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Abstract
We propose a numerical method to obtain the transient and first passage time distributions of
first- and second-order Multi-Regime Markov Fluid Queues (MRMFQ). The method relies
on the observation that these transient measures can be computed via the stationary analysis
of an auxiliary MRMFQ. This auxiliary MRMFQ is constructed from the original one, using
sample path arguments, and has a larger cardinality stemming from the need to keep track
of time. The conventional method to approximately model the deterministic time horizon is
Erlangization. As an alternative, we propose the so-called ME-fication technique, in which
a Concentrated Matrix Exponential (CME) distribution replaces the Erlang distribution for
approximating deterministic time horizons. ME-fication results in much lower state-space
dimensionalities for the auxiliary MRMFQ than would be with Erlangization. Numerical
results are presented to validate the effectiveness of ME-fication along with the proposed
numerical method.

Keywords Multi-regime Markov fluid queues · Matrix exponential distributions ·
Transient distribution · First passage time distribution

Mathematics Subject Classification (2010) 60J25 · 65C40 · 60K25 · 60J65

1 Introduction

In the vast majority of stochastic models, the stationary analysis is much simpler than
analyzing the transient behavior. Over the past decades, several solution methodologies
(matrix-analytic methods, invariant subspace methods, Schur decomposition-based meth-
ods, etc.) have been developed to obtain the stationary solution of a large class of structured
Markovian systems in a numerically efficient way. There are several results available for
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the analysis of transient quantities including first passage times and these methods typically
provide the solution in Laplace transform domain.

The focus of this paper is the transient analysis of a wide class of Markov Fluid Queues
(MFQ). MFQs have been studied for a long time (see Kulkarni 1997 for an early survey) and
have been proven to be efficient modeling techniques for several telecommunication sys-
tems and insurance risk related practical problems among several further application areas
(Anick et al. 1982; Gerber and Shiu 1998). Based on such practical motivations, special
attention has been devoted to the transient analysis of MFQs. In general, the transient behav-
ior of MFQs can be expressed in a simple way by partial matrix-differential equations. The
numerical solution methods to these differential equations can be classified as transform
domain and direct (also called time domain) methods. Transform domain methods essen-
tially describe the underlying partial differential equations (PDEs) in Laplace transform
domain together with the boundary conditions and apply certain numerical inverse Laplace
transformation techniques for computing performance metrics of interest related to the tran-
sient behavior. In more recent analytical approaches, the transform domain description is
based on matrix analytic methods (Ahn et al. 2007; Ahn and Ramaswami 2005). One of the
seminal results of the direct time domain analysis methods is a randomization-based numer-
ical solution of the underlying PDEs, proposed by Sericola (1998). This solution method
has several desirable properties (efficiency, numerical stability, sign change free, etc.), but
is restricted to the analysis starting from an idle fluid buffer.

Alternative transient analysis methods that compute transient measures based on sta-
tionary analysis have been proposed based on the concept of replacing the (deterministic)
time horizon with a phase-type (PH-type or PH) distributed random time. Queue lengths
and waiting time distributions are approximatively obtained by Houdt and Blondia (2005)
using stationary analysis for a discrete-time queue. In Velthoven et al. (2007), an algo-
rithm is proposed to assess the transient performance measures for every possible initial
configuration of a Quasi-Birth-and-Death (QBD) Markov chain by means of the station-
ary solution of another properly constructed Markov chain. Similarly, a numerical method
has been proposed by Yazici and Akar (2017) for finding the ruin probabilities for a gen-
eral continuous-time risk problem using the stationary solution of a certain MFQ. In this
paper, we generalize these techniques to a general class of MFQs by which several tran-
sient quantities including first passage times are obtained from the stationary solution of an
appropriately constructed auxiliary MFQ. The main benefits of this method are that it pro-
vides the transient quantity directly (no Laplace transform inversion is involved), and that
the availability of the mature stationary solvers ensures the superior numerical stability of
the proposed method. To get a reasonable accurate solution, the PH-type distributed random
time horizon must be as close to deterministic as possible. The least varying PH-distributed
random variable of order n is the order-n Erlang distribution (Aldous and Shepp 1987),
which is the sum of n i.i.d. exponentially distributed random times with the same parameter.
Consequently, the PH-distributed random time horizon is commonly assumed to be order-n
Erlang distributed and the specific properties of the Erlang distribution are applied in the
numerical analysis of such methods (Asmussen et al. 2002; Ramaswami et al. 2008a). This
solution methodology is commonly referred to as Erlangization. Erlangization is a robust
procedure, but, to obtain high accuracy, relatively high order Erlang distributions need to be
used that can increase the model size to a large extent. Recent results suggest that Concen-
trated Matrix Exponential (CME) distributions can approximate deterministic time horizons
more efficiently (Horváth et al. 2016), which we propose to utilize in this work. Inspired
by Erlangization-based methods, we call this particular method as ME-fication which uses
CMEs to approximate a deterministic time horizon.
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All the above-mentioned methods, both the transform domain-based and the time
domain-based ones, have focused on basic MFQs and their certain variations. In this paper,
our aim is to study a wider class of MFQs, where multiple regimes and second order
fluid flows are both present. Multi-regime MFQs (MRMFQs, also called level-dependent or
multi-layer fluid queues) have been investigated for a while to model load-dependent sys-
tems and congestion control (Mandjes et al. 2003; Le et al. 2007). Two different solution
methods are available for their stationary analysis; the matrix-analytical approach (da Silva
Soares and Latouche 2009) and the Schur decomposition-based approach (Kankaya and
Akar 2008). Second-order fluid models (Asmussen 1995, also called as Markov-Modulated
BrownianMotion, MMBM) are popular extensions of basic MFQs. The procedure proposed
by Horváth and Telek (2017) is able to provide the stationary solution of systems allowing
both multiple regimes and second-order fluid flows by the matrix-analytic method. To the
best of our knowledge, transient solution has never been developed for this particular sys-
tem. In this work, our contribution is two-fold: First, we adopt the existing methods in the
literature that compute the transient measures by a stationary solver, to the transient analy-
sis of second-order multi-regime MFQs. Next, we introduce theME-fication method in this
context which provides more accurate results in case of equal model sizes when compared
to Erlangization.

The rest of the paper is organized as follows. In Section 2, several preliminaries are intro-
duced: Section 2.1 gives a short overview on the phase-type and the matrix-exponential
distributions, Section 2.2 summarizes the approximation of deterministic variables with
phase-type and matrix-exponential distributions, and Section 2.3 presents an overview of
the existing stationary solution methods of multi-regime MFQs. The proposed auxiliary
MFQ-based transient analysis of multi-regime MFQs is described in Section 3 while the
first passage time analysis is presented in Section 4. Section 5 presents various extensions
of the proposed auxiliary MFQ-based analysis framework. Section 6 provides a number of
numerical examples for validating the effectiveness of the proposed method. Finally, we
conclude.

2 Preliminaries

2.1 Phase-Type andMatrix Exponential Distributions

To describe a phase-type (PH) distribution, a continuous-time Markov chain is defined on
the state space {1, . . . , N,N +1} with state N +1 being absorbing and all other states being
transient. The initial probability vector is of the form (α, 0), and the infinitesimal generator
of the Markov chain is [

A A0

0 0

]
.

Here, α is a row probability vector of size N , A is a N × N transient generator matrix, e

denotes a column vector of ones with appropriate size, and A0 = −Ae is a column vector of
size N containing the transition rates to the absorbing state. The fact that α is a probability
vector implies that α ≥ 0 and αe = 1; and S being a transient generator matrix implies
that its diagonal elements are strictly negative, the off-diagonal elements are non-negative
and Ae ≤ 0 holds. Let Θ denote the time till absorption into the absorbing state N + 1.
Then, the distribution of Θ is called PH-type, i.e., Θ ∼ PH(α,A) with order N , where the
notation ∼ is synonymous with “distributed according to”. For a detailed study of PH-type
distributions, we refer the reader to Neuts (1981). The cumulative distribution function (cdf)
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and probability density function (pdf) of Θ ∼ PH(α, A), denoted by FΘ(x) and fΘ(x),
respectively, are given as:

FΘ(x) = 1 − αeAxe, fΘ(x) = −αeAxAe, for x ≥ 0. (1)

A generalization of the PH distribution is the so-called Matrix Exponential (ME) distri-
bution (Asmussen and Bladt 1996); see also Bladt and Neuts (2003), Fackrell (2003), and
He and Zhang (2007) for a detailed description of ME distributions and their properties. We
say Θ ∼ ME(α, A) with order N if the pdf of the random variable Θ is in the form of
Eq. 1, however, for ME distributions, the parameters α and A do not have to satisfy the sign
constraints that apply to PH distributions. The only constraint is that fΘ(x) must be a legit-
imate density function. Thus, fΘ(x) ≥ 0,∀x ≥ 0. In those general cases, ME distributions
do not possess the stochastic interpretation of that of PH distributions.

