance, it is impossible to con-
struct a holographic algorithm based on the traditional
Fourier acoustics approach. In fact, the angular spec-
trum method can only be applied to planar and neces-
sarily parallel surfaces 
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 and 
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. We do not limit our
analysis to this particular case and consider nonplanar
surfaces, although we assume that their curvature is
small with respect to the characteristic wave number.
This condition is necessary to justify the use of the Ray-
leigh integral [15, 16].

The problem is to retrieve the acoustic characteris-
tics on the surface of the source from the holographic
data 
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. This is conceptually possible, because the
wave equation can be reversed in time. Imagine that the
surface 

 

Σ

 

H

 

 is replaced by a time-reversal mirror. Then,
the wave reflected from it will propagate backwards
and, having reached the source, will reproduce its orig-
inal characteristics. It was noted [17] that the character-
istics will still not be reproduced completely, because,
having reached the surface of the source, the reflected
wave will not disappear, as would be the case if the time
was reversed exactly. It is this circumstance that

imposes the diffraction limit on the reconstruction
accuracy. The inhomogeneities on the order of or
greater than the wavelength in length must be recon-
structed completely.

As follows from the above consideration, the acous-
tic wave in this holographic procedure is real only when
it propagates to the measurement surface 
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. At this
stage, the experiment ends. The processes of reflection
from the time-reversal mirror and of backward propa-
gation are virtual (numerical) [18].

To derive the formulas that describe the process of
holographic reconstruction, we first consider the har-
monic waves. In this case, the acoustic pressure on the
surface 
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 has the form 
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and the normal component of the particle velocity on the
surface of the source 
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where 
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 is the frequency of the wave and 
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 are the complex amplitudes. The velocity amplitude
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 can be calculated from the pressure amplitude
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 using the second Rayleigh integral [9]:

 

V

 

(

 

r

 

) = (

 

r

 

')

 

K

 

(

 

r

 

, 

 

r

 

')

 

ds

 

'. (1)

 

The kernel 

 

K

 

(

 

r

 

, 

 

r

 

')

 

 is expressed in terms of the normal
derivative of the complex conjugate Green’s function
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Here, 
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 is the density of the medium, 
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 is the velocity
of sound, 
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 is the unit vector of the outer normal
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Fig. 1. Arrangement of the surface of the source (ΣS), the
measurement surface (ΣH), and the corresponding vectors.
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to the surface of the source at the point of reconstruc-
tion r, and n' = n'(r') is the unit normal to the element
ds' ∈ ΣH in the direction toward the source. For exam-
ple, in the particular case when the surfaces ΣS and ΣH
are planar and perpendicular to the 0z  axis, ∂ /∂n  =
∂/∂z and ∂/∂n' = –∂/∂z'. Let us introduce the following
notation: R = |r – r'| and eR = (r – r')/R (see Fig. 1).
Then, after taking the derivatives of the Green’s func-
tion with respect to the normals, expression (2) for the
kernel takes the form

(4)

Calculations and experiments show that the holo-
graphic algorithm based on Eqs. (1) and (4) to a high
accuracy reconstructs the distribution of the particle
velocity over the surface of monochromatic sources,
both planar and spherical ones [9, 14, 19].

Now consider transient holography, which recon-
structs the velocity v(r, t) from the measured acoustic
pressure pH(r, t) in the case of signals of an arbitrary
waveform. One of the possible approaches is to change

to the spectral density PH(ω, r) = (r, t)eiωtdt and

use Eqs. (1) and (4) to calculate the spectrum V(ω, r) of
the source surface velocity. The velocity is further cal-

culated from V(ω, r): v(r, t) = (ω, r)e–iωtdω.

