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ABSTRACT 

Nanotechnology is rapidly embracing numerous areas of manufacturing and process 

engineering. New types of nanomaterials are being exploited to improve, for example, coating 

integrity, anti-corrosion characteristics and other features of fabricated components. Motivated 

by these developments, in the current study a mathematical model is developed for unsteady 

free-convective laminar flow of third-grade viscoelastic fluid (doped with nano-particles) from 

a semi-infinite vertical isothermal cylinder, as a model of thermal coating flow of a pipe 

geometry. Non-Newtonian behavior is simulated with the thermodynamically robust third 

grade Reiner-Rivlin model which accurately represents polymer fluids. Nanoscale effects are 

analyzed with the Buongiorno two-component nanofluid model. The governing equations 

comprise a set of highly coupled, nonlinear, multi-degree partial differential equations 

featuring viscoelastic and nanofluid parameters. An implicit Crank-Nicolson numerical scheme 

is implemented to solve the emerging nonlinear problem with appropriate initial and boundary 

conditions. Detailed graphical plots for velocity, temperature and nano-particle volume fraction 

are presented for a range of different parameters (i.e., third-grade fluid parameter, Brownian 

motion parameter, thermophoretic parameter, buoyancy ratio parameter, Lewis number). 

Additionally, distributions of   the heat transfer coefficient, skin friction and Sherwood number 

at the cylinder surface are visualized. Furthermore, streamlines, isotherms and nano-particle 

volume fraction contour plots are included for variation of the third-grade parameter. Contour 

plots for the third-grade nanofluid flow are found to deviate significantly from those 

corresponding to Newtonian nanofluids. Validation of the numerical solutions with earlier 

studies is also included.  

KEYWORDS: Third-grade viscoelastic nanofluid, Thermal convection, Cylinder, Thermophoresis, 

Brownian motion, Implicit numerical method, Contour plots, Industrial coating.  

 

NOMENCLATURE g′           acceleration due to gravity 
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 𝐺𝑟         Grashof number 𝑃𝑟         Prandtl number  𝐶𝑝          specific heat at constant pressure 𝑆ℎ         Sherwood number 𝐶𝑓          dimensionless average momentum transport coefficient 𝑁𝑢        average heat transport coefficient  𝑘           thermal conductivity  𝑟𝑜          radius of the cylinder   𝑡            dimensionless time 𝑡′           time 𝑃           fluid pressure 𝑇′           temperature  𝐷𝐵           coefficient of Brownian diffusion  𝐷𝑇           coefficient of thermophoresis diffusion  𝑇            dimensionless temperature 𝑡𝑟          trace  𝑥, 𝑟       axial and radial coordinates, respectively  𝑢, 𝑣       velocity components in (𝑥, 𝑟) coordinate system 𝑋, 𝑅       dimensionless axial and radial coordinate 

U, V      dimensionless velocity components in X, R directions, respectively 𝑁𝑟         buoyancy ratio parameter 𝑁𝑏        Brownian motion parameter 𝐿𝑒         Lewis number 𝑁𝑡         thermophoretic parameter  
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Greek letters 𝛽𝑇        volumetric thermal expansion coefficient  α         thermal diffusivity    β  non-dimensional third-grade fluid parameter 𝜌𝑓        density of base fluid (i.e., third-grade fluid) 𝜌𝑝        density of nanoparticles     ψ         stream function 𝜑         dimensional volume fraction   𝜇          viscosity of the nanofluid Θ         dimensionless volume fraction (nano-particle species concentration) 𝜗          kinematic viscosity 

Subscripts 

f, g       grid levels in (X, R) coordinate system 

w          wall conditions 

∞          ambient conditions 

Superscript 

h           time level 

 

1.INTRODUCTION 

Nanomaterials are rapidly infiltrating into diverse applications in modern technology. They 

include nano-composites [1], nano-polymers [2], nano-films [3] and many others. 

Nanomaterials are engineered at the nanoscale and feature embedding of nano-structures 
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(nano-shells, nano-particles, nano-wires etc) in materials.  In coating applications, nano-

polymers, which are nanofluids [4] comprising nano-particles suspended in polymer base 

fluids, have been shown to achieve improved resistance and durability compared with 

conventional coatings. Important studies in for example tribological nano-coatings include [5]. 

In thermal processing of nano-polymers for coating [6] for example, higher thermal 

conductivity is advantageous. Regular coating materials e.g. conventional polymers and also 

other heat transfer fluids (water, engine oil, ethylene glycol) are relatively inefficient thermally. 

Masuda et al. [7] demonstrated the increment in thermal efficiency via suspending ultra-fine 

solid particles in a regular fluid since solid particles (in particular metallic ones) have better 

thermal conductivities than liquids. They also showed that ultra-fine submicro-sized (nano) 

particles attain superior performance to conventional microscopic particles. Due to their 

extremely small sizes, nano-particles reduce clogging and provide a larger surface area for heat 

transfer. Nanofluids may be synthesized via produced by dispersing the nano-sized materials 

such as nanoparticles, nanosheet, nanotubes, nanofibers, nanowires, nanorods in regular 

(“base”) fluids. A nano-coating supplies more surface area, minimum surface energy, greater 

thermal conductivity, higher durability, more sustainability (it is more “green”) and is 

hydrophobic in nature. The performance of for example aerospace landing gear components, 

gas turbine blades, and heat exchangers can be enhanced using thermal nano-coating which 

increases the wear resistance, dissipates heating and extends the life of coatings and 

components via mitigation of oxidation, corrosion, abrasion and swarfing. Nano-coatings also 

add high hydrophobicity to the geometrical surface in direct contact with the fluid by elevating 

heat transfer performance and minimizing energy losses due to friction. Nano-coatings 

therefore impart significant tribological, coating and sustainable properties to working 

surfaces.  Xuan and Li [8] have used the hot wire method to show that thermal conductivity 

increases with greater volume fraction of nanoparticles. Xuan and Roetzel [9] have presented 
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a model for dispersion of thermal energy in nanofluids. Putra et al. [10] have investigated the 

effects of material type (silicon carbide, titanium oxide, zinc oxide etc), concentration of 

nanoparticles and also enclosure geometry on nanofluid performance. Timofeeva et al. [11] 

have studied the impact of different nanoscale parameters on the enhancement of thermal 

conductivity. Yu and Xie [12] elaborated in detail on the stability and synthesis of robust 

nanofluids. In parallel with these experimental studies, considerable progress in nanofluid 

mathematical modelling has also been made. Buongiorno [13] proposed a two-component 

homogenous model to discuss different slip mechanisms characterizing thermal convection in 

nanofluids in which Brownian motion and thermophoresis were identified as the key 

mechanisms for heat transfer enhancement. In this model momentum, energy and nano-particle 

species conservation are all considered. The alternative Tiwari-Das model [14] features only 

momentum and energy conservation equations although it does allow nano-particle volume 

fraction to be varied and also different nano-particle properties to be studied. Both models have 

been recently reviewed in spin coating and other engineering applications by Bég [15]. 

Buongiorno’s model however accommodates comfortably boundary-layer flows and has 

therefore been adopted in numerous analytical and computational studies of nanofluid transport 

in recent years. These include free convection boundary layer flows [16], time-dependent wavy 

enclosure flows [17], transient stretching sheet dynamics [18], high-temperature magnetized 

coating flows of cylinders [19], entropy generation towards heated surface [20], enrobing flows 

of spherical bodies [21], spin coating of spherical containers [22] and unsteady free convection 

boundary layers from an upright cylinder [23].   

The above studies have considered the nanofluid to be Newtonian. However, the classical fluid 

theory does not explain many characteristics of nanofluids fluids such as threshold stress, non-

linearity of creeping, relaxation of stress, normal stress differences, shear thickening/thinning, 

temperature-dependent viscosity and memory. Numerous experimental studies have 
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established that nanofluids exhibit strong non-Newtonian characteristics largely attributable to 

the presence of nano-particles which modify the shear stress-strain nature of the base fluid. For 

example, in coating systems, the nanofluid will experience large deformation or continous 

shearing. Nano-silica agglomeration may manifest in the form of a gel network in heated nano-

coatings during enrobing processes [24]. Viscoelastic and viscoplastic behaviour has also been 

observed in nanofluids in thermal polymer processing, as noted by Aoki et al. [25] (for carbon 

black nano-suspensions in polymers), Du et al. [26] (for polymer nanocomposite fillers and 

surface deposition materials), Elias et al. [27] (in immiscible polymer blends stabilized with 

nano-silica particles), and Chang et al. [28] (in copper oxide polymer-based nanofluids). To 

properly simulate the thermofluid dynamics of real nanofluids it is therefore judicious to utilize 

an appropriate non-Newtonian theory (i.e., the extension of classical fluid theory) coupled with 

the nanoscale model. Many elegant formulations exist for rheological modelling including rate 

type, integral type and differential type formulations which robustly capture the non-linear 

stress-strain characteristic of nanofluids. In recent years a diverse spectrum of such theories 

has been deployed to analyze rheological behavior of nanofluids in many different systems 

including coating dynamics and solar pumps. These include the Eringen micropolar model 

[29], Williamson elastic-viscous model [30], Ostwald-DeWaele power-law model 

(pseudoplastic and dilatant nanofluids) [31], second-order viscoelastic Reiner-Rivlin model 

[32], Casson viscoplastic (yield stress) models [33] and Reynolds exponential viscosity model 

[34].
 