2.2 Approximating Deterministic Variables

According to the method proposed in this paper, the deterministic time horizon is to be
approximated by a PH or by an ME distribution. If Θ is deterministic with Θ = t , its cdf is
a unit step function located at t . PH distributions are able to approximate Θ = t arbitrarily
well. In the Erlangization method (see Asmussen et al. 2002; Ramaswami et al. 2008b),
Θ = t is approximated by Θ̃N ∼ PH(αN,AN) (also called Erlang-N with order N ) where

αN = [
1 0 · · · 0 ]

, AN = N

t

⎡
⎢⎢⎢⎣

−1 1
. . .

. . .
−1 1

−1

⎤
⎥⎥⎥⎦ .

As the order N increases, Θ̃N converges to Θ = t in distribution but with relatively slow
convergence rate since the Squared Coefficient of Variation (SCV) of Θ̃N is 1/N . With
ME distributions of order N , it is possible to achieve a much lower SCV than that of the
Erlang-N distribution. Unfortunately, neither the structure providing the minimal SCV nor
the explicit formula for the minimal SCV are known for ME distributions. In Horváth et al.
(2016), a family of ME distributions, called concentrated ME distributions (CME), is pro-
posed, and the parameters providing the minimal SCV are obtained numerically. The main
result of Horváth et al. (2016) is that the asymptotic behavior of the SCV of the proposed
CME distribution of order N is approximately 2/N2.

2.3 Multi-Regime First- and Second-Order Markov Fluid Queues

Conventional Markov Fluid Queues (MFQs) are described by a joint Markovian process
X(t) = (Xf (t), Xd(t)), t ≥ 0,where 0 ≤ Xf (t) ≤ B represents the fluid level in the buffer,
B denotes the buffer capacity, and the discrete-valued modulating phase process Xd(t) ∈
{1, 2, . . . , n} is a Continuous Time Markov Chain (CTMC) with state space cardinality
n and generator matrix Q. Throughout the paper, we assume finite capacity MFQs, i.e.,
B < ∞. In Section 5, we discuss how to handle the infinite buffer capacity case as well. In
MFQs, the net rate of fluid change (or drift) is ri when the phase of the modulating process
Xd(t) is i. The drift matrix R is the diagonal matrix of drifts: R = diag{r1, r2, . . . , rn}
and the process X(t) is fully characterized with the pair (Q,R) and the initial state X(0) =
(Xf (0),Xd(0)). Above, the diag operator stands for the diagonal concatenation of its scalar
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input arguments. When the arguments are diagonal matrices, diag operator stands for the
block diagonal concatenation of its matrix input arguments:

diag{A1, A2, . . . , Al} =

⎡
⎢⎢⎢⎣

A1 0 · · · 0
0 A2 · · · 0
...

...
. . . 0

0 0 · · · Al

⎤
⎥⎥⎥⎦ ,

for diagonal Aj , 1 ≤ j ≤ l.
In Level Dependent MFQs (LDMFQ), the drift matrix does not only depend on Xd(t) but

it also depends on the instantaneous fluid level Xf (t). Moreover, in LDMFQs, the generator
is also allowed to depend on Xf (t). Therefore, LDMFQs are characterized with a pair of
level dependent generator and drift matrices (Q(x), R(x)) for 0 ≤ x ≤ B; see Scheinhardt
et al. (2005) and da Silva Soares and Latouche (2009). A sub-case of LDMFQs is MRMFQs
in which the buffer is partitioned into a finite number of non-overlapping intervals (referred
to as regimes) and the drift matrix and the generator matrix are allowed to depend on the
regime only and are fixed in each regime; see Kankaya and Akar (2008) and Mandjes et al.
(2003). Specifically, in MRMFQs, the buffer is partitioned into K > 1 regimes with the
boundaries 0 = T (0) < T (1) < · · · < T (K−1) < T (K) = B < ∞. When T (k−1) < Xf (t) <

T (k), the fluid process is said to be in regime k at time t . The MRMFQ is characterized
with the level-dependent pair of matrices (Q(x), R(x)) which turn out to have the following
specific form:

Q(x) =
{

Q(k) if T (k−1) < x < T (k), k = 1, 2, . . . , K,

Q̃(k) if x = T (k), k = 0, 1, . . . , K,
(2)

R(x) =
{

R(k) if T (k−1) < x < T (k), k = 1, 2, . . . , K,

R̃(k) if x = T (k), k = 0, 1, . . . , K,
(3)

where the regime-k generator and drift matrices are denoted by Q(k) and R(k), respectively,
and the boundary-k generator and drift matrices are denoted by Q̃(k) and R̃(k), respectively.

Another generalization of MFQs allows the so-called second order fluid accumulation
which follows a Brownian motion with drift. In this case, apart from the generator matrix
Q and the fluid drift matrix R, the system has a third parameter matrix, namely a diagonal
matrix S = diag{s1, s2, . . . , sn} describing the variance of the Brownian motion in various
states of the background process. Those states where si = 0 holds are called first-order
states and behave as described before. For the second-order states with si > 0, the fluid
increment in an infinitesimally small time interval (t, t + Δ) is normally distributed with
mean riΔ and variance siΔ. For the second-order states, two types of boundary behavior
are commonly assumed in the literature: absorbing and reflecting boundaries. In case of
the absorbing behavior, when the Brownian motion representing the fluid level reaches a
boundary, it sticks to the boundary till the next state transition. In case of the reflecting
behavior, the fluid process is reflected by the boundary. Both have been studied extensively
in the literature; see Asmussen (1995) and Karandikar and Kulkarni (1995).

Second-order fluid models can be studied in the multi-regime setting as well. The def-
inition of these systems is similar to the above described first-order case: the matrix S

additionally becomes regime-dependent and in particular

S(x) = S(k), T (k−1) < x < T (k), k = 1, 2, . . . , K . (4)
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At the internal boundaries T (1), . . . , T (K−1) of second-order MRMFQs, we might have a
number of different behaviors (transition, reflection, absorption; potentially different when
reaching the boundary from below or from above) as detailed in Horváth and Telek (2017).
Here, we only note that those different boundary behaviors can be described by Q̃(k) and
R̃(k) only as in the first order case and the variance parameters right at the boundary are not
needed for the model.

The regime-k steady-state joint probability density function (pdf) vector f (k)(x) of a
first- or second-order MRMFQ is defined as

f (k)(x) =
[
f

(k)
1 (x) f

(k)
2 (x) · · · f

(k)
n (x)

]
, (5)

where

f
(k)
i (x) = lim

t→∞
d

dx
Pr{Xf (t) ≤ x, Xd(t) = i}, T (k−1) < x < T (k), 1 ≤ k ≤ K . (6)

Similarly, the steady-state boundary-k probability mass (pma) vector c(k) is defined as

c(k) =
[
c
(k)
1 c

(k)
2 · · · c

(k)
n

]
, c

(k)
i = lim

t→∞Pr{Xf (t) = T (k), Xd(t) = i}, 0 ≤ k ≤ K .

(7)
For the first-order MRMFQs, a matrix-analytical algorithm has been proposed in Kankaya
and Akar (2008) to obtain the joint pdf vector given in Eq. 5 in matrix exponential form
and the joint pma vector in Eq. 7. This numerical algorithm requires the solution of a linear
matrix equation of at most size n(2K + 1) for an MRMFQ with n states and K regimes.
The computational complexity of the proposed algorithm can be reduced to O(n3K) on
the basis of the observation that the linear matrix equation is in block tri-diagonal form
(Yazici and Akar 2013). Moreover, Yazici and Akar (2013) show that the more general
LDMFQs can effectively be approximated by their MRMFQ counterparts by properly dis-
cretizing the level-dependent generator and drift matrices thanks to the linear dependence
of the computational complexity on the number of regimes.

For the stationary solution of second-order MRMFQs, the parameters of the matrix-
exponential solution have been derived in Horváth and Telek (2017). According to that
procedure, matrix-quadratic equations are solved to obtain the matrix coefficients, while
the vector parameters of the solution are given by a set of linear equations of size
n(K + 1) + ∑K

k=1 n
(k)
+ + ∑K

k=1 n
(k)
− + 2

∑K
k=1 n

(k)
σ , where n

(k)
− denotes the number of

first-order states with negative rate, n(k)
+ the number of first-order states with positive rate,

and n
(k)
σ the number of second-order states in regime k, respectively. As in the first-order

case, the set of linear equations can be re-ordered to a tri-diagonal form to enable faster
numerical solution. We note that in the first-order case, n

(k)
+ + n

(k)
− = n, n

(k)
σ = 0, and

n(K + 1) + ∑K
k=1 n

(k)
+ + ∑K

k=1 n
(k)
− + 2

∑K
k=1 n

(k)
σ simplifies to n(2K + 1).

3 Transient Solution of Second-Order Multi-regimeMarkov Fluid
Queues

Throughout the paper, the focus will be on second-order MRMFQs which will shortly be
referred to as MFQs for convenience since a first-order MFQ is a special sub-case. We are
given the MFQ process X(t) = (Xf (t), Xd(t)) with the fluid level process 0 ≤ Xf (t) ≤ B

and the modulating processXd(t) ∈ {1, 2, . . . , n}. We assume that theMFQ is characterized
with three piece-wise constant matrices (QX(x), RX(x), SX(x)) of the form given as in
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Eqs. 2, 3, and 4. Let us be given a time horizon Θ which is PH distributed of order N ,
characterized with the pair (α,A) with A0 = −Ae and e being a N × 1 column vector of
ones. The level process is assumed to start operation at Xf (0) = a and the phase process at
Xd(0) = i.