Another alternative is to use the time-domain represen-
tation. The formula can for example be derived from
the spectral representation by integrating with respect
to frequency. It is more convenient to write the result
for the acceleration w(r, t) = ∂v(r, t)/∂t:

(5)

It can be seen that the time dependence of the nor-
mal acceleration component can be reconstructed at
every point of the surface ΣS of the source if the wave-
form of the acoustic signal is known at all points of the
measurement surface ΣH. The contribution of the ele-
ment ds' is determined by the acoustic pressure and its
first and second time derivatives.
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NUMERICAL SIMULATION

The practical implementation of transient hologra-
phy imposes more stringent requirements on the exper-
imental facilities than sinusiodal holography does. In
particular, the acoustic sensor must be sufficiently
broadband to introduce no distortions into the wave-
form of the signals being recorded. At each point of the
hologram, one should not merely measure the ampli-
tude and phase of the wave, as in stationary holography,
but record the entire waveform. Nevertheless, modern
instruments and computers are capable of solving this
problem. For example, for acoustic waves in the mega-
hertz range applied in medicine and nondestructive
testing, miniature wideband PVDF-film-based hydro-
phones exist. The field can be scanned over the mea-
surement surface by a computer-controlled microposi-
tioning system, and the measured waveforms can be
recorded and processed with the help of a personal
computer and a dedicated data-acquisition map or a
digital oscilloscope [13, 9]. These facilities are avail-
able at many acoustic laboratories. To use these possi-
bilities, it is necessary to develop an appropriate algo-
rithm and study it for accuracy and stability with allow-
ance for the constraints imposed by practical
measurements. In particular, these constraints include
the nonzero sampling interval and the finite size of the
measurement window in time and space.

It is convenient to develop the algorithm using
numerical simulations. The procedure may be as fol-
lows. Specify a reference signal, which is preferred to
resemble the one that is used in the physical experi-
ment. Calculate the acoustic field emitted by the trans-
ducer from the Rayleigh integral at the points of the
surface ΣH where the acoustic pressure will be mea-
sured in the real experiment (the Rayleigh integral is
known to very accurately predict the field produced by
sources of large wave dimensions [13, 15]). Recon-
struct the acceleration on the surface of the transducer
by the holographic technique by assuming that the
waveforms calculated above are the signals recorded in
the hypothetical physical experiment. Finally, compare
the resulting space–time distribution with the specified
one. The difference between the reference distribution
and the reconstructed one is the error of the algorithm.

The Rayleigh integral calculates the acoustic pres-
sure from the normal acceleration w(r, t) on the surface
of the acoustic source:

pH(r', t) = (6)

With a view toward a possible practical application
of the method, consider a source like those used in med-
ical diagnostic scanners. The surface of a diagnostic
source is often convex (for example, that of the sector
scan sensors). In this case, it is also reasonable for the
measurement surface to be nonplanar, so that it enve-
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lopes the source and receives the major part of the radi-
ation. However, in this paper, we limit our consider-
ation to a simpler source with a planar radiating surface
and we also record the signal at the nodes of a planar
grid. Let the radiating surface be a 20 × 13 mm2 rectan-
gle radiating short Gaussian pulses (about 2 µs long) at
a carrier frequency of 1.55 MHz into the water. Let all
points of the source have the same normal velocity
component, except for a 2-mm-wide strip where the
velocity is zero. This nonradiating strip simulates a
damaged region of the sensor (Fig. 2).

The physical experiment (the retrieval of the holo-
graphic data) was simulated in terms of Eq. (6). The
Rayleigh integral was calculated over a square grid
with a step of 0.05 mm on the radiator. The signal wave-
form was sampled at 33-ns intervals, which are much
shorter than the wave period and correspond to 20 sam-
ples per period. The calculations were also performed
at shorter time and space sampling intervals, which
however did not change the results; i.e., the error in cal-
culating the integral in Eq. (6) because of nonzero inte-
gration steps was negligible.

Typical fields calculated on the surface of the holo-
gram are shown in Figs. 3a and 3b. They represent the
spatial distributions of the peak pressure (a) for a planar
unfocused source and (b) for a source focused at a dis-
tance of 80 mm. The focusing was achieved by intro-
ducing appropriate delays into signals emitted from dif-
ferent points of the surface. In diagnostic sources, this
delay is created either with an acoustic lens or by intro-
ducing delays into pulses that excite different channels
of a multielement transducer. It can be seen that the dis-
tribution of the peak pressure over the measurement
surface cannot be used to detect and localize the defect
on the surface of the ultrasonic sensor in spite of the
fact that the distance between the surface and the sensor

is rather small (30 mm). As could be expected, the
focused source creates a more spatially localized field
distribution.