The differential type fluid model (Reiner-Rivlin family of models) lucidly simulates the 

relationship between the stress history and deformation gradient which are significant in real 

polymer flows. One of the higher order classes of differential type is the third-grade fluid 

model. It can elucidate shear thinning (decrease in shear viscosity with increasing shear rate) 

or shear thickening (elevation in shear viscosity with increasing shear rate) behavior of 

polymers [35], [36] and features additional rheological material parameters compared with 
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other viscoelastic models such as the second-order model, Maxwell model or Oldroyd-B 

model. In addition to polymers, the third- grade model also quite accurately models the non-

Newtonian behavior of certain coolants and lubricants, slurries and biological liquids. Many 

heat transfer studies have featured the third-grade model including mixed convection 

stagnation flows [37], viscoelastic thermal convection in porous media [38], Hiemenz flow 

with thermal convection [39], boundary layer slip convection from an expanding sheet [40], 

magnetohydrodynamic (MHD) flow of unsteady convective third-grade fluid in a cylindrical 

system [41], time-dependent thermal convection from an upright cylinder [42], supercritical 

third-grade fluid heat transfer external to a vertical  cylinder [43] and very recently the 

hydromagnetic convection from an isothermal inverted with radiative flux [44]. A number of 

investigations have also addressed third-grade viscoelastic nanofluid flows. Farooq et al. [45] 

used an analytical approach to investigate buoyancy-driven two-layer channel flows of a third-

grade nanofluid. Nadeem and Saleem [46] considered boundary layer convection of third-grade 

nanofluids from a spinning cone. Khan et al. [47] employed the Buongiorno nanoscale and 

third-grade fluid models to simulate the transport phenomena from a convectively-heated 

stretching permeable surface. Qayyum et al. [48] reported on radiative flux and heat 

source/sink effects in hydromagnetic third-grade nanofluid flow. Hayat et al. [49] presented 

analytical solutions for chemically-reacting third-grade nanofluid from a rotating stretchable 

disk. These studies all confirmed the significant deviation of third-grade non-Newtonian 

thermal/flow characteristics from Newtonian results.  

In the present article, a theoretical investigation is conducted for time-dependent natural 

convection boundary layer flow of third-grade viscoelastic nanofluid external to a semi-infinite 

vertical isothermal cylinder. To the authors’ knowledge this problem which is of relevance in 

thermal nano-coating enrobing flows, has not yet been addressed in the literature. Non-

Newtonian behavior is simulated with the thermodynamically robust third-grade Reiner-Rivlin 
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model which accurately represents polymer fluids. Nanoscale effects are analyzed with the 

Buongiorno two-component nanofluid model. The non-dimensional flow model is solved 

under suitable initial and boundary conditions with the implicit Crank-Nicolson numerical 

scheme. Validation of the code with earlier Newtonian nanofluid simulations [e.g. Chamkha et 

al. [23]]. Graphical visualization of steady-state velocity, temperature and nano-particle 

volume fraction distributions are presented for a range of different parameters (i.e., third-grade 

fluid parameter, Brownian motion parameter, thermophoretic parameter, buoyancy ratio 

parameter, Lewis number). Additionally, distributions of the heat transfer coefficient, skin 

friction, Sherwood number, streamlines, isotherms and nano-particle volume fraction contours 

are included for variation of the third-grade parameter.  

2. NANOFLUID VISCOELASTIC FLOW MODEL  

The problem under consideration comprises the unsteady boundary layer flow of an 

incompressible, non-Newtonian (third-grade viscoelastic) nanofluid from a uniformly heated 

semi-infinite stationary vertical cylinder, as depicted in Fig. 1.  

 

Viscoelastic nanofluid 

Nano-particles 
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Fig. 1. Physical model for nano-polymer coating flow on a cylinder. 

A rectangular coordinate system describes the flow-domain, i.e., 𝑥-axis (axial coordinate) is 

orientated along the cylinder, and the 𝑟-axis (radial axis) is directed normal to the cylinder 

longitudinal axis. At the initiation of flow (i.e., at 𝑡′ = 0), the cylinder and third-grade 

nanofluid are maintained at the same temperature (i.e., at 𝑇∞′ ). A temperature difference is 

sustained with progress in time (𝑡′ > 0), so that cylinder surface temperature is enhanced to  𝑇𝑤′  and this constant temperature is preserved at all subsequent times.  

2.1 Formation of constitutive relation for third-grade fluid model: 

The constitutive relation defined by Cauchy’s stress-tensor (𝜏′) for third-grade viscoelastic 

fluids with thermodynamic compatibility (Fosdick and Rajagopal [35]) is as follows:  

𝜏′ = −𝑃𝐼 + 𝜇𝑆1′ + α1′ 𝑆2′ + α2′ 𝑆1′ 2 + β1′ 𝑆3′ + β2′ (𝑆1′𝑆2′ + 𝑆2′ 𝑆1′) + β3′ (𝑡𝑟𝑆1′ 2)𝑆1′               (1)   

Here α𝑙′  (𝑙 = 1,2) and β𝑙′  (𝑙 = 1,2,3) are material constants depending on temperature 

variations, −𝑃𝐼 refers to the spherical part of stress-tensor, and 𝑆𝑙′ (𝑙 = 1,2,3)  signify the 

Rivlin-Ericksen tensor matrices which are given through the equations: 

𝑆1′ = (𝛻𝑽)𝑇∗∗ + 𝛻𝑽  , 𝑆𝑙′ = 𝑑𝑆𝑙−1′𝑑𝑡 + (𝛻𝑽)𝑇∗∗𝑆𝑙−1′ + 𝑆𝑙−1′ (𝛻𝑽),   𝑙 = 2,3 ….              (2)  

where 𝑇∗∗, 𝑽 , 𝛻 correspond to the matrix transposition, velocity vector, gradient operator, 

respectively.  
𝑑𝑑𝑡  denotes the material derivative which is expressed as 

𝑑𝑑𝑡 (∙) = ( 𝜕𝜕𝑡 + 𝑽𝛻) (∙). 

Also, for the third-grade fluid model it is necessary to satisfy the following assumptions, i.e.,  

(i) ‘Clausius-Duhem’ inequality.  

(ii) least value of ‘Helmholtz free-energy’ at equilibrium.  
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The restrictions on third-grade fluid parameters satisfying the above assumptions are given by 

the following constraints, 

𝜇  0;       α1′   0;          |α1′ + α2′ | ≤ √24𝜇β3′                                                                         (3.a) 

β1′ = 0;               β2′ = 0;               β3 ′   0                                                                               (3.b) 

Further, fluid thermodynamics, boundedness and stability criteria are shown similar to second-

grade fluid (scrutinized by Dunn and Fosdick [50], for β3′ = 0, it provides constitutive relation 

for second-grade fluid). Fosdick and Straughan [51] showed that non-physical results can be 

induced for α1′ < 0 and asymptotic stability condition for  α1′  0.  