We are interested in finding the following joint pdf and joint pma when the MFQ evolves
until the random time horizon Θ expires:

f
a,i
Θ (j, x) = d

dx
Pr{Xf (Θ) ≤ x,Xd(Θ) = j | Xf (0) = a,Xd(0) = i}, x ≥ 0, (8)

c
a,i
Θ (j, T (k)) = Pr{Xf (Θ) = T (k), Xd(Θ) = j | Xf (0) = a,Xd(0) = i}, 0 ≤ k ≤ K . (9)

We note, also for the rest of the paper, that the derivative in Eq. 8 is computed only for x dif-
ferent from any regime boundary T (k), 0 ≤ k ≤ K . To avoid pathological cases, we assume
that a is not a regime boundary and a 	= x. For x = a and a not being a regime bound-
ary, f

a,i
Θ (j, a) can be approximated as f

a,i
Θ (j, a) 
 f

a,i
Θ (j, a + δ)/2 + f

a,i
Θ (j, a − δ)/2

with sufficiently small δ. When Θ is deterministic with Θ = t , then Eqs. 8 and 9
provide expressions for the joint cdf and pma of the transient behavior of the MFQ at
time t .

We note that this paper does not provide an analytical characterization of the error
made by approximating the deterministic time horizon t with an appropriate random vari-
able Θ . In this respect, the paper resorts to the intuitive assumption that when the SCV of
the approximating random variable Θ is lower, then the accuracy of the approximations
f

a,i
t (j, x) ≈ f

a,i
Θ (j, x) and c

a,i
t (j, T (k)) ≈ c

a,i
Θ (j, T (k)) would be better. We only provide

numerical investigation of this approximation error in Section 6 using simulation results
involving the quantities f

a,i
t (j, x) and c

a,i
t (j, T (k)).

We now construct an auxiliary MFQ with a larger state space whose steady-state solu-
tion provides an exact solution for the quantities given in Eqs. 8 and 9 of the original
MFQ. This auxiliary MFQ is denoted by Y(t) = (Yf (t), Yd(t)) where Yf (t) represents the
fluid level at time t and the discrete modulating process Yd(t) has 1 + Nn states where
Nn of these states correspond to the pairs (k, �), 1 ≤ k ≤ N, 1 ≤ � ≤ n, k keeping
track of the phase of the time horizon Θ whereas � represents the phase of the modu-
lating process Xd(t) of the original MFQ. Specifically, we order the states of Yd(t) as
(0, (1, 1), (1, 2), . . . , (1, n), (2, 1), . . . , (N, n)), where state 0 is an auxiliary state used to
reset the process Y(t) to the appropriate initial state of the process X(t) and that of the PH
distributed time horizon Θ . A sample path of the fluid process Yf (t) is given in Fig. 1 cor-
responding to a purely first-order example, for the sake of simplicity. The process Yf (t)

Fluid level

B

a

Fluid evolves according to the original MFQ Fluid is forced back to level a at state 0

time
θ θθ

State 0

State 0
State 0

Fig. 1 A sample path of the fluid level process Yf (t) of the auxiliary MFQ Y(t)
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starts at level a and evolves according to the original MFQ and to its level-dependent gen-
erator, drift, and variance matrices QX(x), RX(x), and SX(x), respectively, until the time
horizon Θ ∼ PH(α,A) is reached (solid/blue line). When the timer expires, the fluid level
process is forced back to the initial value a via an auxiliary first-order state designated as
state 0 (dashed/red line). This is achieved by a negative drift (positive drift) and zero vari-
ance at state 0 if the fluid level was above a (below a) at the epoch of timer expiration.
Once the fluid level reaches level a at state 0, the level is forced to stay at the boundary a

with zero drift for an exponentially distributed duration with unit mean.1 The fluid process
then escapes from state 0 to state (k, i), 1 ≤ k ≤ N, with probability αk and subsequently
this pattern repeats forever in Fig. 1. This approach is indeed the adaptation of the meth-
ods introduced in Houdt and Blondia (2005) and Yazici and Akar (2017) to second-order
MRMFQ systems.

We decompose the state space of Yd(t) into two subsets: {0} of size 1 and
{(1, 1), (1, 2), . . . , (1, n), (2, 1), . . . , (N, n)} of size Nn. The subset-based matrix blocks
of the characterizing matrices of the auxiliary MFQ process Y(t) are given as:

QY (x) =
[

0 0
A0 ⊗ e IN ⊗ QX(x) + A ⊗ In

]
, if x 	= a, (10)

RY (x) =
{
diag{1, IN ⊗ RX(x)} if x < a,

diag{−1, IN ⊗ RX(x)} if x > a,
(11)

SY (x) = diag{0, IN ⊗ SX(x)}, if x 	= a. (12)

The process Y(t) has an extra boundary at x = a with the parameters

QY (a) =
[ −1 α ⊗ ei

A0 ⊗ e IN ⊗ QX(a) + A ⊗ In

]
, (13)

RY (a) = diag{0, IN ⊗ RX(a)}, (14)

SY (a) = diag{0, 0Nn×Nn}, (15)

where Il is the identity matrix of size l, 0l×k is an l × k matrix of zeros, ei is the size-n
row vector of zeros with the only non-zero element in position i being equal to 1. We note
that the subscripts indicative of the sizes are dropped throghout the paper when the sizes are
clear from the context.

The first row of QY (x) in Eq. 10 can be interpreted as follows. As long as Yd(t) stays in
the first subset, that is in state 0, and the fluid level is different from a, the process remains
in state 0. The second row of QY (x) in Eq. 10 ensures that the process stays in the second
subset for a Θ-long interval and during this period, it follows the behavior of Xd(t). At
the completion of the Θ-long interval, indicated by a state transition with rate A0, Yd(t)

moves to state 0. The only case when Yd(t) can leave state 0 is at fluid level a according
to the first row of QY (a) in Eq. 13 and the exit rate is 1. Upon leaving state 0, Yd(t) starts

1With respect to the transient analysis of the process X(t), it is not necessary that the auxiliary process stays
at level a for an exponentially distributed time. It would also be sufficient if the auxiliary process jumps to the
next Θ-long phase immediately after reaching level a. The reason why we do not apply that approach is that
forced, immediate state transition of the background process at a fluid level is a very special feature in fluid
queues which are not supported by general fluid model solvers, and requires the application of a special fluid
model solver introduced by Horvath and Van Houdt (2012). Allowing an exponentially distributed sojourn
with rate 1 at level a does not give rise to any inaccuracy and moreover makes the auxiliary process to be a
standard MRMFQ (without immediate transitions) for which solution methods and implemented codes are
more commonly available.
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according to the initial distribution of the PH distribution in a state representing Xd(t) = i.
The interpretations of RY (x) and SY (x) follow the same reasoning.

We need the following definitions for the steady-state distributions of the auxiliary MFQ
Y(t). Let fY (s, x) and cY (s, x) denote the steady-state joint pdf and pma of the MFQ Y(t):

fY (s, x) = d

dx
lim

t→∞Pr{Yf (t) ≤ x, Yd(t) = s}, x ≥ 0, (16)

cY (s, x) = lim
t→∞Pr{Yf (t) = x, Yd(t) = s}, x = T (k), 0 ≤ k ≤ K, (17)

for s = 0 or s = (k, �), 1 ≤ k ≤ N, 1 ≤ � ≤ n. We now state our first main result in the
following theorem.

Theorem 1 The transient density, f
a,i
Θ (j, x), and the transient probability masses at the

boundaries, c
a,i
Θ (j, T (k)), are obtained from the related stationary density and probability

masses of Y(t) as

f
a,i
Θ (j, x) =

∑
ufY ((u, j), x)A0

u∑
u

∑
�

(∫ B

x=0 fY ((u, �), x)dx + ∑K
v=0cY ((u, �), T (v))

)
A0

u

, (18)

c
a,i
Θ (j, T (k)) =

∑
ucY ((u, j), T (k))A0

u∑
u

∑
�

(∫ B

x=0 fY ((u, �), x)dx + ∑K
v=0cY ((u, �), T (v))

)
A0

u

, (19)

where A0
u denotes the uth entry of A0.

Proof As depicted in Fig. 1, the joint process Y(t) follows a cyclic behavior of stochas-
tically identical cycles (separated by vertical dashed lines in Fig. 1). In each cycle, the
fluid process Yf (t) starts from level a and the modulating process Yd(t) starts from the
state (k, i) with probability αk and spends a PH(α, A)-distributed time in the subset
{(1, 1), (1, 2), . . . , (1, n), (2, 1), . . . , (N, n)}, before transitioning to state 0.