The peak pressure does not carry the full informa-
tion on the pulsed field. Even if different points of the
surface of the source emit pulses of the same waveform,
the shape of the acoustic wave at a distance from the
source will be different at different points. As an exam-
ple, Fig. 4 shows the waveform simulated at points 1, 2,
and 3 shown in Fig. 3a. It can be seen that, at the edge
of the measurement region, not only does the peak pres-
sure decrease, but also the signal becomes longer
(points 2 and 3). This is the reason why the time win-
dow must be longer than the initial signal; otherwise,
the holographic reconstruction error is large.

After the holographic data was calculated at the
points of the measurement grid, the initial acceleration
distribution over the surface of the source was recon-
structed from Eq. (5). The integrals in Eq. (5) were cal-
culated by the rectangle formula, and the time deriva-
tives of the waveform were approximated by central
differences. Note that the acoustic pressure in the inte-
grals is taken at times t + R/c, which in general causes
the discrete instants of the retarded time to shift from
the nodes of the initial time grid. Therefore, the pres-
sure should be resampled at each spatial point on the
plane of the hologram. To reduce the error, it is reason-
able to apply linear interpolation between two adjacent
points. Another side of the calculations is the necessity
to choose an optimal time window. Because the acous-
tic signal reaches the measurement region with a sub-
stantial delay, it is reasonable to start the recording
when the first signal arrives, i.e., within t0 = zH/c after
the beginning of the radiation. Recording of the signal
can be stopped when all possible signals pass through
the measurement region.

ΣS v = 0

ΣH

v(x, y, 0, t)

pH(x3', y3', zH, t)

pH(x2', y2', zH, t)

pH(x1', y1', zH, t)

xv

z

Fig. 2. Geometry of the numerical experiment under study. The rectangular source of acoustic pulses, part of which does not radiate
(the black strip), is shown at the left. The holographic data pH(r', t) is recorded at the nodes of the rectangular grid. The insets show
approximate waveforms at three nodes.
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Figures 3c and 3d show the result of holographic
reconstruction of the peak value of normal acceleration
on the surface of the source. It can be seen that the dis-
tribution of the oscillations on the surface of the source
can be reconstructed completely for both the unfocused

and focused sources. In particular, one can clearly see
the defect (the 2-mm-wide nonradiating strip) and the
boundaries of the source. Note again that the distribu-
tion of the peak pressure over the surface of the holo-
gram (Figs. 3a and 3b) is insufficient to reveal these fea-
tures of the surface vibrations of the source.

The quality of holographic reconstruction in the
physical experiment depends on the distance zH to the
source, the spatial sampling steps hx and hy, the dimen-
sions xmax and ymax of the measurement region, and the
number of N of measurement points. It is clear that the
best reconstruction quality is achieved for hx, hy  0
and xmax, ymax  ∞. In practice, an inevitable con-
straint is that the measurement time is limited; i.e., the
number N = (2xmax/hx)(2ymax/hy) of measurement points
is finite. At a given number of points, the measurement
step can be reduced only by reducing the measurement
area. Likewise, the measurement area can be increased
only through increasing the measurement step. In each
particular case, the optimal parameters can be chosen
by numerical simulation. The reconstruction quality
can be described in terms of a parameter that character-
izes the difference between the reconstructed distribu-
tion and the specified one: δw(r, t) = wreconstructed(r, t) –
wexact(r, t). As the parameter, we can choose, for exam-

1 2

3

10

5

0

–5

–10

10

5

0

–5

–10

y,
 m

m –15 –10 –5 0 5 10 15

–15 –10 –5 0 5 10 15

10

5

0

–5

–10

10

5

0

–5

–10

260

130

0

1.2

0.6

0

500

250

0

1.2

0.6

0

x, mm

Pl
an

ar

Fo
cu

se
d

Peak acceleration, arb. units

Peak acceleration, arb. units

(‡)

(c)

(b)

