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Transient and asymptotic growth of two-dimensional perturbations
in viscous compressible shear flow

B. F. Farrell
Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138

P. J. Ioannou
Physics Department, National and Capodistrian University of Athens, 15784 Athens, Greece
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A comprehensive assessment is made of transient and asymptotic two-dimensional perturbation
growth in compressible shear flow using unbounded constant shear and the Couette problem as
examples. The unbounded shear flow example captures the essential dynamics of the rapid transient
growth processes at high Mach numbers, while excitation by nonmodal mechanisms of nearly
neutral modes supported by boundaries in the Couette problem is found to be important in sustaining
high perturbation amplitude at long times. The optimal growth of two-dimensional perturbations in
viscous high Mach number flows in both unbounded shear flow and the Couette problem is shown
to greatly exceed the optimal growth obtained in incompressible flows at the same Reynolds
number. © 2000 American Institute of Physics.@S1070-6631~00!00211-7#
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I. INTRODUCTION

A comprehensive understanding of the stability of sh
flow in general and of high Mach number shear flow in p
ticular requires taking into account perturbation growth d
to both modal and nonmodal processes. Flows confined
boundaries support normal modes and eigenanalysis of
linearized equations of fluid motion for such flows provid
information about the rate of perturbation energy growth
the limit of long time while singular value decomposition
the system propagator provides information about trans
growth on shorter time scales. These two stability analy
methods can be combined to form a generalized stab
theory that synthesizes both the modal and nonmodal asp
of perturbation growth.1

High Mach number shear flow occurs in technologic
contexts such as hypersonic aircraft and in astrophysical
nomena such as accretion disks2 and at least in the case o
accretion disks the dynamics is confined to two dimensio
Transient nonmodal growth generally dominates over mo
growth in highly non-normal systems such as fluid sh
flow except in the limit of long time in idealized model
Moreover, in realistic physical shear flow problems it is o
ten possible to exclude long time asymptotic growth eit
because the linear operator associated with the mean flo
asymptotically stable or because disruption of the cohere
of the mode by turbulent motions limits the time availab
for modal growth so that emergence of the modal asymp
is never attained and growth instead occurs by repeated r
but transient nonmodal processes.1

Because of the universality of nonmodal growth pr
cesses in shear flow3 transient growth can be understood to
first approximation through study of the relatively simp
unbounded constant shear flow model. However, unboun
constant shear flow does not support modal solutions an
cannot accurately model the behavior of any bounded
3021070-6631/2000/12(11)/3021/8/$17.00
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cous flow in the limitt→` in which limit the least damped
mode supported by the boundary conditions determines
asymptotic growth or decay rate which must be exponen
in time. Nevertheless, for studying perturbation growth ov
the interval of time in which transient growth dominates t
unbounded constant shear flow has the great advantag
having analytic solutions for incompressible shear flow,4–8

for stably stratified flows,9 and for compressible inviscid
flows.10,11

Using convected coordinates Chagelishviliet al.10,11

showed that inviscid divergent acoustic perturbations are
ways eventually excited, even if the initial conditions are
nondivergent vortical form, and that the energy of acous
perturbations grows linearly with time ast→`. However, as
t→` the total wave number of these growing disturbanc
also increases linearly with time suggesting an accelera
viscous damping rate and the question arises as to whe
the inviscid asymptotic growth obtained in the invisc
model is sustained at finite Reynolds number. We show
integration of the viscous extension of the compressi
shear wave solutions in unbounded constant shear flow
the inviscid growth is not sustained and that all solutions
viscous unbounded constant shear flow are damped ast→`.
Nevertheless, we find that the maximum attainable growt
greater in compressible constant shear flow than that
tained in incompressible flow at the same Reynolds num
Having established that nonmodal growth remains robus
finite Reynolds number in the unbounded constant shear
we turn to the issue of the influence of boundaries on
perturbation dynamics. Imposition of no slip rigid boun
aries in the viscous problem induces an eigenvalue prob
with a discrete basis of modes. The perturbation dynam
system plus the boundary conditions is non-normal and c
sequently these modes are not orthogonal.