We are interested in finding the fluid level and the state of the modulating Markov chain
at the end of the PH(α, A)-distributed phase of a cycle (at the end of the blue/solid line in
Fig. 1), based on the stationary behavior of the process Y(t). For this purpose, let Ωω be the
ending epoch of the PH(α,A)-distributed phase of Y(t) in cycle ω (end of the solid/blue
line of cycle ω in Fig. 1) for ω = 1, 2, . . .. Using this notation, we can define c

a,i
Θ (j, T (k))

also based on the first cycle of the auxiliary fluid process as:

c
a,i
Θ (j, T (k)) = Pr{Xf (Θ) = T (k), Xd(Θ) = j},

=
N∑

u=1

Pr{Yf (Ω1) = T (k), Yd(Ω−
1 ) = (u, j)},

where Yd(Ω−
1 ) denotes the left limit of Yd right before the transition to state 0. Note that

Yf (·) is continuous. Due to the independent and stochastically identical cycles of Y(t), for
ω = 1, 2, . . ., we further have

c
a,i
Θ (j, T (k)) =

N∑
u=1

Pr{Yf (Ωω) = T (k), Yd(Ω−
ω ) = (u, j)}.
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Moreover, the long term average computed based on I cycles yields an alternative
expression for the quantity c

a,i
Θ (j, T (k)) due to the stochastic identicalness of the cycles:

c
a,i
Θ (j, T (k)) = lim

I→∞
1
I

I∑
ω=1

N∑
u=1

E(I{
Yf (Ωω)=T (k),Yd (Ω−

ω )=(u,j)
}),

where I{F } is the indicator of event F , i.e., I{F } = 1 if F is true and I{F } = 0 otherwise.
Due to the ergodicity of Y(t), the related long time average behavior can be obtained from
the stationary behavior of the process Y(t) as follows:

c
a,i
Θ (j, T (k)) = lim

δ→0
lim

t→∞

∑N
u=1 Pr{transition to 0 in (t, t + δ), Yf (t) = T (k), Yd (t) = (u, j)}

Pr{transition to 0 in (t, t + δ)} ,

= lim
δ→0

lim
t→∞

∑N
u=1 Pr{transition to 0 in (t, t + δ), Yf (t) = T (k), Yd (t) = (u, j)}∑N

u=1
∑n

�=1

∫ B

x=0 Pr{transition to 0 in (t, t + δ), Yf (t) = x, Yd (t) = (u, �)}dx
.

Above, the numerator represents the probability that in the stationary limit the process Y(t)

experiences a state transition from state ((u, j), T (k)) to state (0, T (k)) in a δ-long inter-
val while the denominator amounts to the probability that in the stationary limit the same
process experiences a state transition (from any state) to (0, T (k)) in a δ-long interval. This
last expression can be calculated based on the stationary distribution of the process Y(t)

using the fact that when Yd(t) = (u, j), the probability that the process Y(t) transitions to
state 0 in (t, t + δ) is

(
A0

uδ + σ(δ)
)
where σ(·) is an error term for which lim

δ→0
σ(δ)/δ = 0.

Therefore,

c
a,i
Θ (j, T (k)) = lim

δ→0

∑N
u=1 cY ((u, j), T (k))

(
A0

uδ + σ(δ)
)

∑N
u=1

∑n
�=1

(∫ B

x=0 fY ((u, �), x)dx + ∑K
v=0 cY ((u, �), T (v))

) (
A0

uδ + σ(δ)
) ,

=
∑N

u=1 cY ((u, j), T (k))A0
u∑N

u=1
∑n

�=1

(∫ B

x=0 fY ((u, �), x)dx + ∑K
v=0 cY ((u, �), T (v))

)
A0

u

, (20)

completing the proof for the expression (19).
The proof for Eq. 18 is similar and is given below. In this case,

f
a,i
Θ (j, x)Δ + σ(Δ)

= lim
δ→0

lim
t→∞Pr{Yf (t) ∈ (x, x + Δ), Yd(t) = (·, j) | trans. to 0 in (t, t + δ)},

= lim
δ→0

lim
t→∞

Pr{transition to 0 in (t, t + δ), Yf (t) ∈ (x, x + Δ), Yd(t) = (·, j) }
Pr{transition to 0 in (t, t + δ)} ,

= lim
δ→0

∑
u (fY ((u, j), x)Δ + σ(Δ))

(
A0

uδ + σ(δ)
)

∑
u

∑
�

(∫ B

x=0 fY ((u, �), x)dx + ∑K
v=0 cY ((u, �), T (v))

) (
A0

uδ + σ(δ)
) ,

=
∑

u (fY ((u, j), x)Δ + σ(Δ)) A0
u∑

u

∑
�

(∫ B

x=0 fY ((u, �), x)dx + ∑K
v=0 cY ((u, �), T (v))

)
A0

u

. (21)

Dividing both sides sides of Eq. 21 byΔ and taking the limit asΔ → 0 yields the expression
(18).
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Fluid level

b

a

Fluid evolves according to the original MFQ Fluid is forced back to level a at state 0

time

State 0

B

State 0

State 0

Fluid stays at level b for an Exp(1) duration

θ

Exp(1)

Exp(1) Exp(1)

Exp(1)

Exp(1)

τa,i,b τa,i,b

τa,i,b<θ θ<τa,i,b τa,i,b<θ

Fig. 2 A sample path of the fluid level process of the auxiliary MFQ Z(t) constructed for finding the first
passage time distribution of the original MFQ X(t)

4 First Passage Times in Multi-regimeMarkov Fluid Queues

Consider the sameMFQ processX(t) = (Xf (t), Xd(t)) as described in the previous section
characterized with the three matrices (QX(x), RX(x), SX(x)) of the same form. Similar to
the previous section, the MFQ process is assumed to start operation at Xf (0) = a and
Xd(0) = i. Let τa,i,b denote the first passage time from level a to level b, defined as

τa,i,b = inf
t

{Xf (t) = b | Xf (0) = a, Xd(0) = i}. (22)

We are interested in the probability defined by

Fa,i,b
τ (Θ) = Pr{τa,i,b < Θ}, (23)

for PH-distributedΘ of orderN characterized with the pair (α,A). WhenΘ is deterministic
with Θ = t , then Eq. 23 provides an expression for the cdf of the first passage time from
level a to level b at time t .

We propose to construct an auxiliary MFQ denoted by Z(t) whose steady-state solution
provides a solution for the probability given in Eq. 23 for the original MFQ X(t). The main
idea is to construct an MFQ, with similar cyclic behavior as before, which stops the fluid
process in every cycle once it reaches level b. In case of a first-order system, consider the
sample path of the auxiliary fluid level process of the MFQ Z(t) in Fig. 2.

This process starts at level a and evolves according to the original MFQ and to its level-
dependent generator and drift matricesQX(x) andRX(x), until either the time horizon Θ ∼
PH(α, A) expires or the process hits level b before the absorbing state of Θ (solid/blue
line) is reached. In the former case, when the timer expires, the fluid process is forced
back to the desired initial level a through the auxiliary state 0 spending an exponentially
distributed time duration with unit mean at the particular level a (dashed/red line). The
second cycle in Fig. 2 is an example for this type of situation. However, the fluid process
may also reach level b before the timer expires as in the first and third cycles of Fig. 2.
When this happens, the fluid process is forced to stay at fluid level b for an exponentially
distributed time duration with unit mean before transitioning to state 0 (thick/green line).2

This pattern of cycles repeats as shown in Fig. 2.
The same idea can be generalized to second-order systems as well. The only additional

feature to introduce to the auxiliary MFQ Z(t) is that the boundary at level b has to be

2Also in this case the exponentially distributed delay helps to avoid immediate state transitions of the fluid
model upon reaching level b.
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absorbing for the second order states, meaning that the fluid process stays there once it
reaches level b.

The fluid process defined accordingly is actually an MFQ process denoted by Z(t) =
(Zf (t), Zd(t)) with the same state-space as that of the MFQ process Y(t) of the pre-
vious section. Actually, the (QZ(x), RZ(x), SZ(x)) parameters are the same as the
(QY (x), RY (x), SY (x)) parameters for x 	= b. When the fluid level is b, the fluid process
needs to stay at this level for an exponentially distributed duration with unit mean before
eventually escaping to state 0. Therefore, the generator of the background process at fluid
level b is

QZ(b) =
[
0 0
e −INn

]
, (24)

and the matrix of the fluid rates is

RZ(b) =
{
diag{−1, 0Nn×Nn} if a < b,

diag{1, 0Nn×Nn} if a > b.
(25)

As observed in Fig. 2, the overall trajectory is cyclic. All cycles terminate with the fluid
level staying at level a for an exponentially distributed duration of time with unit mean
(dashed/red line). In cycles where the fluid level reaches the level b before the timer expires,
the fluid process visits the level b for an exponentially distributed duration of time with unit
mean (thick/green line). We now define the probability masses for the MFQ Z(t) similar to
Eqs. 16 and 17. For this purpose, let cZ((k, �), b) denote the steady-state probability mass at
level b for the state (k, �), 1 ≤ k ≤ N, 1 ≤ � ≤ n for the auxiliary MFQ Z(t) and similarly
cZ(0, a) denotes the steady-state probability mass at level a for state 0. Next, we provide
our main result in this section.