Substitution in Eqn. (1), leads to: 

𝜏′ = −𝑃𝐼 + 𝜇𝑆1′ + α1′ 𝑆2′ + α2′ 𝑆1′ 2 + β3′ (𝑡𝑟𝑆1′ 2)𝑆1′         

𝜏′ = −𝑃𝐼 + 𝑆                                                                                     (4a,b) 

Here  𝑆 is the extra stress-tensor i.e., 

𝑆 = 𝜇 1𝑟 𝜕𝜕𝑟 (𝑟 𝜕𝑢𝜕𝑟) + α1′ [1𝑟 𝜕2𝑢𝜕𝑟𝜕𝑡′ + 𝜕3𝑢𝜕𝑟2𝜕𝑡′ + 𝑣 𝜕3𝑢𝜕𝑟3 + 2 𝜕𝑣𝜕𝑟 𝜕2𝑢𝜕𝑟2 + 𝜕𝑢𝜕𝑟 𝜕2𝑣𝜕𝑟2 + 3 𝜕2𝑢𝜕𝑟2 𝜕𝑢𝜕𝑥 + 4 𝜕𝑢𝜕𝑟 𝜕2𝑢𝜕𝑥𝜕𝑟   

 + 𝑣𝑟 𝜕2𝑢𝜕𝑟2 + 3𝑟 𝜕𝑢𝜕𝑥 𝜕𝑢𝜕𝑟 + 𝑢𝑟 𝜕2𝑢𝜕𝑥𝜕𝑟 +𝑢 𝜕3𝑢𝜕𝑥𝜕𝑟2 + 1𝑟 𝜕𝑢𝜕𝑟 𝜕𝑣𝜕𝑟] + α2′ [2𝑟 𝜕𝑢𝜕𝑟 𝜕𝑣𝜕𝑟 + 2 𝜕2𝑢𝜕𝑟2 𝜕𝑢𝜕𝑥 + 2𝑟 𝜕𝑢𝜕𝑥 𝜕𝑢𝜕𝑟 + 

 2 𝜕2𝑣𝜕𝑟2 𝜕𝑢𝜕𝑟 + 4 𝜕𝑢𝜕𝑟 𝜕2𝑢𝜕𝑥𝜕𝑟 + 2 𝜕𝑣𝜕𝑟 𝜕2𝑢𝜕𝑟2] + β1′ [2𝑟 (∂𝑢∂𝑟)3 + (∂𝑢∂𝑟)2 (6 ∂2𝑢∂𝑟2 + 4 ∂2𝑢∂𝑥2) + 2 𝜕2𝑢𝜕𝑥𝜕𝑟 𝜕𝑢𝜕𝑥 𝜕𝑢𝜕𝑟] (5) 

where the velocity components 𝑢, 𝑣 are taken along 𝑥 , 𝑟 - directions, respectively. 

2.2 Flow analysis: 

The conservation equations for buoyancy-induced free-convective flow of third-grade 

nanofluid are based on all assumptions and standard definitions as mentioned earlier including 
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the Boussinesq approximation [52, 53]. The axisymmetric viscoelastic nanofluid thermal 

convection from the curved geometry (cylinder) is represented by the following momentum, 

energy and nano-particle species conservation equations featuring Brownian and 

thermophoresis effects [42, 43, 49, 54, 55, 56]: 

∂(𝑟𝑢)∂𝑥 + ∂(𝑟𝑣)∂𝑟 = 0           (6) 

𝜕𝑃𝜕𝑥 = −𝜌𝑓 (𝑢 𝜕𝑢𝜕𝑥 + 𝑣 𝜕𝑢𝜕𝑟 + 𝜕𝑢𝜕𝑡′) + g′[(1 − 𝜑∞)𝜌𝑓∞𝛽𝑇(𝑇′ − 𝑇∞′ ) − (𝜌𝑝 − 𝜌𝑓∞)(𝜑 − 𝜑∞)] + 𝑆    

                             (7) 

 
𝜕𝑃𝜕𝑟 = 0                 (8) 

𝑢 ∂𝑇′∂𝑥 + 𝑣 ∂𝑇′∂𝑟 + ∂𝑇′∂𝑡′ = α𝑟 ∂∂𝑟 (𝑟 ∂𝑇′∂𝑟 ) + 𝜔 [𝐷𝐵 𝜕𝜑𝜕𝑟 𝜕𝑇′𝜕𝑟 + 𝐷𝑇𝑇∞ (∂𝑇∂𝑟)2]                                           (9) 

𝑢 ∂𝜑∂𝑥 + 𝑣 ∂𝜑∂𝑟 + ∂𝜑∂𝑡′ = 𝐷𝐵 1𝑟 ∂∂𝑟 (𝑟 ∂𝜑∂𝑟 ) + 𝐷𝑇𝑇∞ 1𝑟 ∂∂𝑟 (𝑟 ∂𝑇′∂𝑟 )                             (10) 

The relevant initial and boundary conditions are imposed as:  

𝑡′ ≤  0:     𝑇′ = 𝑇∞′  ,    𝑣 = 0,   𝜑 = 𝜑∞,    𝑢 = 0                             for all 𝑥 and 𝑟 𝑡′ > 0:      𝑇′ = 𝑇𝑤′ ,     𝑣 = 0,   𝜑 = 𝜑𝑤,    𝑢 = 0                              at 𝑟 = 𝑟0                       (11) 

                 𝑇′ = 𝑇∞′ ,    𝑣 = 0,   𝜑 = 𝜑∞,      𝑢 = 0                                  at  𝑥 = 0                                  

                𝑇′ → 𝑇∞′ ,    𝑣 → 0,    𝜑 → 𝜑∞,    𝑢 → 0,    𝜕𝑢𝜕𝑟 → 0                 as  𝑟 → ∞   

The following dimensionless quantities are now introduced: 

𝑋 = 𝐺𝑟−1 𝑥𝑟0 ,        𝑅 = 𝑟𝑟0 ,             𝑈 = 𝐺𝑟−1𝑢𝑟0ϑ  ,                 𝑉 = 𝑣𝑟0ϑ  ,           𝑡 = ϑ𝑡′𝑟02  ,  
𝑇 = 𝑇′−𝑇∞′𝑇𝑤′ −𝑇∞′ ,      𝐺𝑟 = g′β𝑇𝑟03(𝑇𝑤′ −𝑇∞′ )(1−𝜑∞)𝜌𝑓∞ϑ2𝜌𝑓 ,     Θ = (𝜑−𝜑∞)(𝜑𝑤−𝜑∞)  ,     𝑃𝑟 = ϑ𝛼  ,     
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 α1 = α1∗𝜌𝑓𝑟02  ,            α2 = α2∗𝜌𝑓𝑟02  ,             β = β3∗𝜗𝜌𝑓𝑟04  ,          𝐿𝑒 = 𝜗𝐷𝐵  ,        𝜔 = (𝜌𝐶)𝑝(𝜌𝐶)𝑓 ,     
 𝑁𝑟 = (𝜌𝑝−𝜌𝑓∞)(𝜑𝑤−𝜑∞)𝜌𝑓∞β𝑇(𝑇𝑤′ −𝑇∞′ )(1−𝜑∞)  ,            𝑁𝑏 = (𝜌𝐶)𝑝𝐷𝐵(𝜑𝑤−𝜑∞)(𝜌𝐶)𝑓𝜗  ,        𝑁𝑡 = (𝜌𝐶)𝑝𝐷𝑇(𝑇𝑤′ −𝑇∞′ )(𝜌𝐶)𝑓𝜗𝑇∞′   (12) 

Implementing Eqn. (12) in the conservation Eqns. (6) - (10) and Eqn. (11), hence, the following 

system of non-dimensional governing equations emerges:  

 

𝜕𝑈𝜕𝑋 + 𝜕𝑉𝜕𝑅 + 𝑉𝑅 = 0                               (13) 

 𝑈 𝜕𝑈𝜕𝑋 + 𝑉 𝜕𝑈𝜕𝑅 + 𝜕𝑈𝜕𝑡 = 𝑇 − 𝑁𝑟Θ + 1𝑅 𝜕𝜕𝑅 (𝑅 𝜕𝑈𝜕𝑅) + α1 [ 𝜕3𝑈𝜕𝑅2𝜕𝑡 + 1𝑅 𝜕2𝑈𝜕𝑅𝜕𝑡 + 𝑈 𝜕3𝑈𝜕𝑋𝜕𝑅2 + 𝑉 𝜕3𝑈𝜕𝑅3 +
                         𝑈𝑅 𝜕2𝑈𝜕𝑋𝜕𝑅 + 𝑉𝑅 𝜕2𝑈𝜕𝑅2 + 2 𝜕𝑉𝜕𝑅 𝜕2𝑈𝜕𝑅2 + 3 𝜕2𝑈𝜕𝑅2 𝜕𝑈𝜕𝑋 + 𝜕𝑈𝜕𝑅 𝜕2𝑉𝜕𝑅2  + 4 𝜕𝑈𝜕𝑅 𝜕2𝑈𝜕𝑋𝜕𝑅 + 1𝑅 𝜕𝑈𝜕𝑅 𝜕𝑉𝜕𝑅  +  3𝑅 𝜕𝑈𝜕𝑋 𝜕𝑈𝜕𝑅] 

                         +α2 [2𝑅 𝜕𝑈𝜕𝑅 (𝜕𝑉𝜕𝑅 + 𝜕𝑈𝜕𝑋) + 2 𝜕2𝑈𝜕𝑅2 (𝜕𝑈𝜕𝑋 + 𝜕𝑉𝜕𝑅) + 2 𝜕𝑈𝜕𝑅 (𝜕2𝑉𝜕𝑅2 + 2 𝜕2𝑈𝜕𝑋𝜕𝑅)] 
                           +β [2(𝐺𝑟)2𝑅 (𝜕𝑈𝜕𝑅)3 + (𝜕𝑈𝜕𝑅)2 (6(𝐺𝑟)2 𝜕2𝑈𝜕𝑅2 + 4 ∂2𝑈∂𝑋2) + 2 𝜕2𝑈𝜕𝑋𝜕𝑅 𝜕𝑈𝜕𝑋 𝜕𝑈𝜕𝑅]                           (14) 