Constant shear flow with rigid no slip boundaries cons
1 © 2000 American Institute of Physics
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3022 Phys. Fluids, Vol. 12, No. 11, November 2000 B. F. Farrell and P. J. Ioannou
tutes the plane Couette flow the stability of which has lo
been an object of study in hydrodynamics. Couette flow d
not support modal instability in the incompressible limit12

while the unstable modes which exist for some sufficien
small Mach numbers in compressible Couette flow
weakly growing.13

We find weak modal instability in the viscous compres
ible Couette flow in agreement with previous results. Ho
ever, we also find that at high Mach numbers tw
dimensional perturbations produce rapid nonmodal gro
and that this nonmodal growth can strongly excite the p
sistent modes, a process that cannot occur in unbounded
due to the absence of modes in unbounded flow.

These two-dimensional growth mechanisms at h
Mach numbers have implications for the maintenance of
bulence in accretion disks around massive bodies. The
in accretion disks is nearly two dimensional and Kepler
~i.e., the rotational frequencyV}R23/2, whereR is the dis-
tance from the massive body! and the Mach number is ver
large.2 Nonmodal processes may be key to producing
outward angular momentum flux required to support the
servationally inferred rates of mass inflow.14

We begin by introducing the viscous compressible eq
tions; optimal perturbations in unbounded shear flow
then obtained using convected coordinate solutions, a
which boundary conditions are introduced and the resul
Couette problem is formulated as a matrix dynamical sys
and the optimal perturbations obtained. Finally some ph
cal implications of these solutions for perturbation grow
processes in bounded and unbounded shear flow are
cussed.

II. GROWTH OF TWO-DIMENSIONAL
PERTURBATIONS IN COMPRESSIBLE CONSTANT
SHEAR FLOW

The two-dimensional continuity and momentum equ
tions for harmonic perturbations of reduced pressure,p,
streamwise~x! velocity, u, and cross-stream~y! velocity, v,
of the form@p,u,v#5@ p̂,û,v̂#eikx, in a polytropic fluid~i.e.,
pressure related to density byP5Krg) with constant shea
U5y and spatially uniform mean density are

] p̂

]t
1 iky p̂52

D̂

M2
, ~2.1!

]û

]t
1 ikyû52 v̂2 ik p̂1

1

Re
D2û1

ik

3 Re
D̂, ~2.2!

] v̂
]t

1 ikyv̂52
dp̂

dy
1

1

Re
D2v̂1

1

3 Re

dD̂

dy
, ~2.3!

where D denotes the velocity divergence which has t
streamwise Fourier coefficient:

D̂5 ikû1
dv̂
dy

, ~2.4!

andD2 denotes the Laplacian operatorD25d2/dy22k2. In
~2.1!, ~2.2!, ~2.3! time has been nondimensionalized by t
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inverse shear,t; and space by the channel half-width fo
bounded channel flow, and by 1/k for unbounded flow. The
Reynolds number is defined as Re5L2/nt, wheren is the
coefficient of shear viscosity, the coefficient of second v
cosity is assumed to be zero, andL is the space scale for th
unbounded or channel flow. The Mach number, measu
the ratio of the characteristic flow speed to the speed
soundcs , is M5L/tcs .

In the case of unbounded flow, for which due to t
nondimensionalizationk51, it is useful to transform to
convected coordinatesx2yt and seek solutions to~2.1!,
~2.2!, and ~2.3! of form @ p̂(y,t),û(y,t),v̂(y,t)#

5@ p̃(t),ũ(t),ṽ(t)#eim(t)y, with time varying cross-stream
wave numberm(t)5m(0)2t ~cf. Refs. 4–11!. Substituting
this solution form transforms~2.1!, ~2.2!, and~2.3! to

dp̃

dt
52

i

M2
ũ2

im~ t !