Theorem 2 The first passage time probability, Fa,i,b
τ (Θ), is obtained from the stationary

probability masses of the auxiliary MFQ Z(t) as

Fa,i,b
τ (Θ) =

∑
k

∑
� cZ((k, �), b)

cZ(0, a)
. (26)

Proof Similar to the MFQ processY(t), the MFQZ(t) is also composed of independent and
stochastically identical cycles as depicted in Fig. 2. Let θω be the length of the PH(α, A)-
distributed time duration of Z(t) in cycle ω and τω be the time what would be needed
to reach level b the first time in cycle ω. Both θω and τω are iid random variables for
ω = 1, 2, . . . and τω has the same distribution as τa,i,b. Using this notation, we define
Fa,i,b

τ (Θ) based on the auxiliary fluid process Z(t) as follows:

Fa,i,b
τ (Θ) = Pr{τa,i,b < Θ} = Pr{τ1 < θ1} = Pr{τω < θω},

for ω = 1, 2, . . ., where we used the independence and identicalness of the cycles of the
MFQ process Z(t) in the last step. The long time average, computed based on I cycles, is
given as:

Fa,i,b
τ (Θ) = lim

I→∞
1
I

I∑
ω=1

E(I{τω<θω}).

Let ϕω be the time spent at fluid level b, irrespective of the discrete state, (thick/green line
in Fig. 2) and ψω be the time spent at level a when the state is 0 (horizontal part of the
dashed/red line in Fig. 2) in cycle ω. Note that ϕω is exponentially distributed with unit
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parameter if τω < θω and ϕω = 0 if τω > θω. Noting that the horizontal part of the
dashed/red line is exponentially distributed with unit parameter, we have

Fa,i,b
τ (Θ) = lim

I→∞
1
I

I∑
ω=1

E(I{τω<θω}) = lim
I→∞

1
I

I∑
ω=1

E(ϕω) = lim
I→∞

∑I
ω=1 E(ϕω)∑I
ω=1 E(ψω)

.

Due to the ergodicity of the MFQ process Z(t), the expression above reduces to

Fa,i,b
τ (Θ) = lim

t→∞
Pr{Zf (t)=b}

Pr{Zf (t)=a,Zd (t)=0} = lim
t→∞

∑
k

∑
� Pr{Zf (t)=b,Zd (t)=(k,�)}
Pr{Zf (t)=a,Zd (t)=0} ,

=
∑

k

∑
� cZ((k,�),b)

cZ(0,a)
,

which completes the proof of Eq. 26.

5 Extensions of the Basic Models

5.1 Transient Analysis with Random Initial State

In the previous sections, we assumed that the MFQ process X(t) starts from a deterministic
state Xf (0) = a and Xd(0) = i. In this section, we provide a similar auxiliary MFQ based
analysis of the case when Xf (0) is Finite PH (FPH) distributed on (0, B) and Xd(0) is
discrete distributed on {1, 2, . . . , n} such that

Pr{Xf (0) < x} = 1 − βeMxe

1 − βeMBe
, 0 ≤ x ≤ B,

(see Ramaswami and Viswanath 2014 and He et al. 2019) and Pr{Xd(0) = i} = πi . In
this case, we say that the initial fluid level is a random variable denoted by Ψ which is
FPH(β, M,B)-distributed where β is a row vector of size m and M is of size m × m, and
the size n row vector composed of the probabilities πi is denoted by π . We are interested in
finding the following joint pdf and joint pma:

f
Ψ,π
Θ (j, x) = d

dx
Pr{Xf (Θ) ≤ x, Xd(Θ) = j | Xf (0) ∼ Ψ, Xd(0) ∼ π}, x ≥ 0, (27)

c
Ψ,π
Θ (j, T (k)) = Pr{Xf (Θ) = T (k), Xd(Θ) = j | Xf (0) ∼ Ψ, Xd(0) ∼ π}, 0 ≤ k ≤ K, (28)

where Θ ∼ PH(α, A). To evaluate the transient behavior of this system, we introduce
the auxiliary MFQ process V(t) = (Vf (t), Vd(t)) with state space {0} ∪ {1, 2, . . . , m} ∪
{(1, 1), (1, 2), . . . , (1, n), (2, 1), . . . , (N, n)}. State 0 is used to reset the fluid level to zero
whereas states 1, 2, . . . , m are used to set the finite PH distributed initial fluid level. The
latter states are visited until the initial fluid level is reached. The fluid rate in these states is
one which ensures that the initial fluid level is identical with the time spent in the set of states
{1, 2, . . . , m}. States (1, 1), (1, 2), . . . , (1, n), (2, 1), . . . , (N, n) represent the evolution of
the original MFQ, similar to Y(t).

A sample path of the fluid level process Vf (t) of the auxiliary MFQ process V(t) is
depicted in Fig. 3.

V(t) also follows a cyclic behavior with stochastically identical cycles. In each cycle, the
process V(t) starts at level 0 and in the first phase (dotted/yellow line) of each cycle, it sets
the FPH(β, M,B) distributed initial fluid level. To set the initial fluid level to be finite PH
distributed, we need to consider that the transient process characterized by generator M can
last longer than B and in this case the fluid level needs to be reset to zero with the use of
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Fluid level
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Exp(1)

Ψ

Ψ Exp(1)

State 0

Finite PH distributed initial fluid level

Fig. 3 A sample path of the fluid level process Vf (t) for the auxiliary MFQV(t) constructed for the transient
analysis of the original MFQ X(t) with random initial state

state 0 as it is exemplified in the second cycle in Fig. 3. If the transient process characterized
by generator M concludes within B, then we have an exit transition according to M0 before
time B after which the process evolves according to the original MFQ indicated by the
solid/blue line in Fig. 3. This second phase of each cycle concludes when the time horizon
Θ ∼ PH(α, A) is reached. At this point, the fluid process is forced back to level 0 through
the auxiliary state 0 (dashed/red line) in the last phase of the cycle. This pattern of phases
repeats in all cycles as shown in Fig. 3.

According to these three subsets of states, the blocks of the characterizing matrices of
V(t), (QV (x), RV (x), SV (x)), are given as

QV (x) =
⎡
⎣ 0 0 0

0 M M0(α ⊗ π)

A0 ⊗ e 0 IN ⊗ QX(x) + A ⊗ In

⎤
⎦ , (29)

RV (x) = diag{−1, Im, IN ⊗ RX(x)}, (30)

SV (x) = diag{0, 0m, IN ⊗ SX(x)}, (31)

for 0 < x < B, and for the boundaries we have

QV (0) =
⎡
⎣ −1 β 0

0 M M0(α ⊗ π)

A0 ⊗ e 0 IN ⊗ QX(0) + A ⊗ In

⎤
⎦ , (32)

RV (0) = diag{0, Im, IN ⊗ RX(0)}, (33)

QV (B) =
⎡
⎣ 0 0 0

e − Im 0
A0 ⊗ e 0 IN ⊗ QX(B) + A ⊗ In

⎤
⎦ , (34)

RV (B) = diag{−1, 0m, IN ⊗ RX(B)}. (35)

Let fV ((u, j), x) and cV ((u, j), T (k)) denote the steady-state joint pdf and pma of the MFQ
V(t) for the particular state (u, j), 1 ≤ u ≤ N, 1 ≤ j ≤ n. Similar to the deterministic ini-
tial state case, from sample path arguments, it follows that the transient density f

Ψ,π
Θ (j, x)

and the transient probability mass c
Ψ,π
Θ (j, T (k)) can be obtained from the stationary density

fV ((u, j), x) and stationary probability mass cV ((u, j), T (k)), embedded at the completion
epochs of the PH distributed time horizon Θ . The following theorem presents our result for
the random initial state case.
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Theorem 3 With initial fluid level Ψ and initial state distribution π , the transient den-
sity, f Ψ,π

Θ (j, x), and the transient probability masses at the boundaries, cΨ,π
Θ (j, T (k)), are

obtained from the stationary behavior of V(t) as follows:

f
Ψ,π
Θ (j, x) =

∑
u fV ((u, j), x)A0

u∑
u

∑
�

(∫ B

x=0 fV ((u, �), x)dx + ∑K
v=0 cV ((u, �), T (v))

)
A0

u

,

c
Ψ,π
Θ (j, T (k)) =

∑
u cV ((u, j), T (k))A0

u∑
u

∑
�

(∫ B

x=0 fV ((u, �), x)dx + ∑K
v=0 cV ((u, �), T (v))

)
A0

u

,

where A0
u denotes the uth entry of A0, as before.

Proof The proof is practically identical to the proof of Theorem 1.

5.2 First Passage Timewith Random Initial State

Let us assume Xf (0) is FPH(β, M, B) distributed and Xd(0) is discrete distributed
according to π . Let the first passage time be defined as:

τΨ,π,b = inf
t

{Xf (t) = b | Xf (0) ∼ Ψ,Xd(0) ∼ π}. (36)

We define the following first passage time distribution

FΨ,π,b
τ (Θ) = Pr{τΨ,π,b < Θ}, (37)

which can be obtained by an auxiliary MFQ processW(t) = (Wf (t),Wd(t)) with the same
state space of the MFQ process V(t) described in the previous subsection. A sample path of
the fluid level process Wf (t) of the auxiliary MFQ processW(t) is depicted in Fig. 4.