𝑈 𝜕𝑇𝜕𝑋 + 𝑉 𝜕𝑇𝜕𝑅 + 𝜕𝑇𝜕𝑡 = 1𝑃𝑟 (𝜕2𝑇𝜕𝑅2 + 1𝑅 𝜕𝑇𝜕𝑅) + 𝑁𝑏 𝜕Θ𝜕𝑅 𝜕𝑇𝜕𝑅 + 𝑁𝑡 (∂𝑇∂𝑅)2
                           (15) 

𝑈 𝜕Θ𝜕𝑋 + 𝑉 𝜕Θ𝜕𝑅 + 𝜕Θ𝜕𝑡 = 1𝐿𝑒 (𝜕2Θ𝜕𝑅2 + 1𝑅 𝜕Θ𝜕𝑅) + 1𝐿𝑒 𝑁𝑡𝑁𝑏 (𝜕2𝑇𝜕𝑅2 + 1𝑅 𝜕𝑇𝜕𝑅)               (16)

         

𝑡 ≤  0:   𝑇 = 0 ,    𝑉 = 0,   Θ = 0,     𝑈 = 0                           for all 𝑋 and 𝑅 

𝑡 >  0:  𝑇 = 1,      𝑉 = 0,   Θ = 1,    𝑈 = 0                           at  𝑅 = 1           

             𝑇 = 0 ,    𝑉 = 0,    Θ = 0,     𝑈 = 0                            at  𝑋 = 0                           (17) 

            𝑇 → 0 ,    𝑉 → 0,    Θ → 0,    𝑈 → 0, 𝜕𝑈𝜕𝑅 → 0             as  𝑅 → ∞                         
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3. FINITE DIFFERENCE SOLUTION PROCEDURE 

The non-dimensional model derived in Eqns. (13)-(17) does not yield analytical solutions. 

Recourse must therefore be made to a numerical scheme which provides an approximate 

solution with high accuracy. In this regard the implicit finite difference Crank-Nicolson scheme 

[57] is adopted which is unconditionally stable. 

3.1 Formation of discretized equations 

The discretized finite difference versions of Eqns. (13) - (16) are given in the Appendix 

section, Eqns. (A.1) - (A.4). The chosen flow domain for the boundary layer regime is  𝑋𝑚𝑖𝑛 =0,  𝑋𝑚𝑎𝑥 = 1, 𝑅𝑚𝑖𝑛 = 1 and 𝑅𝑚𝑎𝑥 = 20 (where 𝑅𝑚𝑎𝑥 implies to 𝑅 = ∞). The discretized 

Eqns. (A.3) (or (A.4)) and (A.2) at specific ‘𝑓 − level’ and at any mesh point (𝑓, 𝑔) constitute 

a ‘tridiagonal’ and ‘penta-diagonal’ system of equations which are respectively represented as:    

𝐴1δ𝑓,𝑔−1ℎ+1 + 𝐵1δ𝑓,𝑔ℎ+1 + 𝐶1δ𝑓,𝑔+1ℎ+1 = 𝐷1                                                                                           (18)       

𝐴2γ𝑓,𝑔−2ℎ+1 + 𝐵2γ𝑓,𝑔−1ℎ+1 + 𝐶2γ𝑓,𝑔ℎ+1 + 𝐷2γ𝑓,𝑔+1ℎ+1 + 𝐸2γ𝑓,𝑔+2ℎ+1 = 𝐹2                                            (19)          

This system of Eqs. (18) and (19) at (h+1)th level are solved using ‘tridiagonal’ [57] and ‘penta-

diagonal’ [58] algorithms, where 𝛿 and 𝛾 specify 𝑇 (or Θ) and U, respectively. Further details 

on this computational procedure are provided in Reddy et al. [42], [43]. Initialization of the 

iterative scheme starts with the computation of volume fraction (nano-particle species 

concentration function, Θ) by solving discretized volumetric Eqn., followed by computation of 

the temperature, T, which is solved via thermal Eqn.. Thereafter, the solution procedure is 

carried out to determine the velocity components by solving the momentum and mass 

conservative equations.  
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3.2 Validation of the Crank-Nicolson numerical scheme 

Validation of the Crank-Nicolson numerical solutions is now described. This is achieved with 

a two-tier approach. Firstly, mesh independence must be confirmed. Secondly benchmarking 

with previously published results is also conducted for the special case of Newtonian thermal 

convection nanofluid flow from a vertical cylinder against the results of Chamkha et al. [23] 

and also the purely Newtonian case of Rani and Kim [59] (neglecting nano-particle effects).  

 

Mesh Independence 

For the current study, an economically consistent grid-system has been proposed by conducting 

the ‘grid-independency test’ for chosen grid-sizes. Table 1 provides the suitable grid-size, i.e., 

100 X 500 which successfully achieves accurate results (further mesh refinement does not yield 

any significant improvement in accuracy). Similarly, ‘time-independency test’ provides the 

optimal specific time-step size Δ𝑡 (𝑡 = ℎΔ𝑡, ℎ = 0, 1, 2, … ) = 0.01 as elucidated in Table 2. 

For both tests nano effects are fixed i.e., 𝑁𝑏 = 𝑁𝑡 = 𝑁𝑟 = 1.0, 𝐿𝑒 = 10.0.         
 

Benchmark with earlier special cases  

The radial flow profiles of 𝑈, 𝑇, and Θ are plotted graphically. A detailed comparative study 

of fluid flow with previous results is conducted to ensure the exactness of the solution of current 

flow-model.  

• Firstly only Newtonian fluid flow (i.e., α1 = α2 = β = 0, Nb=Nt=0 with the nano-

particle species Eqn. (16) is neglected) is considered by ignoring the nanofluid and third 

grade viscoelastic parameters in the present model and matching with the results of 
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Rani and Kim [59]. The comparison (refer to Fig. 2) confirms the high accuracy of the 

Crank-Nicolson finite difference numerical code.  

• Secondly a Newtonian nanofluid is considered wherein nanoparticle effects are studied 

whereas viscoelastic parameters are negated (i.e., α1 = α2 = β = 0, and the nano-

particle species Eqn. (16) is included) and in this case, we verify the solutions with 

those in Chamkha et al. [23]. Again, very close correlation is achieved, as depicted in 

Fig. 3. 

The above comparative studies provide high levels of confidence in the accuracy of the 

adopted numerical method (Crank-Nicolson scheme).  

 

Table1. Grid independent test: 

Grid size 𝑪𝒇 values for 𝑷𝒓 = 0.7, 𝑮𝒓 

= 10.0, 𝛂𝟏 = 𝛂𝟐 = 𝛃 = 𝟎. 𝟐 

𝑵𝒖 values for 𝑷𝒓 = 0.7, 𝑮𝒓 = 10.0, 𝛂𝟏 = 𝛂𝟐 = 𝛃 = 𝟎. 𝟐 

𝑺𝒉 values for 𝑷𝒓 = 

0.7, 𝑮𝒓 = 10.0, 𝛂𝟏 = 𝛂𝟐 = 𝛃= 𝟎. 𝟐 

25X 125 0.15313330 0.33480950 1.64730800 

50 X250 0.15350400 0.33116020 1.69171300 

100X500 0.15362190 0.32950480 1.71289300 

200X1000 0.15376790 0.32887780 1.71927600 
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Table2. Time-independence test: 

Time step 

size (∆𝒕 ) 

𝑪𝒇 values for 𝑷𝒓 = 0.7, 

 𝑮𝒓 = 10.0, 𝛂𝟏 = 𝛂𝟐 = 𝛃 = 𝟎. 𝟐 

𝑵𝒖 values for 𝑷𝒓 = 0.7, 𝑮𝒓 = 10.0, 𝛂𝟏 = 𝛂𝟐 = 𝛃 = 𝟎. 𝟐 

𝑺𝒉 values for 𝑷𝒓 =  

0.7, 𝑮𝒓 = 10.0, 𝛂𝟏 = 𝛂𝟐 = 𝛃= 𝟎. 𝟐 

0.1 0.15362970 0.32961000 1.71302400 

 

0.08 0.15363250 0.32961430 1.71304800 

 

0.05 0.15362810 0.32958360 1.71298500 

 

0.03 0.15362590 0.32956800 1.71295300 

 

0.01 0.15362190 0.32950480 1.71289300 

 

 

4. GRAPHICAL RESULTS AND DISCUSSION 

The steady-state behaviour of velocity, temperature and volume fraction of the third-

grade nanofluid are studied considering thermophoresis and Brownian effects. Also, the impact 

of third-grade fluid parameter at constant Grashof number on the flow characteristics under 

both transient and steady-state conditions are visualized graphically. Transient results of skin-

friction, heat transfer rate and Sherwood number for variation of a third-grade parameter are 

additionally presented. In this respect, the following subsections provide a comprehensive 

discussion. 