M2
ṽ, ~2.5!

dũ

dt
52 i p̃2S K2~ t !

Re
1

1

3 ReD ũ2S 11
m~ t !

3 ReD ṽ, ~2.6!

dṽ
dt

52 im~ t ! p̃2
m~ t !

3 Re
ũ2S K2~ t !

Re
1

m~ t !

3 ReD ṽ, ~2.7!

whereK2(t)511m2(t) is the total time varying wave num
ber. The original partial differential equations have been
duced to a set of three ordinary differential equations wh
can be readily integrated to determine the propagator ma
that advances the initial state of the system to the state
later timet.

We choose to scale pressure by Mach number so tha
system state isx, where x denotes the column vecto

@Mp̃,ũ,ṽ#T. The evolution of the statex is then governed by
the time-dependent matrix equation:

dx

dt
5A~ t !x, ~2.8!

whereA(t) is given by

A~ t !

5S 0 2
i

M
2

im~ t !

M

2
i

M
2FK2~ t !

Re
1

1

3 ReG 2F11
m~ t !

3 ReG
2

im~ t !

M
2

m~ t !

3 Re
2FK2~ t !

Re
1

m~ t !

3 ReG D .

~2.9!

The state at t is related to the initial state by:x(t)
5F(t)x(0), whereF(t) is the finite time propagator

F~ t ![ lim
t→0

)
n51

N

eA(nt)t, ~2.10!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 1. Energy evolution of the initial perturbation o
unit energy that leads to maximum energy growth at
520 ~with k51). Curve 1 is for incompressible (M
50) viscous bounded Couette flow at Re55000; curve
2 is for the same case except compressible (M550);
curve 3 is for unbounded constant shear compress
flow at M550 and Re55000; curve 4 is for the same
case except the flow is inviscid.
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obtained byN advances of the system by the infinitesim
propagatorseA(nt)t , where N and t satisfy the relationt
5Nt.

The perturbation energy density has both kinetic and
tential energy components with the total energy den
given by

E5
uûu21uv̂u21M2u p̂u2

4
5

1

4
uxu2, ~2.11!

in which pressure has been scaled by Mach number in
definition of the state variablex so that the Euclidean inne
product is proportional to perturbation energy. The ma
mum factor of increase in energy density that can
achieved at timet is thenuuF(t)uu2 whereuu•uu denotes theL2

matrix norm. This norm can be readily evaluated by singu
value decomposition which for the propagatorF(t) is of the
form: F(t)5USV† whereS is positive diagonal andU, V
are unitary. The square of the maximum element ofS is the
square of theL2 norm of F(t) which can be interpreted a
the maximum factor of energy density increase that can
achieved at timet. This maximum energy growth factor i
called the optimal growth, and the corresponding column
V, referred to as the optimal perturbation, is the initial co
dition that results in this increase.

The energy density evolution of the initial perturbatio
that produces optimal energy growth att520 is shown in
Fig. 1 for the inviscid and viscous~Re55000! unbounded
constant shear flows at Mach numberM550. In the inviscid
case the energy grows asymptotically ast10,11~this is true for
all initial perturbations, not only the optimal initial perturba
tion!, but as can be seen from Fig. 1 this inviscid asympto
growth is not sustained in the presence of viscous diss
tion.

Optimal initial perturbations undergo two physically di
tinct growth phases: a rapid transient phase that peaks
nondimensional time of the order of the initial cross-stre
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wave number and is robust in the presence of viscosity;
a slow secondary asymptotic growth phase that disapp
when viscosity is included. The mechanism of growth
these two phases can be understood by considering the
turbation energy tendency equation:

dE

dt
52E

0

2p/m(t)

uv̄ dy2
1

ReE0

2p/m(t)

~ u¹ uu21u¹vu2!dy

2
1

3 ReE0

2p/m(t)

D 2̄dy, ~2.12!