The sample path of W(t) is a rather straightforward combination of the sample path of
Z(t) and the part of the sample path of V(t) which sets the initial fluid level to be finite
PH distributed. The process W(t) starts at level 0 and in the first phase (dotted/yellow
line) of a cycle, it sets the FPH(β, M,B) distributed initial fluid level, which might hap-
pen without reaching level B or with a random number of visits to level B. Figure 4
demonstrates only the first scenario. A sample path with the FPH(β, M,B)-distributed

Fluid level

b

Fluid evolves according to the original MFQ Fluid is forced back to level 0 at state 0

time

B

State 0

Fluid stays at level b for an Exp(1) duration

Exp(1)Exp(1)

Ψ

Ψ State 0

Ψ

θΨ

Finite PH distributed initial fluid level

Exp(1)

τΨ,π,b<θ θ<τΨ,π,b

τΨ,π,b

Fig. 4 A sample path of the fluid level process Wf (t) of the auxiliary MFQ W(t) constructed for the first
passage time analysis of the original MFQ X(t) with random initial state
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initial fluid level set while reaching level B once, was depicted in the second cycle in
Fig. 3. In the next phase (solid/blue line) of each cycle, the process evolves according to
the original MFQ up to reaching level b or the time horizon Θ . If level b is reached first
(first period in Fig. 3) then an exponentially distributed time with unit mean is needed
(thick/green line) to move the system to state 0 which resets the fluid level in the next
phase (dashed/red line) to 0. If the PH(α, A) distributed time horizon concludes first (sec-
ond cycle in Fig. 3) due to a transition to state 0 according to A0, the fluid level is reset
to 0 in the next (dashed/red line) phase. Figure 4 emphasizes that the FPH(β, M,B)

distributed initial fluid level can be smaller (second cycle in Fig. 3) as well as larger
(first cycle in Fig. 3) than b. If the first passage time starting from (0, b) is of inter-
est, then the initial fluid level can be set to be FPH(β, M, b)-distributed using the same
approach.

The characterizing matrices (QW (x), RW (x), SW (x)) of W(t) are identical with
(QV (x), RV (x), SV (x)) associated with the process V(t) for 0 ≤ x < b and b < x ≤ B.
When x = b, the characterizing matrices are given as

QW (b) =
⎡
⎣ 0 0 0
0 M M0(α ⊗ π)

e 0 −INn

⎤
⎦ , (38)

RW (b) = diag{−1, Im, 0Nn}. (39)

Based on the steady-state solution of MFQ W(t) and letting cW ((k, �), b) and cW (0, 0)
denote the corresponding steady-state probability mass accumulation at state (k, �), 1 ≤
k ≤ N, 1 ≤ � ≤ n and state 0, and at boundaries b and 0, respectively, the cdf of the first
passage time to b is given by the following theorem.

Theorem 4 With initial fluid level Ψ and initial state distribution π , the first passage time
probability, FΨ,π,b

τ (Θ), is obtained from the stationary behavior ofW(t) as

FΨ,π,b
τ (Θ) =

∑
k

∑
� cW ((k, �), b)

cW (0, 0)(1 − βeMBe)
. (40)

Proof The proof follows the same lines of the proof given for Theorem 2. Therefore,
identical steps in the current proof are to be omitted for the sake of convenience.

Let θω be the length of the PH(α, A)-distributed time duration for the MFQ process
W(t) in cycle ω and τω be the time what would be needed to reach level b in cycle ω. The
variables θω and τω are iid random variables for ω = 1, 2, . . .. Also let ϕω be the time spent
at fluid level b, irrespective of the discrete state, (thick/green line in Fig. 4) and ψω be the
time spent at level 0 when the state is 0 (horizontal part of the dashed/red line in Fig. 4) in
cycle ω = 1, 2, . . .. Note that ϕω is exponentially distributed with parameter 1 if τω < θω

and ϕω = 0 if τω > θω. The distribution of ψω is more involved forW(t) than it is for Z(t)

(see Theorem 2). Considering the second cycle of Fig. 3, the fluid level can visit level 0 in
state 0 more than once in a cycle of the MFQ process W(t). The mean of the variable ψω

is 1
1−βeMBe

since the process W(t) visits level 0 in state 0 for a geometrically distributed

number of times with parameter 1 − βeMBe (the probability that a PH(β, M) distributed
random variable is less thanB) and each time it stays there for exponentially distributed time
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with unit parameter. Therefore, using the ergodicity of the processW(t), one can obtain the
following expression for FΨ,π,b

τ (Θ):

FΨ,π,b
τ (Θ) = lim

I→∞
1

I

I∑
ω=1

E(I{τω<θω}) = lim
I→∞

1

I

I∑
ω=1

E(ϕω),

= lim
I→∞

∑I
ω=1 E(ϕω)∑I

ω=1 E(ψω)(1 − βeMBe)
,

= lim
t→∞

Pr{Wf (t) = b}
Pr{Wf (t) = 0, Wd(t) = 0}(1 − βeMBe)

,

= lim
t→∞

∑
k

∑
� Pr{Wf (t) = b, Wd(t) = (k, �)}

Pr{Wf (t) = 0, Wd(t) = 0}(1 − βeMBe)
=

∑
k

∑
� cW ((k, �), b)

cW (0, 0)(1 − βeMBe)
,

which completes the proof.

5.3 Infinite Buffer Case

The case when the fluid buffer is infinite, B = ∞, can be handled with the same approach
due to the fact that the stationary analysis of MRMFQwith infinite buffer is available as well
(see e.g. Horváth and Telek 2017). In the infinite buffer case, the only additional requirement
is that the average drift of the last regime from T K−1 to ∞ should be negative, i.e., if γ (K)

is the stationary solution to γ (K)Q(K) = 0, γ (K)e = 1, then γ (K)R(K)e, should be negative.
Similarly, the approach for starting the analysis from a random initial fluid level is appli-

cable when the buffer is infinite. In this case, the initial fluid level is PH distributed with
parameters (β, M), and the expressions for finite B remain valid when B → ∞ as well.
For example, the term (1 − βeMBe) in Eq. 40 converges to one as B → ∞.

5.4 ME-distributed Time Horizon

One of the intended contributions of this paper is the replacement of the PH distribution (or
its least varying member, namely the Erlang distribution) with the concentrated ME (CME)
distribution in the description of the time horizon Θ . It is beneficial, because the SCV of
the Erlang distribution linearly depends on the order while the SCV of the CME distribution
quadratically depends on the order (Horváth et al. 2016).

The findings of Bean and Nielsen (2010), Buchholz and Telek (2010), and Buchholz and
Telek (2012) ensure the applicability of ME distributions in place of PH distributions in
the introduced auxiliary MRMFQs. This way, the analysis procedure of Horváth and Telek
(2017) can be also applied when α and A do not obey the sign constraints described in
Section 2.1, but −αeAxAe is a valid (non-negative) density function for x > 0; and the
construction of the CME distributions in Horváth et al. (2016) ensures the non-negativity of
−αeAxAe.

6 Numerical Examples

In this section, we present numerical examples for both first- and second-order MFQs. For
the first-order scenario, variations of a “benchmark” problem appearing in several research
studies is considered. For the case of the second-order scenario, however, there are no
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alternative methods in the literature for comparison, and since simulating second-order sys-
tems is rather challenging, the validation of the model is not trivial. In order to make the
numerical experiments reproducible, we made our Matlab implementation of the procedures
and the examples of the second-order scenario publicly available at http://www.hit.bme.hu/
∼ghorvath/software.

6.1 First-order MFQ Examples

In the first numerical example, we study the case of 10 statistically identical traffic sources
that are multiplexed into a single buffer of size 100, a case which is studied in Akar and
Sohraby (2004) and Ahn et al. (2007). Each individual source in this example is modeled
by a three-state Markov fluid source with one OFF state and two ON states. Particularly, the
ON time is assumed to have a hyper-exponential distribution with mean 2, and coefficient
of variation of 4 with balanced means as described in Tijms (1994). The probability of the
source being in the ON state is 0.4 and each ON source generates traffic at a unit rate. The
initial vector of a source, πsource, is chosen so that the stationary distribution of the modu-
lating Markov chain is restricted to reside in one of the positive drift states. Consequently, a
single source is characterized by

Qsource =
⎡
⎣ −0.9697 0 0.9697

0 −0.0303 0.0303
0.3232 0.0101 −0.3333

⎤
⎦ , Rsource = diag{1, 1, 0}. (41)

The drain rate of the fluid queue is then set to a value so as to meet a desired overall
utilization of 0.95. This example leads to an original MFQ X1(t) characterized with the
matrix pair (QX1 , RX1) with n = 66 states (representing the distribution of the 10 sources
in one of the three states). As in Ahn et al. (2007), we assume that the buffer is empty at the
beginning, i.e., a = 0, and the initial vector π is chosen so that the modulatingMarkov chain
is initially restricted to reside in one of the positive drift states according to the steady-state
vector of QX1 .