Flow profiles for variation of third-grade parameter (𝛽)  

At a location near to the hot cylindrical wall, steady and unsteady flow profiles are computed 

for the effect of different values of a third-grade parameter (𝛽). Figs. 4, 5 and 6 display the 
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effect of 𝛽 on velocity, temperature and volume fraction at different times. From Fig. 4, it is 

observed that the transient velocity of the fluid at (1, 1.912) decreases as β increases. Figures 

5 & 6 show that temperature and volume fraction of the fluid at (1, 1.152) increase for 

amplifying values of β. It is known that third-grade fluid parameter describes the viscoelastic 

effect in polymers (i.e. the relative contribution of viscous and elastic forces) [35, 36]. As it 

increases, the viscosity dominates and the elastic nature of the fluid recedes which manifests 

in a deceleration in the nano-polymer flow. The decrease in the velocity of the nano-polymer 

fluid is clearly captured in Fig. 4. Also, due to high viscous and lower elastic effects, there will 

be enhanced collisions of the fluid particles (elevated momentum diffusion) which will result 

in heating of the nano-polymer. Temperatures are therefore elevated with greater third-grade 

material parameter values (refer Fig. 5). Similarly, this heating of the boundary layer 

(associated with enhanced thermal diffusion) will simultaneously encourage nano-particle 

diffusion which leads to an elevation in nanoparticle volume fraction magnitudes (Fig. 6). It is 

noticeable in each profile that 𝑈, 𝑇, and Θ - curves are overlapped. Initially heat conduction 

dominates over the convection effect and after particular time intervals, the curves deviate from 

each other showing the buoyancy-induced convection flow takes over i.e. thermal convection 

current swamp the influence of thermal conduction.     

Figures 7, 8 & 9 depict the steady-state velocity, temperature and volume fraction profiles at 

the location, 𝑋 =  1.0. Figure 7 shows steady-state velocity curves for variations of 𝛽. The 

shape of all curves for different β values is similar and is characterized by a particular peak 

value (refer Fig. 7). However, the location of this peak is displaced further from the cylinder 

surface with increasing third-grade material parameter values. In the flow-region 0 <  𝑅 < 4.8, the velocity (𝑈) profile shows a decreasing trend and this is subsequently reversed further 

from the cylinder surface. A decrement in the fluid velocity is computed which is similar to the 

response in the transient condition. From Fig. 8, it is noticeable that, temperature curves start 
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from boundary condition 𝑇 =  1 and run radially downwards to 𝑇 =  0, i.e., free stream 

temperature. Since, amplifying β values promotes the viscoelastic behavior of the third-grade 

nanofluid, this exacerbates collisions of fluid molecules and increases the temperature value 

and also thickens the thermal boundary layer. Similarly, nanoparticle volume fraction curves 

also follow the same trend as temperature profile and a thickening of the nanoparticle volume 

fraction (species) boundary layer is also induced with increasing β (refer Fig. 9).    

Effect of Brownian motion parameter 

The random motion of the nanoparticles within the base fluid, i.e., ‘third-grade fluid’ is 

characterized as Brownian motion. It can be considered as a measure of the concentration 

gradient of nanoparticles. Here Figs 10, 11 & 12 illustrate the effect of Brownian motion 

parameter on non-dimensional velocity, temperature and volume fraction, respectively. As 𝑁𝑏 

(Brownian motion parameter) increases the disordered motion of nanoparticle increases via 

ballistic collisions and therefore particles move with greater velocity. It is evident from Fig. 10 

that steady-state velocity is an increasing function of 𝑁𝑏. The pattern of velocity curves is the 

same irrespective of the value of Nb i.e. profiles ascend from the no-slip wall value, 𝑈 =  0, 
accelerate to 𝑈max then drop to 𝑈 =  0 at steady-state. The magnitude of 𝑈max is enhanced with 

elevation in 𝑁𝑏. Also, the intensification in disordered motion corresponding to larger Nb 

values increases the collisions of nanoparticles. This results in heating of the nano-polymer 

regime which manifests in elevation in temperature and significant thickening of the thermal 

boundary layer with greater 𝑁𝑏 (Fig. 11).  Brownian motion clearly encouraged thermal 

diffusion in viscoelastic nanofluids. All temperature (𝑇-) curves initialize with 𝑇 =  1 

(maximum temperature at steady condition) then falls drastically to 𝑇 =  0. Figure 12 shows 

that nano-particle volume fraction (concentration) i.e. Θ – curves also follow similar pathways 

to the temperature curves, although Θ magnitudes are markedly less than temperature 
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magnitudes. The randomness of nanoparticles therefore also impacts on the volume fraction of 

nanoparticle within third-grade fluid i.e., as 𝑁𝑏 rises volume fraction decreases. This is also 

consistent with the original physics underlying the Buongiorno model since larger Nb values 

correspond to larger sized nano-particles indicating a reduction in volume fraction. 

Effect of thermophoresis parameter 

The temperature gradient produced due to density difference is more prominent in natural 

convective flows. This temperature gradient enhances the thermophoresis forces and certainly 

impacts on the free-convective flow. Thermophoretic forces drive the migration of nanoparticle 

across the nanofluid. Thermophoresis is a force generated by the temperature gradient between 

the heated nanofluid and cooler boundary and this mobilizes transport of nano-particles  

towards the colder boundary.The velocity profile evidently exhibits an increasing trend with 

greater values of thermophoresis parameter (𝑁𝑡) (see Fig. 13). The magnitude of maximum 

velocity increases for rising values of 𝑁𝑡. Greater 𝑁𝑡 values promote the fast movement of 

nanoparticles, which in turn, increases the temperature, i.e., the thermal boundary layer 

thickens at a steady-state condition which is reflected in Fig. 14. Similarly, this thermophoretic 

forces also influences volume fraction of the nanoparticles. Referring to Fig. 15 it is apparent 

that higher 𝑁𝑡 is associated with a lower volume fraction of nanoparticle and this observation 

is reversed after 𝑅 =  2.8. From all graphs for variation of 𝑁𝑡, it is observed that the change 

in flow variables remain almost invariable after 𝑁𝑡 =  3.      

Effect of Lewis number  

In thermo-solutal transport phenomena problems, Lewis number signifies the relation between 

thermal and mass diffusivities i.e. the rates at which heat and species (nano-particles) diffuse 

in the base fluid (polymer). From Fig. 16, it is to be noted that as Lewis number increases, the 

flow is accelerated i.e. the maximum velocity attains a higher value. However, the converse   
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effect is induced in the temperature and volume fraction profiles. Both temperature and nano-

particle volume fraction are depressed with greater Lewis number. There is therefore a 

reduction in both thermal and nano-particle species (concentration) boundary layer thicknesses 

with higher values of 𝐿𝑒 (Lewis number). It is also noteworthy that nano-particle volume 

fraction (Θ) profiles (Fig. 18) are consistently lower than temperature (𝑇) profiles (Fig. 17). 

However the effect of 𝐿𝑒 is more prominent on nano-particle volume fraction than on 

temperature.   

Effect of Buoyancy ration parameter  

Figures 19, 20 & 21 illustrate the evolution in non-dimensional flow variables (velocity, 

temperature and volume fraction respectively) with variation buoyancy ratio parameter (𝑁𝑟).  

The impact of 𝑁𝑟 on flow variables is weaker than that of the other parameters examined earlier 

(i.e. 𝑁𝑏, 𝑁𝑡 and β). Figure 19 depicts the influence of 𝑁𝑟 on velocity profile at the steady-state 

condition. It is noticeable that as 𝑁𝑟 increases, the velocity profile exhibits a decreasing trend. 

In other words, with greater thermal buoyancy force relative to nano-particle species buoyancy 

force (both forces are equivalent when Nr = 1) the boundary layer flow is decelerated, and 

momentum boundary layer thickness is increased. Increasing  𝑁𝑟 however induces a very weak 

elevation in temperature,  𝑇 (see Fig. 20) and nano-particle volume fraction, Θ (see Fig. 21) 

profiles, i.e., as 𝑁𝑟 values upsurge both thermal and nano-particle concentration boundary layer 

thicknesses are weakly increased. Generally lower magnitudes of volume fraction profile are 

computed relative to temperature over the same increment in buoyancy ratio parameter.  