where the bar denotes average over a streamwise~x! wave-
length andD is the velocity divergence. The only source
perturbation growth is the Reynolds stress which contribu
the first term on the right-hand side of~2.12!. By decompos-
ing the velocity field into its irrotational and solenoidal par
(u,v)5“f1“Ã(ck) ~wherek is the unit vector perpen
dicular to the plane of the flow,f is the potential of the
irrotational velocity component, andc is the streamfunction
of the solenoidal velocity component!, the following propor-
tional relation for the spatially averaged Reynolds stress
convected coordinates can be obtained:

2E
0

2p/m(t)

uv̄ dy}m~ t !uc̃u22m~ t !uf̃u2

1R~f̃* c̃2m2~ t !c̃* f̃ !, ~2.13!

whereR denotes the real part of a complex number and
tildes denote the Fourier amplitude of the perturbation fie
in the convected coordinate ansatz:f5f̃(t)eix1 im(t)y, c

5c̃(t)eix1 im(t)y. Consider an initial perturbation with
m(0).0. Part of the contribution to energy growth due
the solenoidal component of the perturbation velocity field
the first rhs term in~2.13!, m(t)uc̃u2, which contributes sub-
stantially initially, whilem(t).0, but as the phase lines ar
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 2. Top panel: The optimal initial wave numbe
m(0) as a function of optimizing time for perturbation
in inviscid unbounded constant shear flow. The dash
line showsm(0) for incompressible flow (M50); the
full line shows the compressible flowm(0) (M550).
As tan21 m(0) is the angle between the phase lines a
the vertical, the phase lines of optimal perturbations a
seen to be less inclined to the vertical in the compre
ible case. Bottom panel: The magnitude of the vorticit
divergence, and pressure multiplied byM of the initial
optimal perturbation as a function of the optimizin
time. The phase of these quantities att50 is the same.
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turned into the direction of the shear, so that eventua
m(t),0, it becomes an energy sink. This term, which is t
sole energy source in incompressible shear flow,15 vanishes
in compressible flow asm(t)uc̃u25O(t22) at large times
~see the Appendix!, which is slower than theO(t23) rate of
asymptotic decay of the Reynolds stress in unbounded in
cid incompressible constant shear flow.15

The second term on the rhs in~2.13!, 2m(t)uf̃u2, arises
from the irrotational component of the perturbation veloc
field and exists only in compressible flow. It is initially a
energy sink, whilem(t).0, but becomes an energy sour
when the phase lines have turned into the flow direction
that m(t),0, leading to eventual energy growth linear
time in inviscid unbounded shear flows~in the Appendix it is
shown that at large timesm(t)uf̃u2→C1D cos(t2/M1u)
with C, D, andu constants!. This ability of perturbations in
compressible shear flow to continue extracting energy fr
the mean flow after the perturbation phase lines have tur
into the direction of shear is a new mechanism arising fr
compressibility. The fact that the only source of ener
growth in incompressible shear flows is the solenoidal vel
ity component which extracts energy only whenm(t).0,
and that in constant shear flowm(t)5m(0)2t decreases
with time, means that in order to maximize energy growth
time t the optimal perturbation must have large initial cros
stream wave number@further analysis shows that in invisci
incompressible shear flows the optimal wave number
m(0)5 t/21At2/411, where t is the optimizing time, so
that at large timesm(0)'t ~cf. Ref. 15!#. In compressible
flow the perturbation can extract energy even whenm(t)
,0 and consequently optimal growth does not require t
m(0) be as large initially as in the case for incompressi
flow. The initial m(0) that leads to optimal growth is show
as a function of optimizing timeTopt in Fig. 2 for M50 and
M550. Also shown in Fig. 2 are magnitudes of the vortici
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divergence, and pressure of the optimal initial condition a
function of Topt for M550.