Erlang-N and CME-N distributions are used for approximating the deterministic time
horizon in all the numerical examples. We note here that the order of CME distributions
is taken to be always odd; see Horváth et al. (2016). The complementary cdf (ccdf) of the
buffer content is

G
0,π
t (x) = Pr{Xf (t) > x | Xf (0) = 0, Xd(0) ∼ π}, (42)

which is approximately computed for various values of x and for two values of t =
100, 1000, and the results are tabulated in Tables 1 and 2, respectively, along with the
numerical results reported in Ahn et al. (2007) and also with simulation results with 95%
confidence intervals. We observe that the convergence with CME-N is faster when com-
pared to that obtained by Erlang-N . Moreover, the CME-21 results appear to outperform
those of Erlang-100 based on the numerical results obtained by Ahn et al. (2007) which
clearly shows that ME-fication is a computationally more effective alternative to Erlangiza-
tion with much lesser computational complexity. We also observe that the results obtained
with the particular CME-101 are in line with the results of Ahn et al. (2007) up to four digits.

We also modify the original MFQ in such a way that each ON source generates traffic at
a rate of 1.5 (1.25 respectively) when the queue occupancy is less than a threshold BT = 50
and it is kept unchanged at the rate of 1 above this threshold which gives rise to an original
MFQ called X2(t) (X∗

2(t) respectively) with two regimes. The ccdf G
0,π
t (x) for the MFQ

http://www.hit.bme.hu/~ghorvath/software
http://www.hit.bme.hu/~ghorvath/software
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Table 3 Ccdf of the buffer content G0,π
t (x) for the MFQ X2(t) when t = 100 with respect to varying values

of x

CME-N

x Simulation N = 21 N = 41 N = 61 N = 81 N = 101

0 0.9989738±0.0000847 0.9989467 0.9989647 0.9989679 0.9989689 0.9989694

10 0.9915537±0.0002184 0.9913360 0.9915069 0.9915350 0.9915439 0.9915478

20 0.9808783±0.0002018 0.9804597 0.9807409 0.9807878 0.9808028 0.9808094

30 0.9607752±0.0001046 0.9602078 0.9605846 0.9606477 0.9606680 0.9606770

40 0.9187809±0.0002092 0.9181303 0.9185703 0.9186443 0.9186681 0.9186787

50 0.7086112±0.0009859 0.7081774 0.7086226 0.7086997 0.7087250 0.7087363

60 0.4354735±0.0007387 0.4350771 0.4356319 0.4357318 0.4357654 0.4357804

70 0.3219587±0.0006860 0.3213813 0.3219654 0.3220720 0.3221080 0.3221241

80 0.2373893±0.0004176 0.2368594 0.2374089 0.2375099 0.2375442 0.2375596

90 0.1661971±0.0005445 0.1658028 0.1662493 0.1663316 0.1663596 0.1663721

100- 0.0591348±0.0002722 0.0589744 0.0591116 0.0591365 0.0591450 0.0591487

X2(t) (using CME-N distributions only) is presented in Tables 3 and 4 with respect to vary-
ing values of x for the cases t = 100 and t = 1000, respectively, along with the simulation
results we obtained with 95% confidence intervals. In this way, the proposed method for
transient analysis is also validated for the two-regime example and the accuracy of the CME-
N based ME-fication method is very good with rapid convergence with respect to the order
parameter N . Moreover, the results obtained with the particular CME-101 approximation
reside within the simulation confidence intervals for all the cases.

In the above examples, the time parameter t was set to either 100 or 1000. For the purpose
of generality, we present the ccdf G

0,π
t (x) of the buffer content for the MFQ X1(t) for five

Table 4 Ccdf of the buffer content G0,π
t (x) for the MFQ X2(t) when t = 1000 for varying values of x

CME-N

x Simulation N = 21 N = 41 N = 61 N = 81 N = 101

0 0.9995199±0.0000589 0.9995088 0.9995101 0.9995102 0.9995103 0.9995103

10 0.9956387±0.0001337 0.9956265 0.9956464 0.9956489 0.9956496 0.9956498

20 0.9885377±0.0004564 0.9885163 0.9885412 0.9885444 0.9885453 0.9885456

30 0.9727059±0.0007178 0.9726228 0.9726508 0.9726547 0.9726558 0.9726562

40 0.9356245±0.0008165 0.9356211 0.9356514 0.9356558 0.9356570 0.9356574

50 0.7431783±0.0012780 0.7431248 0.7431526 0.7431565 0.7431576 0.7431579

60 0.4956653±0.0006315 0.4957093 0.4957349 0.4957383 0.4957392 0.4957396

70 0.3845687±0.0005931 0.3844426 0.3844653 0.3844683 0.3844691 0.3844694

80 0.2936199±0.0010083 0.2935768 0.2935953 0.2935978 0.2935984 0.2935988

90 0.2091269±0.0013484 0.2092693 0.2092830 0.2092848 0.2092853 0.2092855

100- 0.0711825±0.0006067 0.0713854 0.0713899 0.0713905 0.0713907 0.0713908
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Table 5 Ccdf of the buffer content G
0,π
t (x) for the MFQ X1(t) when t = 4, 16, 64, 256, 1024 for four

different values of x = 25, 50, 75, 100-. (A) represents the analytical results obtained by ME-fication with
N = 61 and (S) represents simulation results with 95% confidence intervals

t x = 25 x = 50 x = 75 x = 100-

(A) 4 0.00000 0.00000 0.00000 0.00000

16 0.08758 0.00166 0.00000 0.00000

64 0.32642 0.15603 0.06453 0.01488

256 0.43685 0.28298 0.16744 0.03723

1024 0.45470 0.29991 0.17959 0.03979

(S) 4 0.00000 ± 0.00000 0.00000 ± 0.00000 0.00000 ± 0.00000 0.00000 ± 0.00000

16 0.08732 ± 0.00020 0.00166 ± 0.00003 0.00000 ± 0.00000 0.00000 ± 0.00000

64 0.32635 ± 0.00054 0.15576 ± 0.00032 0.06431 ± 0.00022 0.01491 ± 0.00010

256 0.43653 ± 0.00046 0.28301 ± 0.00035 0.16751 ± 0.00027 0.03718 ± 0.00013

1024 0.45511 ± 0.00048 0.30003 ± 0.00041 0.17969 ± 0.00025 0.03967 ± 0.00017

different values of t = 4, 16, 64, 256, 1024 and four values of x = 25, 50, 75, 100-, in
Table 5. To produce the analytical results of this example which match very well to those
obtained with simulation results, ME-fication is used with the parameter N set to 61 and the
initial vector π is the same as in the previous examples.

We also tabulate the cdf of the first passage time

F 0,π,b
τ (t) = Pr{τ 0,π,b ≤ t}, (43)

where τ 0,π,b = infy {Xf (y) = b | Xf (0) = 0, Xd(0) ∼ π}, y ≥ 0, for the MFQ X1(t)

evaluated at t = 100 and t = 1000, respectively, in Tables 6 and 7, with respect to varying
values of the parameter b. The same cdf of the first passage time for the two-regime MFQ
X∗
2(t) is presented in Tables 8 and 9, again evaluated at t = 100 and t = 1000, respectively.

Table 6 Cdf of the first passage time F 0,π,b
τ (t) evaluated at t = 100 for varying values of b for the MFQ

X1(t)

CME-N

b Simulation N = 21 N = 41 N = 61 N = 81 N = 101

10 0.8042713±0.0002090 0.8034712 0.8039866 0.8040790 0.8041099 0.8041238

20 0.6011305±0.0002617 0.6006640 0.6010442 0.6011120 0.6011346 0.6011447

30 0.4589881±0.0002535 0.4585449 0.4588418 0.4588944 0.4589120 0.4589198

40 0.3531216±0.0002484 0.3528003 0.3530634 0.3531105 0.3531262 0.3531332

50 0.2718268±0.0002431 0.2714250 0.2716599 0.2717025 0.2717168 0.2717232

60 0.2082608±0.0002387 0.2078471 0.2080455 0.2080819 0.2080943 0.2080998

70 0.1582910±0.0002030 0.1580051 0.1581603 0.1581892 0.1581990 0.1582034

80 0.1192100±0.0001869 0.1190517 0.1191610 0.1191817 0.1191888 0.1191920

90 0.0888781±0.0001724 0.0888135 0.0888782 0.0888909 0.0888953 0.0888972

100- 0.0655609±0.0001445 0.0655512 0.0655759 0.0655811 0.0655830 0.0655839
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Table 7 Cdf of the first passage time F 0,π,b
τ (t) evaluated at t = 1000 for varying values of b for the MFQ

X1(t)