Coefficient of skin-friction, heat transfer rate and nano-particle Sherwood number  

In coating dynamics and materials processing, skin friction coefficient (𝐶𝑓̅̅ ̅) (Fig. 22), wall heat 

transfer rate (𝑁𝑢̅̅ ̅̅ ) (Fig. 23) and nano-particle wall mass transfer rate i.e. Sherwood number 

(𝑆ℎ) (Fig. 24) are important design quantities. Here, their non-dimensional forms are given by:  
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 𝐶𝑓̅̅ ̅ = ∫ (𝜕𝑈𝜕𝑅)𝑅=1 𝑑𝑋10 ,  𝑁𝑢̅̅ ̅̅ = − ∫ (𝜕𝑇𝜕𝑅)𝑅=1 𝑑𝑋10    &    𝑆ℎ = − ∫ (𝜕Θ𝜕𝑅)𝑅=1 𝑑𝑋10                       (20)                                            

The effect of third-grade fluid parameter 𝛽 on skin-friction is depicted in Fig. 22. It is observed 

that as 𝛽 is raised,  𝐶𝑓̅̅ ̅ values decrease i.e. the flow is decelerated which concurs with the earlier 

velocity distribution results in Fig. 4. As viscoelastic nature (𝛽) of the nanofluid increases, the 

boundary layer flow is impeded which decreases fluid velocity adjacent to the heated cylinder 

surface (wall).  Figure 23 depicts the  𝑁𝑢̅̅ ̅̅  profiles at  𝑅 = 1 (hot wall).  At 𝑡 =  0 (starting 

time), all 𝑁𝑢̅̅ ̅̅  curves follow the same pattern i.e. they descend from a peak and thereafter ascend 

to reach the steady-state with subsequent time elapse. 𝑁𝑢̅̅ ̅̅  is decreasing function for rising 

values of 𝛽. Higher β values signify more nano-particle collisions due to the viscoelastic 

behavior of third-grade nanofluid and this elevates the temperature of the nanofluid regime 

which is evident from Fig. 5. The heating of the boundary layer implies a decrease in the rate 

of heat transfer to the cylinder surface i.e. a reduction in  𝑁𝑢̅̅ ̅̅  (see Fig. 23). Fig. 24 shows the 

evolution in Sherwood number with variation of β at 𝑅 = 1. Since greater third-grade 

viscoelastic material parameter values are associated with an enhancement in nano-particle 

volume fraction magnitudes (Fig. 6), the rate of nano-particle species transfer to the wall is 

reduced. Sherwood number magnitudes are therefore decreased with greater values of 𝛽. Again 

all Sherwood number profiles descend monotonically until the steady-state magnitudes are 

attained.  

Isotherms and Stream function 

Isotherms are drawn in a two-dimensional rectangular plane (i.e., 0 < 𝑋 < 1, 0 < 𝑅 < 6) for 

different values of the third-grade fluid parameter, 𝛽 . Isotherms signify the temperature values 

in the whole flow-domain (two-dimensional plane) within the thermal boundary layer. From 

Fig. 25, it is evident that as third-grade fluid parameter values amplify isotherms are slightly 
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displaced away from the heated cylinder surface.   A dimensionless stream function (𝜓) is used 

to express the hydrodynamics of the nanofluid and must satisfy the equation of mass 

conservation (refer to Eq. 13). The stream function can be defined with velocity vectors in the 

two-dimensional plane as:   𝑈 =  (1𝑅 ∂𝜓∂𝑅)     and      𝑉 = − (1𝑅 ∂𝜓∂𝑋)                                     (21) 

Equation (21) yields: 

𝜕2𝜓𝜕𝑅2 + 𝜕2𝜓𝜕𝑋2 = 𝑅 (𝜕𝑈𝜕𝑅 − 𝜕𝑉𝜕𝑋) + 𝑈                 (22) 

A second-order central difference formula is adopted to calculate 𝜓.  Streamlines are drawn in 

a two-dimensional rectangular plane, i.e., 0 < 𝑋 < 1, 0 < 𝑅 < 6 for the variation of third-

grade fluid parameter in Fig. 26. Here, the deviation of streamlines away from the heated 

surface is clearly observed with increasing values of the third-grade material parameter, β.  

Contour graphs  

The contour lines are drawn in a two-dimensional rectangular coordinate plane, i.e., 0 < 𝑋 <1, 0 < 𝑅 < 6 for all flow variables (𝑈, 𝑇 & 𝛩) of third-grade nanofluid (Fig. 27 (a)) and 

Newtonian nanofluid (Fig. 27 (b)). These contour lines drawn for third-grade nanofluid are 

moving away from the hot cylindrical wall noticeably as compared to the Newtonian nanofluid, 

i.e., shifting of velocity, temperature and nano-particle volume fraction contours away from 

the heated cylinder surface for the third-grade nanofluid is observed. These observations 

confirm that non-Newtonian nanofluids (i.e. third-grade viscoelastic characteristics) induce a 

measurable deviation in thermo-solutal characteristics relative to Newtonian nanofluids. 

 

5. CONCLUSIONS  
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Motivated by nano-polymeric thermal coating dynamics, in the current article a mathematical 

model has been presented for unsteady free-convective laminar flow of third-grade viscoelastic 

nanofluid from a semi-infinite vertical isothermal cylinder. Non-Newtonian behavior has been 

modelled with the thermodynamically robust third-grade Reiner-Rivlin model which 

accurately simulates polymer rheology. Nanoscale effects has been studied with the 

Buongiorno two-component nanofluid model which features Brownian motion and 

thermophoresis effects. The non-dimensional governing highly coupled, nonlinear, multi-

degree partial differential equations for mass, momentum, energy and nano-particle species 

(volume fraction) conservation have been solved with an implicit Crank-Nicolson numerical 

scheme subject to appropriate initial and boundary conditions. Validation of the numerical 

solutions with earlier published results on Newtonian and Newtonian nanofluids has been 

included. Mesh and time-independence numerical grid studies have also been conducted. The 

present computations have shown that: 

 •   With increasing third-grade viscoelastic material parameter or buoyancy ratio 

parameter, the velocity decreases whereas temperature and nano-particle volume fraction 

increase.  

• For higher values of Brownian motion parameter, steady-state velocity and temperature 

increase whereas steady-state nano-particle volume fraction decreases. 

• With greater values of thermophoresis parameter, thicker velocity (or temperature) and 

thinner nano-particle species boundary layers are observed.    

• With increasing Lewis number, non-dimensional steady-state temperature and nano-

particle volume fraction are decreased whereas velocity is enhanced.  

• For rising values of the third-grade parameter, wall rate of heat transfer (Nusselt 

number), skin friction and wall nano-particle mass transfer rate (Sherwood number) are 

diminished at the heated cylindrical surface (wall).  
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• A displacement in velocity, temperature and nano-particle volume fraction contours is 

observed away from the heated cylinder surface for the third-grade nanofluid relative 

to the Newtonian case.  

• Generally, the results obtained for third-grade viscoelastic nanofluids vary considerably 

from those obtained for Newtonian nanofluids. 

The current study has neglected viscous dissipation effects and has been confined to 

Boussinesq flow. Future investigations will consider dissipative non-Boussinesq [60] coating 

flows of non-Newtonian nanofluids and will be communicated imminently. 
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APPENDIX 

The discretized finite difference equations for the Eqs. (13) - (16) are as follows: 

𝑈𝑓,𝑔ℎ+1−𝑈𝑓−1,𝑔ℎ+1 +𝑈𝑓,𝑔ℎ −𝑈𝑓−1,𝑔ℎ2∆𝑋 + 𝑉𝑓,𝑔ℎ+1−𝑉𝑓,𝑔−1ℎ+1 +𝑉𝑓,𝑔ℎ −𝑉𝑓,𝑔−1ℎ2∆𝑅 + 𝑉𝑓,𝑔ℎ+1(𝐽𝑅) = 0                       (A.1)                 

         

𝑈𝑓,𝑔ℎ+1−𝑈𝑓,𝑔ℎ∆𝑡 + 𝑈𝑓,𝑔ℎ (𝑈𝑓,𝑔ℎ+1−𝑈𝑓−1,𝑔ℎ+1 +𝑈𝑓,𝑔ℎ −𝑈𝑓−1,𝑔ℎ )2∆𝑋 + 𝑉𝑓,𝑔ℎ (𝑈𝑓,𝑔+1ℎ+1 −𝑈𝑓,𝑔−1ℎ+1 +𝑈𝑓,𝑔+1ℎ −𝑈𝑓,𝑔−1ℎ )4∆𝑅   