Given that viscosity damps perturbations in proporti
to the square of the total perturbation wave number, it f
lows that optimal perturbations in viscous compressible fl
will be damped less than optimal perturbations in visco
incompressible flows because compressible flow optim
have smaller wave numbers during their growth period. O
timal energy growth for inviscid incompressible flows in
creases withTopt asEopt(Topt)/Eopt(0)511Topt

2 , whereTopt

is the optimizing time,8 and consequently optimal growth i
greater at large times for inviscid incompressible than is
tained in inviscid compressible flows, where the asympto
growth is linear in time. However, due to their smaller wa
numbers optimal perturbations in compressible viscous c
stant shear flow realize greater growth than is attained
optimals in incompressible viscous constant shear flow at
same Reynolds number~cf. an example in Fig. 1!.

The third term in~2.13! is the energy tendency from
interactions between the irrotational and solenoidal veloc
components. It can be shown to oscillate with high amplitu
at times exceeding the optimization time~see the Appendix!.
However, these oscillations, which are due to interference
oppositely traveling waves with both irrotational and so
noidal velocity components, do not contribute to the secu
growth of energy at large times.

While the first stage of transient growth is only mode
ately affected by viscosity, the later stage, which is asso
ated with secular growth in the inviscid problem, is elim
nated by viscosity. For example, energy evolution of t
optimal perturbation att520 for the unbounded constan
shear flow at Re55000 ~curve 3 of Fig. 1! shows that the
initial transient growth is largely retained in the presence
viscosity, along with a secondary maximum due mainly
the Reynolds stress from the irrotational velocity compone
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 3. Maximum modal growth rate as a function o
Mach number for bounded Couette flow at Re55000
andk51.
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while the secular energy growth at larget has been lost.
Consider now viscous Couette flow between two bou

ing surfaces with no slip boundary conditions (u5v50 at
y561). The perturbation dynamics are governed by E
~2.1!–~2.3!. In order to study the dynamics of perturbatio
in bounded flow we approximate the system~2.1!–~2.3! by
discretizing the differential operators with central diffe
ences. It is known that in the presence of boundaries an
fixed Reynolds number the compressible flow may
weakly unstable for moderate Mach numbers,13 while for
sufficiently high Mach numbers the modal instability is lo
The growth rate of the most unstable mode fork51 and
Re55000 as a function of Mach number is shown in Fig.

Consider first a flow at Re55000 andM550 for which
parameters the flow is almost neutral fork51. The energy
evolution of the optimal initial perturbation that leads
maximum growth att520 is shown in Fig. 1. Observe tha
the evolution of energy at first follows that in the visco
unbounded constant shear flow, as expected from the un
sality of the transient growth mechanism, but for large tim
the perturbation asymptotically decays at the exponential
of the least damped mode as expected for a bounded vis
flow. For comparison curve 1 in Fig. 1 shows the ene
evolution in an incompressible flow for the initial conditio
that maximizes energy growth att520. As discussed earlie
the enhanced energy growth in the compressible flow is
to the fact that the irrotational component of the veloc
field can continue to extract energy from the mean flow e
after it has been convected into the direction of the shear,
consequently such perturbations can continue to grow fo
longer period of time before being strongly affected by v
cosity. The structure of the optimal perturbation at the init
time is indicated in Fig. 4 by its pressure, which accounts
92% of the initial perturbation energy. The evolved optim
at the optimizing timet520 is shown in Fig. 5. It is eviden
that the perturbation is leaning in the direction of the sh
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and is also extracting energy from the mean as indicated
its Reynolds stress.

Optimal energy growth as a function of time for variou
Mach numbers as well as for incompressible flow (M50) at
Re55000 andk51 is shown in Fig. 6. While at small Mach
number the optimal growth in compressible shear flow is l
than that found in incompressible shear flow~this is also
found to be the case for three-dimensional perturbation
boundary layer lows at low Mach numbers16!, at large Mach
numbers the optimal growth attained in compressible flow
an order of magnitude greater than that in incompress
flow.