CME-N

b Simulation N = 21 N = 41 N = 61 N = 81 N = 101

10 0.9999943±0.0000014 0.9999295 0.9999834 0.9999905 0.9999925 0.9999933

20 0.9991528±0.0000185 0.9989481 0.9991059 0.9991301 0.9991375 0.9991407

30 0.9930792±0.0000525 0.9925446 0.9929321 0.9929976 0.9930188 0.9930282

40 0.9763902±0.0000979 0.9754984 0.9761530 0.9762680 0.9763061 0.9763230

50 0.9467890±0.0001524 0.9456124 0.9464762 0.9466308 0.9466825 0.9467055

60 0.9050731±0.0001834 0.9038069 0.9047857 0.9049624 0.9050219 0.9050484

70 0.8540751±0.0002311 0.8527577 0.8537636 0.8539463 0.8540079 0.8540354

80 0.7970408±0.0002466 0.7956567 0.7966256 0.7968022 0.7968619 0.7968886

90 0.7368456±0.0002838 0.7354763 0.7363688 0.7365318 0.7365870 0.7366116

100- 0.6756845±0.0002971 0.6746477 0.6754444 0.6755902 0.6756396 0.6756616

Table 8 Cdf of the first passage time F 0,π,b
τ (t) evaluated at t = 100 for varying values of b for the MFQ

X∗
2(t)

Simulation CME-N

b N = 21 N = 41 N = 61 N = 81 N = 101

10 0.9883925±0.0000747 0.9879995 0.9883297 0.9883862 0.9884046 0.9884128
20 0.9441918±0.0001949 0.9435728 0.9441895 0.9442987 0.9443350 0.9443512
30 0.8896289±0.0002176 0.8888313 0.8895886 0.8897237 0.8897688 0.8897889
40 0.8312572±0.0002919 0.8303829 0.8312334 0.8313858 0.8314368 0.8314595
50 0.7710200±0.0003876 0.7700925 0.7710183 0.7711851 0.7712411 0.7712662
60 0.5241633±0.0004029 0.5236870 0.5243078 0.5244211 0.5244594 0.5244766
70 0.3704714±0.0003568 0.3701940 0.3705790 0.3706496 0.3706736 0.3706843
80 0.2688547±0.0003248 0.2685341 0.2687950 0.2688434 0.2688599 0.2688673
90 0.1961632±0.0002870 0.1959625 0.1961300 0.1961617 0.1961726 0.1961775
100- 0.1421728±0.0002650 0.1426794 0.1427660 0.1427830 0.1427890 0.1427916

Table 9 Cdf of the first passage time F 0,π,b
τ (t) evaluated at t = 1000 for varying values of b for the MFQ

X∗
2(t)

Simulation CME-N

b N = 21 N = 41 N = 61 N = 81 N = 101

10 1.0000000±0.0000000 0.9999702 0.9999952 0.9999984 0.9999992 0.9999996
20 1.0000000±0.0000000 0.9999576 0.9999927 0.9999975 0.9999988 0.9999993
30 1.0000000±0.0000000 0.9999461 0.9999907 0.9999968 0.9999985 0.9999992
40 1.0000000±0.0000000 0.9999348 0.9999888 0.9999961 0.9999981 0.9999989
50 0.9999995±0.0000006 0.9999233 0.9999865 0.9999950 0.9999972 0.9999982
60 0.9997140±0.0000125 0.9995451 0.9996794 0.9996987 0.9997042 0.9997065
70 0.9957856±0.0000612 0.9953724 0.9957204 0.9957775 0.9957957 0.9958037
80 0.9823249±0.0001130 0.9815373 0.9821804 0.9822922 0.9823290 0.9823453
90 0.9559581±0.0001735 0.9546932 0.9555904 0.9557501 0.9558034 0.9558272
100- 0.9165630±0.0002225 0.9150828 0.9161328 0.9163221 0.9163856 0.9164140
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Table 10 Ccdf of the buffer
content G0,π

t (x) for t = 100 with
respect to varying values of x

when each ON source sends
traffic at rate 1 and variance
σ 2 = 1

CME-N

x Simulation N = 21 N = 41 N = 61

0 0.99705 0.99681 0.99681 0.99681
10 0.58586 0.58675 0.58684 0.58686
20 0.46004 0.46148 0.46165 0.46168
30 0.37120 0.37211 0.37235 0.37240
40 0.29912 0.30052 0.30082 0.30087
50 0.23930 0.24116 0.24149 0.24155
60 0.19017 0.19125 0.19160 0.19166
70 0.14817 0.14877 0.14911 0.14917
80 0.11119 0.11158 0.11188 0.11193
90 0.07641 0.07558 0.07579 0.07584
100- 0.00000 0.00000 0.00000 0.00000

In all these tables, simulation results with 95% confidence results are also reported. The
results clearly demonstrate the CME-N approximations are very effective for obtaining
the first passage time distributions and all the approximate analytical results lie inside the
confidence intervals except for one single instance which is the last row of Table 8.

6.2 Second-order MFQ Examples

We consider the same MFQ X1(t) as in Section 6.1, but now we assume that traffic sources
generate Markov modulated Brownian motion. As before, the traffic rate in the ON state
(the drift of the Brownian motion) is 1, and the effect of the variance parameter in the ON
state, denoted by σ 2, is investigated in the following case study. The drift and the variance
in the OFF state are both zero.

Tables 10, 11, and 12 present the ccdf of the fluid level for t = 100, for three differ-
ent values of σ 2. Since the solution of second-order fluid models involves larger matrices
than first-order ones, we did not go beyond 61 with the order of the ME approximating
the finite time horizon. The tables contain simulation results, too. However, compared to
the easy to simulate first-order MFQs, simulating second-order fluid queues is not triv-
ial at all. We have followed a discretization-based approach. In an elementary step of the

Table 11 Ccdf of the buffer
content G0,π

t (x) for t = 100 with
respect to varying values of x

when each ON source sends
traffic at rate 1 and variance
σ 2 = 4

CME-N

x Simulation N = 21 N = 41 N = 61

0 0.99837 0.99839 0.99839 0.99839
10 0.70582 0.70469 0.70483 0.70486
20 0.56478 0.56391 0.56414 0.56419
30 0.46245 0.46198 0.46229 0.46234
40 0.37973 0.37958 0.37995 0.38001
50 0.31006 0.30955 0.30994 0.31001
60 0.25001 0.24812 0.24851 0.24858
70 0.19370 0.19242 0.19276 0.19282
80 0.13839 0.13903 0.13929 0.13934
90 0.08147 0.08141 0.08155 0.08158
100- 0.00000 0.00000 0.00000 0.00000
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Table 12 Ccdf of the buffer
content G0,π

t (x) for t = 100 with
respect to varying values of x

when each ON source sends
traffic at rate 1 and variance
σ 2 = 10

CME-N

x Simulation N = 21 N = 41 N = 61

0 0.99927 0.99921 0.99921 0.99921
10 0.80096 0.79764 0.79778 0.79780
20 0.66831 0.66437 0.66460 0.66464
30 0.55937 0.55728 0.55756 0.55761
40 0.46660 0.46514 0.46545 0.46550
50 0.38430 0.38246 0.38276 0.38281
60 0.30710 0.30585 0.30612 0.30617
70 0.23423 0.23262 0.23284 0.23288
80 0.16071 0.16000 0.16016 0.16019
90 0.08500 0.08432 0.08440 0.08441
100- 0.00000 0.00000 0.00000 0.00000

simulation, when moving forward the time by a small amount, we generate the normally
distributed fluid increment and add it to the fluid level. To increase the accuracy of the sim-
ulation, we made the time increment inversely proportional with the variance parameter of
the current state. For this numerical example, the time increment in state i was computed by
Δ = 10−4/max{1, si}. The results in the tables are obtained by averaging 105 simulation
results. We have omitted the confidence intervals, since these results have two sources of
uncertainty: the discretization and the finite number of repeated executions both decrease
the confidence, and while the latter one can be quantified, we can not quantify the uncer-
tainty introduced by discretization. By such small time increments, the computational effort
of the simulation is huge, underlining the importance of the analytical solution presented in
the paper.

As seen from the results, the variance of the traffic has a significant impact on the tran-
sient distribution. For easier comparison, Fig. 5 compares the transient ccdf by four different
settings of σ 2. The higher the variance is, the closer the transient distribution is to the uni-

Fig. 5 Ccdf of the buffer contenvt,G0,π
t (x), when t = 100 for various values of the traffic variance parameter σ 2
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form distribution. Another interesting property is visible in the figure, namely that there is
no probability mass at the boundaries in the second order cases (σ 2 > 0) due to the use of
reflecting boundaries.

7 Conclusions

We have proposed an approximate numerical solution for obtaining the transient and the
first passage time distributions for both first- and second-order multi-regime MFQs which is
a much more general class of problems than the ones studied in the literature. This method
computes the transient measures from the stationary analysis of an auxiliary and larger-
cardinality MRMFQ. Erlangization and ME-fication methods are comparatively studied for
obtaining this auxiliary MRMFQ. We have shown that ME-fication is a viable alternative to
Erlangization with lesser computational complexity since CME-N captures the SCV of the
deterministic time horizon better than Erlang-N for a fixed order parameter N .
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He Q, Horváth G, Horváth I, Telek M (2019) Moment bounds of PH distributions with infinite or finite

support based on the steepest increase property. Advances in Applied Probability (AAP) 51(1)
He QM, Zhang H (2007) On matrix exponential distributions. Adv Appl Probab 39(1):271–292
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