(d)

–15 –10 –5 0 5 10 15

Peak acceleration, arb. units

Peak acceleration, arb. units

Pl
an

ar

Fo
cu

se
d

–15 –10 –5 0 5 10 15
x, mm

x, mmx, mm

Fig. 3. Two-dimensional gray-scale distributions of the (a, b) peak pressure of the measured pulses and of the (c, d) peak value of
the reconstructed acceleration for (a, c) an unfocused planar source and (b, d) a planar source with a focal distance of 80 mm. The
distance between the source and the measurement grid is zH = 30 mm; the spatial sampling step is h = 0.5 mm. The dotted line is
the boundary of the projection of the source.

0

–150

2 4 6

–100

–50

0

50

100

150

Time, µs

Pressure, arb. units

1
2
3

Fig. 4. Acoustic pressure versus time at three measure-
ment points: (0, 0), (10, 0), and (10, 6.5). The respective
nodes of the measurement grid are shown in Fig. 3a. The
distance between the source and the measurement plane is
zH = 30 mm.



ACOUSTICAL PHYSICS      Vol. 52      No. 3      2006

TRANSIENT ACOUSTIC HOLOGRAPHY FOR RECONSTRUCTING THE PARTICLE VELOCITY 329

ple, the maximum value of the difference or its rms
value on the surface of the source. [19]. In this paper,
we do not use these criteria and limit our analysis to
qualitative description.

For example, Fig. 5 illustrates the effect of the step
size h = hx = hy on the quality of reconstruction of the
acceleration waveform at the center of the source
when the measurement region is sufficiently large
(120 × 80 mm2). The source in the examples illustrated
in Figs. 5 and 6 is unfocused. The results produced by
steps of h = 0.5 and 1.5 mm are indistinguishable; i.e.,
a step of about 1 mm is admissible. A further increase
in the step produces distortions. It can be seen that, at a
relatively large step of h = 2.5 mm, the signal waveform
is reconstructed with an error; in particular, a spurious
precursor appears before the true radiation starts, and
the peak pressure slightly increases. The effect of the
step of the spatial sampling of the measured field on the
quality of reconstruction of the two-dimensional distri-
bution of the peak pressure is illustrated in Fig. 6. It can
be seen that, at a step of h = 1 mm, the structure of oscil-
lations on the surface of the source is almost perfect
(Fig. 6a). The step h = 1.5 mm produces certain distor-
tions, but the reconstruction quality is still not bad (Fig.
6b). At the step h = 2 mm (Fig. 6c) and, especially, at h =
2.5 mm (Fig. 6d), the reconstruction quality cannot be
regarded as satisfactory.

Figure 7 illustrates the effect of the size of the mea-
surement region on the reconstructed acceleration. The
size of the region decreases from Fig. 7a to Fig. 7d. Cal-
culations show that, for the reconstruction to be ade-
quate, the measurement region must be somewhat
larger than the source (Figs. 7a–7c). However, at a
small size, the reconstruction can also be satisfactory.
In particular, in Fig. 7d, the size of the measurement
region (15 × 10 mm2) is chosen to be smaller than the
size of the source (20 × 13 mm2) and the transverse
dimension of the acoustic beam (see Fig. 3a). Neverthe-

less, the reconstructed distribution of the peak acceler-
ation can be used to estimate the size of the source and
to detect the defect in it. This capability of reconstruct-
ing from a fragment of the hologram is similar to the
corresponding property of optical holograms. The
reconstruction quality is determined by the wave size of
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the hologram: the greater the hologram in terms of the
wavelength, the higher the accuracy of the source
reconstruction achieved.

Let us finally note that the algorithm of transient
holography described above is a very promising tool for

studying the operation of ultrasonic transducers. It can
detect rather fine features of the space–time structure of
surface vibrations of acoustic sources.
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Fig. 7. Two-dimensional distribution of the peak acceleration
at a constant the step of h = 0.5 mm and a hologram size of
(a) 120 × 80, (b) 60 × 40, (c) 30 × 20, and (d) 15 × 10 mm2.
The dotted line is the boundary of the projection of the
source.