The mechanism of capture of transient growth energy
the least damped mode is of particular significance becau
produces robust excitation of a persistent structure wh
would otherwise be damped or at most weakly growing. F
example, consider the optimal energy growth attained a
function of time atM520,50,100, shown in Fig. 6; for larg
optimizing times the perturbation energy becomes large
nearly constant as the nonmodal processes have strongl
cited the nearly neutral modes of the flow at these Ma
numbers. Moreover, this mechanism is important even
cases for which the flow is unstable. ConsiderM54.75 for
which there is an unstable mode with nondimensio
growth rate 0.0689. The optimal energy growth as a funct
of time and the energy evolution of the most unstable mo
~dashed line! are shown in Fig. 6. Energy derived from tra
sient growth is transferred to the weakly unstable modet
increases resulting in greatly enhanced excitation of the
stable mode~by a factor of 20 in this case!.

III. CONCLUSIONS

Perturbation growth in viscous compressible shear fl
was examined using unbounded constant shear flow and
Couette flow as examples. These constant shear example
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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3026 Phys. Fluids, Vol. 12, No. 11, November 2000 B. F. Farrell and P. J. Ioannou
FIG. 4. Structure of the pressure field component of t
optimal initial perturbation that leads to the maximu
energy growth att520. The Mach number isM550
and the Reynolds number is Re55000 andk51. The
maximum energy growth att520 is E(20)/E(0)
5277 ~the energy evolution of this perturbation i
shown in Fig. 1!. Approximately 92% of the optimal
perturbation energy is in the pressure field.
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particularly useful in revealing the fundamental properties
nonmodal growth1 while retaining the simplicity of the ana
lytic convected coordinate solutions in the case of the
bounded shear flow and the familiarity of the Couette pr
lem in the case of the bounded flow. Nonmodal perturbat
growth was found to be enhanced in compressible shear
compared to that found in incompressible shear flow beca
irrotational velocity fields sustain downgradient Reyno
stresses after the Reynolds stress from solenoidal mot
has reversed. However, growth by this mechanism is
sustained ast→` because viscous damping rapidly i
creases as the wave number of the solution increases.

In order to quantify in a canonical manner the poten
for perturbation growth in compressible shear flow init
Downloaded 05 Oct 2001 to 128.103.60.202. Redistribution subject to A
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perturbations producing optimal energy growth over spe
fied time intervals were identified using singular value d
composition of the system propagator. The optimal pertur
tions reveal that in contrast to what is found in inviscid flo
nonmodal growth can be increased by compressibility in v
cous flow. In addition, asymptotic excitation of a nearly ne
tral mode by its optimal was found to excite the mode
more than an order of magnitude greater energy compare
direct excitation of the mode itself, which demonstrates
importance of nonmodal growth in the asymptotic regim
even in flows which support an unstable mode.

Lastly, we remark that the great amplification of a sub
of perturbations in viscous compressible flow suggests
continual excitation by intrinsic or extrinsic sources wou
n

a-
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e
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FIG. 5. Structure of the evolved optimal perturbatio
associated with optimal growth atTopt520 viewed at
t520. The Mach number isM550 and the Reynolds
number is Re55000 andk51. The top panel shows
perturbation vorticity, the middle panel shows perturb
tion divergence with arrows indicating the total veloc
ity. The bottom panel shows the vertical distribution

2uv̄. Note that although at the initial time most of th
energy is concentrated in potential form, at the optim
time 97% of the perturbation energy is in kinetic form
Note also that although the perturbation is oriented w
lines of constant phase in the direction of the shear
Reynolds stress is positive indicative of energy trans
from the mean flow to the perturbation which would n
be the case for incompressible flow.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 6. Optimal energy growth attained by two
dimensional perturbations as a function of optimizin
time in incompressible flow (M50), and for Mach
numbersM51,4.75,20,50,100. The flow is bounde
Couette at Re55000, andk51. The dashed curve
shows the growth associated with the mode with t
fastest exponential growth rate~growth rate 0.0689)
which occurs whenM54.75.
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support a statistically steady state with greatly enhanced
turbation variance compared to the variance that would
excited in a system with equivalent damping but witho
transient amplification, a result that has been demonstr
for similar systems in incompressible flows.17
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APPENDIX: ASYMPTOTIC ENERGETICS OF
TWO-DIMENSIONAL INVISCID PERTURBATIONS IN
COMPRESSIBLE UNBOUNDED CONSTANT
SHEAR FLOW