 = 𝑇𝑓,𝑔ℎ +𝑇𝑓,𝑔ℎ+12 − 𝑁𝑟 Θ𝑓,𝑔ℎ +Θ𝑓,𝑔ℎ+12 + 𝐽𝑅 (𝑈𝑓,𝑔+1ℎ+1 −𝑈𝑓,𝑔−1ℎ+1 +𝑈𝑓,𝑔+1ℎ −𝑈𝑓,𝑔−1ℎ )4∆𝑅  
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+ (𝑈𝑓,𝑔−1ℎ+1 −2𝑈𝑓,𝑔ℎ+1+𝑈𝑓,𝑔+1ℎ+1 +𝑈𝑓,𝑔−1ℎ −2𝑈𝑓,𝑔ℎ +𝑈𝑓,𝑔+1ℎ )2(∆𝑅)2 +α1 [(𝑈𝑓,𝑔−2ℎ+1 −2𝑈𝑓,𝑔ℎ+1+𝑈𝑓,𝑔+2ℎ+1 −𝑈𝑓,𝑔−2ℎ +2𝑈𝑓,𝑔ℎ −𝑈𝑓,𝑔+2ℎ )4(∆𝑅)3(∆𝑡)   

+ (𝑈𝑓,𝑔+1ℎ+1 −𝑈𝑓,𝑔−1ℎ+1 +𝑈𝑓,𝑔+1ℎ −𝑈𝑓,𝑔−1ℎ )2(∆𝑅)(∆𝑡) + 𝑉𝑓,𝑔ℎ   (𝑈𝑓,𝑔+2ℎ+1 −2𝑈𝑓,𝑔+1ℎ+1 +2𝑈𝑓,𝑔−1ℎ+1 −𝑈𝑓,𝑔−2ℎ+1 +𝑈𝑓,𝑔+2ℎ −2𝑈𝑓,𝑔+1ℎ +2𝑈𝑓,𝑔−1ℎ −𝑈𝑓,𝑔−2ℎ )4(∆𝑅)3   

+ (𝑉𝑓,𝑔+1ℎ −𝑉𝑓,𝑔−1ℎ )2∆𝑅 (𝑈𝑓,𝑔−1ℎ+1 −2𝑈𝑓,𝑔ℎ+1+𝑈𝑓,𝑔+1ℎ+1 +𝑈𝑓,𝑔−1ℎ −2𝑈𝑓,𝑔ℎ +𝑈𝑓,𝑔+1ℎ )(∆𝑅)2               

+3 (𝑈𝑓,𝑔ℎ −𝑈𝑓−1,𝑔ℎ )(∆𝑋) (𝑈𝑓,𝑔−1ℎ+1 −2𝑈𝑓,𝑔ℎ+1+𝑈𝑓,𝑔+1ℎ+1 +𝑈𝑓,𝑔−1ℎ −2𝑈𝑓,𝑔ℎ +𝑈𝑓,𝑔+1ℎ )2(∆𝑅)2 + (𝑉𝑓,𝑔−1ℎ −2𝑉𝑓,𝑔ℎ +𝑉𝑓,𝑔+1ℎ )4(∆𝑅)2   

(𝑈𝑓,𝑔+1ℎ+1 −𝑈𝑓,𝑔−1ℎ+1 +𝑈𝑓,𝑔+1ℎ −𝑈𝑓,𝑔−1ℎ )(∆𝑅) + (𝑈𝑓,𝑔+1ℎ −𝑈𝑓,𝑔−1ℎ )∆𝑅 (𝑈𝑓,𝑔+1ℎ+1 −𝑈𝑓−1,𝑔−1ℎ+1 +𝑈𝑓,𝑔+1ℎ −𝑈𝑓−1,𝑔−1ℎ )2(∆𝑋)(∆𝑅) +
(𝐽𝑅)𝑉𝑓,𝑔ℎ (𝑈𝑓,𝑔−1ℎ+1 −2𝑈𝑓,𝑔ℎ+1+𝑈𝑓,𝑔+1ℎ+1 +𝑈𝑓,𝑔−1ℎ −2𝑈𝑓,𝑔ℎ +𝑈𝑓,𝑔+1ℎ )2(∆𝑅)2 +
(𝐽𝑅)𝑈𝑓,𝑔ℎ (𝑈𝑓,𝑔+1ℎ+1 −𝑈𝑓−1,𝑔+1ℎ+1 −𝑈𝑓,𝑔−1ℎ+1 +𝑈𝑓−1,𝑔−1ℎ+1 +𝑈𝑓,𝑔+1ℎ −𝑈𝑓−1,𝑔+1ℎ −𝑈𝑓,𝑔−1ℎ +𝑈𝑓−1,𝑔−1ℎ ) 4(∆𝑅)(∆𝑋) +
3(𝐽𝑅) (𝑈𝑓,𝑔ℎ −𝑈𝑓−1,𝑔ℎ )(∆𝑋) (𝑈𝑓,𝑔+1ℎ+1 −𝑈𝑓,𝑔−1ℎ+1 +𝑈𝑓,𝑔+1ℎ −𝑈𝑓,𝑔−1ℎ )4(∆𝑅) + 3(𝐽𝑅)8 (𝑉𝑓,𝑔+1ℎ −𝑉𝑓,𝑔−1ℎ )∆𝑅 (𝑈𝑓,𝑔+1ℎ+1 −𝑈𝑓,𝑔−1ℎ+1 +𝑈𝑓,𝑔+1ℎ −𝑈𝑓,𝑔−1ℎ )(∆𝑅)2 ] +
α2 [(𝐽𝑅) (𝑉𝑓,𝑔+1ℎ −𝑉𝑓,𝑔−1ℎ )∆𝑅 (𝑈𝑓,𝑔+1ℎ+1 −𝑈𝑓,𝑔−1ℎ+1 +𝑈𝑓,𝑔+1ℎ −𝑈𝑓,𝑔−1ℎ )∆𝑅 +  (𝐽𝑅) (𝑈𝑓,𝑔+1ℎ+1 −𝑈𝑓,𝑔−1ℎ+1 +𝑈𝑓,𝑔+1ℎ −𝑈𝑓,𝑔−1ℎ )2(∆𝑅)   

(𝑈𝑓,𝑔ℎ −𝑈𝑓−1,𝑔ℎ )(∆𝑋) + (𝑈𝑓,𝑔ℎ −𝑈𝑓−1,𝑔ℎ )(∆𝑋) (𝑈𝑓,𝑔−1ℎ+1 −2𝑈𝑓,𝑔ℎ+1+𝑈𝑓,𝑔+1ℎ+1 +𝑈𝑓,𝑔−1ℎ −2𝑈𝑓,𝑔ℎ +𝑈𝑓,𝑔+1ℎ )(∆𝑅)2 + (𝑈𝑓,𝑔+1ℎ+1 −𝑈𝑓,𝑔−1ℎ+1 +𝑈𝑓,𝑔+1ℎ −𝑈𝑓,𝑔−1ℎ )2∆𝑅   

(𝑉𝑓,𝑔−1ℎ −2𝑉𝑓,𝑔ℎ +𝑉𝑓,𝑔+1ℎ )(∆𝑅)2 + (𝑈𝑓,𝑔+1ℎ −𝑈𝑓,𝑔−1ℎ )2(∆𝑅) (𝑈𝑓,𝑔+1ℎ+1 −𝑈𝑓−1,𝑔−1ℎ+1 +𝑈𝑓,𝑔+1ℎ −𝑈𝑓−1,𝑔−1ℎ )(∆𝑋)(∆𝑅) + (𝑉𝑓,𝑔+1ℎ −𝑉𝑓,𝑔−1ℎ )2(∆𝑅)  

(𝑈𝑓,𝑔−1ℎ+1 −2𝑈𝑓,𝑔ℎ+1+𝑈𝑓,𝑔+1ℎ+1 +𝑈𝑓,𝑔−1ℎ −2𝑈𝑓,𝑔ℎ +𝑈𝑓,𝑔+1ℎ )(∆𝑅)2 ] + β [(𝐽𝑅)(𝐺𝑟)2 (𝑈𝑓,𝑔+1ℎ −𝑈𝑓,𝑔−1ℎ )34(∆𝑅)3 +
3(𝐺𝑟)2 (𝑈𝑓,𝑔+1ℎ −𝑈𝑓,𝑔−1ℎ )24(∆𝑅)2 (𝑈𝑓,𝑔−1ℎ+1 −2𝑈𝑓,𝑔ℎ+1+  𝑈𝑓,𝑔+1ℎ+1 +𝑈𝑓,𝑔−1ℎ −2𝑈𝑓,𝑔ℎ +𝑈𝑓,𝑔+1ℎ )(∆𝑅)2 +
(𝑈𝑓,𝑔+1ℎ −𝑈𝑓,𝑔−1ℎ )2(∆𝑅)2 (𝑈𝑓−1,𝑔ℎ −2𝑈𝑓,𝑔ℎ +𝑈𝑓+1,𝑔ℎ )(∆𝑋)2 + 18 (𝑈𝑓,𝑔ℎ −𝑈𝑓−1,𝑔ℎ )(∆𝑋) (𝑈𝑓,𝑔+1ℎ −𝑈𝑓,𝑔−1ℎ )(∆𝑅)     