Evolution equations for the irrotational and solenoid
components of the velocity field (u,v)5“f1“Ã(ck) can
be derived from~2.5! to ~2.7!. Using the same convecte
coordinate ansatz,f5f̃(t)eix1 im(t)y, c5c̃(t)eix1 im(t)y, the
following governing equations are obtained in the absenc
viscosity:

dp̃

dt
52

K2~ t !

M2
f̃, ~A1!

d~K2~ t !c̃ !

dt
52K2~ t !f̃, ~A2!

df̃

dt
52 p̃2

2

K2~ t !
c̃, ~A3!

whereK2(t)511m2(t) is the time varying total wave num
ber, andp̃ is the amplitude of the pressure perturbation. It
easy to show that

K2~ t !c̃1M2p̃5C ~A4!
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is a conserved quantity. Writingf (t)52K2(t)c̃ and p̃
5C/M21 f (t)/M2 the evolution equations~A1!–~A3! re-
duce to the following two equations in the variablesf (t) and
f̃:

d f

dt
5K2~ t !f̃, ~A5!

df̃

dt
52

C

M2
2

f

M2
1

2

K4
f . ~A6!

At large times~A6! can be approximated as

df̃

dt
52

C

M2
2

f

M2
, ~A7!

becauseK2(t)5O(t2), and then~A5! and~A7! can be com-
bined to yield the following differential equation governin
the larget behavior of the irrotational velocity potentialf̃:

d2f̃

dt2
52

K2~ t !

M2
f̃, ~A8!

which admits the asymptotic Wentzel–Kramers–Brillou
solution:

f̃5
A6

AK~ t !
expS 6 i E tK~s!

M
dsD , ~A9!

which in the t→` limit behaves asuf̃u5O(t21/2). The
asymptotic amplitude of the streamfunction is

c̃56 i
MA6

~K~ t !!3/2
expS 6 i E tK~s!

M
dsD , ~A10!

which in thet→` limit behaves asuc̃u5O(t23/2). Note that
in incompressible flows the streamfunction decays at the
uc̃u5O(t23).
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We have shown in~2.13! that the instantaneous pertu
bation energy density tendency is determined by the sum
three terms: the Reynolds stress due to the solenoidal pa
the velocity field given byA5m(t)uc̃u2, the Reynolds stres
due to the irrotational part of the velocity field given byB

52m(t)uf̃u2 and an interaction term between the solenoi
and irrotational parts. The above-given asymptotic expr
sions show that at large times the Reynolds stress,A, due to
the solenoidal part vanishes. The Reynolds stress due to
interaction can be shown to be of the formC1 cos(t2/M
1u1) whereC1 andu1 are constants. The contribution to th
energetics from the Reynolds stress due to the irrotatio
part of the velocity field,B, can be shown to beB5uA1u2

1uA2u21C2 cos(t2/M1u2) whereC2 and u2 are constants
Consequently, the energy tendency is

dĒ

dt
}uA1u21uA2u21C cos~ t2/M1u!, ~A11!

whereC andu constants, which implies that ast→`:

E~ t !}~ uA1u21uA2u2!t1D, ~A12!

whereD is a constant. The energy grows linearly with tim
and the slope of this linear energy growth is proportiona
the amplitude of the solenoidal part of the velocity field
large times. It should be noted that even if the perturbat
field starts off with no solenoidal perturbations, these w
emerge as the plane wave tilts over, and the perturba
field will acquire solenoidal character, thus exciting the u
bounded linear energy growth. The amplitude of the solen
dal field produced depends delicately on the initial con
tions. For a discussion of these points and also an alterna
derivation of the asymptotic solutions see Ref. 11.
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