(𝑈𝑓,𝑔+1ℎ+1 −𝑈𝑓−1,𝑔+1ℎ+1 −𝑈𝑓,𝑔−1ℎ+1 +𝑈𝑓−1,𝑔−1ℎ+1 +𝑈𝑓,𝑔+1ℎ −𝑈𝑓−1,𝑔+1ℎ −𝑈𝑓,𝑔−1ℎ + 𝑈𝑓−1,𝑔−1ℎ )(∆𝑋)(∆𝑅) ]        (A. 2)  
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𝑇𝑓,𝑔ℎ+1−𝑇𝑓,𝑔ℎ∆𝑡 + 𝑈𝑓,𝑔ℎ (𝑇𝑓,𝑔ℎ+1−𝑇𝑓−1,𝑔ℎ+1 +𝑇𝑓,𝑔ℎ −𝑇𝑓−1,𝑔ℎ )2∆𝑋 + 𝑉𝑓,𝑔ℎ (𝑇𝑓,𝑔+1ℎ+1 −𝑇𝑓,𝑔−1ℎ+1 +𝑇𝑓,𝑔+1ℎ −𝑇𝑓,𝑔−1ℎ )4∆𝑅   

= 12𝑃𝑟 (𝑇𝑓,𝑔−1ℎ+1 −2𝑇𝑓,𝑔ℎ+1+𝑇𝑓,𝑔+1ℎ+1 +𝑇𝑓,𝑔−1ℎ −2𝑇𝑓,𝑔ℎ +𝑇𝑓,𝑔+1ℎ )(∆𝑅)2  + 𝐽𝑅4𝑃𝑟 (𝑇𝑓,𝑔+1ℎ+1 −𝑇𝑓,𝑔−1ℎ+1 +𝑇𝑓,𝑔+1ℎ −𝑇𝑓,𝑔−1ℎ )(∆𝑅) + 𝑁𝑏8 (Θ𝑓,𝑔+1ℎ −Θ𝑓,𝑔−1ℎ )(∆𝑅)  

(𝑇𝑓,𝑔+1ℎ+1 −𝑇𝑓,𝑔−1ℎ+1 +𝑇𝑓,𝑔+1ℎ −𝑇𝑓,𝑔−1ℎ )(∆𝑅) + 𝑁𝑡8 (𝑇𝑓,𝑔+1ℎ −𝑇𝑓,𝑔−1ℎ )(∆𝑅) (𝑇𝑓,𝑔+1ℎ+1 −𝑇𝑓,𝑔−1ℎ+1 +𝑇𝑓,𝑔+1ℎ −𝑇𝑓,𝑔−1ℎ )(∆𝑅)  (A.3)   

        

Θ𝑓,𝑔ℎ+1−Θ𝑓,𝑔ℎ∆𝑡 + 𝑈𝑓,𝑔ℎ (Θ𝑓,𝑔ℎ+1−Θ𝑓−1,𝑔ℎ+1 +Θ𝑓,𝑔ℎ −Θ𝑓−1,𝑔ℎ )2∆𝑋 + 𝑉𝑓,𝑔ℎ (Θ𝑓,𝑔+1ℎ+1 −Θ𝑓,𝑔−1ℎ+1 +Θ𝑓,𝑔+1ℎ −Θ𝑓,𝑔−1ℎ )4∆𝑅   

= 1(𝐿𝑒) (Θ𝑓,𝑔−1ℎ+1 −2Θ𝑓,𝑔ℎ+1+Θ𝑓,𝑔+1ℎ+1 +Θ𝑓,𝑔−1ℎ −2Θ𝑓,𝑔ℎ +Θ𝑓,𝑔+1ℎ )2(∆𝑅)2 + 𝐽𝑅(𝐿𝑒) (Θ𝑓,𝑔+1ℎ+1 −Θ𝑓,𝑔−1ℎ+1 +Θ𝑓,𝑔+1ℎ −Θ𝑓,𝑔−1ℎ )4(∆𝑅)   

+ (𝑁𝑡)(𝐿𝑒)(𝑁𝑏) (𝑇𝑓,𝑔−1ℎ+1 −2𝑇𝑓,𝑔ℎ+1+𝑇𝑓,𝑔+1ℎ+1 +𝑇𝑓,𝑔−1ℎ −2𝑇𝑓,𝑔ℎ +𝑇𝑓,𝑔+1ℎ )2(∆𝑅)2  + (𝐽𝑅)(𝑁𝑡)4(𝐿𝑒)(𝑁𝑏)  (𝑇𝑓,𝑔+1ℎ+1 −𝑇𝑓,𝑔−1ℎ+1 +𝑇𝑓,𝑔+1ℎ −𝑇𝑓,𝑔−1ℎ )(∆𝑅)       (A.4) 

 

FIGURES 

 

Fig. 2. Comparison study for Newtonian fluid. 
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Fig. 3. Comparison study for Newtonian nanofluid. 

 

Fig. 4. Unsteady non-dimensional velocity profile against time (𝑡) for variation of third-grade 

fluid parameter. 
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 Fig. 5. Unsteady non-dimensional temperature profile against time (𝑡) for variation of third-

grade fluid parameter. 

 

 

   

Fig. 6. Unsteady non-dimensional volume fraction profile against time (𝑡) for variation of 

third-grade fluid parameter. 
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 Fig. 7. Steady-state non-dimensional velocity profile against 𝑅 for variation of third-grade 

fluid parameter. 

 

 

  

Fig. 8. Steady-state non-dimensional temperature profile against 𝑅 for variation of third-

grade fluid parameter. 
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Fig. 9. Steady-state non-dimensional volume fraction profile against 𝑅 for variation of third-

grade fluid parameter. 

 

 

  

Fig. 10. Steady-state non-dimensional velocity profile against 𝑅 for variation of Brownian 

motion parameter. 
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Fig. 11. Steady-state non-dimensional temperature profile against 𝑅 for variation of 

Brownian motion parameter. 

 

 

  

Fig. 12. Steady-state non-dimensional volume fraction profile against 𝑅 for variation of 

Brownian motion parameter. 
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 Fig. 13. Steady-state non-dimensional velocity profile against 𝑅 for variation of 

thermophoresis parameter. 

 

 

  

Fig. 14. Steady-state non-dimensional temperature profile against 𝑅 for variation of 

thermophoresis parameter. 
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Fig. 15. Steady-state non-dimensional volume fraction profile against 𝑅 for variation of 

thermophoresis parameter. 

 

 

  

Fig. 16. Steady-state non-dimensional velocity profile against 𝑅 for variation of Lewis 

parameter. 
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Fig. 17. Steady-state non-dimensional temperature profile against 𝑅 for variation of Lewis 

parameter. 

 

 

  

Fig. 18. Steady-state non-dimensional volume fraction profile against 𝑅 for variation of 

Lewis parameter. 
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Fig. 19. Steady-state non-dimensional velocity profile against 𝑅 for variation of buoyancy 

ratio parameter. 

 

 

  

Fig. 20. Steady-state non-dimensional temperature profile against 𝑅 for variation of buoyancy 

ratio parameter. 
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Fig. 21. Steady-state non-dimensional volume fraction profile against 𝑅 for variation of 

buoyancy ratio parameter. 

 

  

 

Fig. 22. Variation of third-grade fluid parameter on skin-friction against time (𝑡). 
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Fig. 23. Variation of third-grade fluid parameter on skin-friction against time (𝑡). 

 

  

Fig. 24. Variation of third-grade fluid parameter on skin-friction against time (𝑡). 
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Fig. 25. Steady-state isotherms for different values of third-grade fluid parameter for fixed 𝑃𝑟 =  0.7 and 𝐺𝑟 =  10.0  

  

Fig. 26. Steady-state streamlines for different values of third-grade fluid parameter for fixed 𝑃𝑟 =  0.7 and 𝐺𝑟 =  10.0  
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27(a) 

  

27(b)  

Fig. 27. Steady-state contours of velocity (𝑈), temperature (𝑇) and volume fraction (Θ) of (a) 

third-grade nanofluid (b) Newtonian nanofluid for fixed 𝑃𝑟 =  0.7 and 𝐺𝑟 =  10.0 
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