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A weakly-nonlinear analysis of the transient evolution of two-dimensional, standing waves in a

rectangular basin is presented. The waves are resonated by periodic oscillation along an axis aligned

with the wavenumber vector. The amplitude of oscillation is assumed to be small with respect to the

basin dimensions. The effects of detuning, viscous damping, and cubic nonlinearity are all

simultaneously considered. Moreover, the analysis is formulated in water of general depth.

Multiple-scales analysis is used in order to derive an evolution equation for the complex amplitude

of the resonated wave. From this equation, the maximum transient and steady-state amplitudes of

the wave are determined. It is shown that steady-state analysis will underestimate the maximum

response of a basin set into motion from rest. Amplitude response diagrams demonstrate good

agreement with previous experimental investigations. The analysis is invalid in the vicinity of the

‘‘critical depth’’ and in the shallow-water limit. A separate analysis, which incorporates weak

dispersion, is presented in order to provide satisfactory results in shallow water. © 2003 American

Institute of Physics. @DOI: 10.1063/1.1569917#

I. INTRODUCTION

A. Nonlinear standing waves

While studies of finite-amplitude effects can be traced

back to Stokes,1 for the case of progressive waves, a similar

study of standing waves did not occur for another century.

Penney and Price2 formulated a weakly-nonlinear theory for

standing waves in infinite depth and Tadjbakhsh and Keller3

considered the more general case of arbitrary depth. The re-

sults for the standing wave case were found to be similar to

the progressive wave case in the sense that the wave fre-

quency became amplitude dependent and the free-surface

profile distorted due to the presence of bound superharmon-

ics. Of particular interest was the result that the sign of the

frequency shift ~from the linear value! depended upon the

relative depth ~ratio of depth to wavelength! of the water.

Tadjbakhsh and Keller3 found the critical value of this ratio

to be equal to 0.17. Motivated by this work, Fultz4 conducted

an experimental study which confirmed the presence of this

frequency reversal, but showed the critical value to be 0.14.

In a multiple-scales, slowly-varying analysis of finite depth

standing waves, Roskes5 demonstrated that sideband insta-

bilities would occur beyond a critical depth of 0.162, which

is precisely the critical depth determined in the present study.

B. Parametric instability

The above studies focused on the characteristics of free,

i.e., unforced, weakly-nonlinear standing waves, with little

emphasis on the generation of the waves. Vertical oscillation,

known as Faraday resonance, of a fluid domain, can generate

subharmonic standing waves. Because the base state of the

flow in this case is periodic, this type of instability is known

as a parametric instability.6 First observed by Faraday,7 the

rigorous explanation of this phenomenon was provided by

Benjamin and Ursell.8 Since then, theoretical and experimen-

tal studies of Faraday waves have significantly advanced the

understanding of nonlinear standing waves. A detailed re-

view is given by Miles and Henderson.9

Faraday resonance results in initial exponential growth

of the forced wave. The inclusion of weak viscosity reduces

the growth rate and establishes a minimum forcing amplitude

necessary for growth.10 If cubic nonlinearity is considered, it

can be shown that the waves do not grow unbounded, but

rather attain a maximum amplitude due to nonlinear fre-

quency detuning. Generally speaking, an evolution equation

of the form

ȧ5iDa2iba*2~12i !aa2ila2a* ~1!

is obtained, where a is a complex amplitude, and D, b, a,

and l are real-valued detuning, forcing, damping, and non-

linear interaction coefficients.

Investigations of Faraday resonance have not been lim-

ited only to surface water waves. For example, Foda and

Tzang11 and Kumar12 both studied the Faraday resonance of

thin viscoelastic layers. Umbanhowar et al.13 have shown

that Faraday resonance can excite three-dimensional stand-

ing ‘‘waves’’ in a pure granular medium as well. Finally, the

Faraday resonance of interfacial waves has been pursued by

many authors, including Benielli and Sommeria14 and Hill.15

The experimentally determined growth rates and maximum

amplitudes of the former authors were found to agree well

with the predictions of the latter author.

Parametric instabilities may also be driven by nonlinear

interactions between modes. An elegant example is that of

edge waves on sloping boundaries. These trapped modes
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propagate in the alongshore direction and were shown by

Guza and Davis16 to be resonated by weakly nonlinear, nor-

mally incident surface waves. It has been hypothesized that

edge waves resonated in this fashion play a role in generat-

ing the regularly spaced beach cusps that are found in many

coastal areas. As with the case of Faraday resonance, a maxi-

mum resonated wave amplitude, which is much larger than

the incident wave amplitude, can be determined. This third-

order analysis has been performed by Guza and Bowen,17

Minzoni and Whitham,18 and Rockliff.19

C. Horizontal resonance

If a basin of fluid is oscillated horizontally, rather than

vertically, waves can again be resonated, although there are

some important differences. Generally speaking, an ampli-

tude evolution equation of the form

ȧ5b1iDa2~12i !aa2ila2a*, ~2!

where D, b, a, and l are as above, is now obtained. The

initial growth is now linear in time and the effect of viscosity

is to contribute to placing an upper bound on the wave am-

plitude rather than solely reducing the rate of growth.

There have been a number of studies in the past that

have dealt with horizontal resonance. Chester20 and Chester

and Bones21 included the effects of weak dispersion and

weak viscosity in their theoretical and experimental studies

of resonant waves. The individual roles played by nonlinear-

ity, dispersion, and damping are summarized by the latter

authors:21

The leaning over of the curve near a local maximum...must

be a nonlinear effect closely associated with ‘‘hard spring’’

solution of Duffing’s equation. The existence of several

maxima is the result of dispersion, and the fact that a maxi-

mum is actually attained and that the response curve is con-

nected arises from dissipation.

The experimental data indicated that the number of bi-

furcation points in the amplitude response diagram was a

decreasing function of the relative depth of the fluid. For

example, experiments performed at identical forcing ampli-

tudes yielded a response curve with six bifurcations when the

relative depth was 0.042, but a curve with only three bifur-

cations when the depth was 0.083.

Lepelletier and Raichlen22 used long-wave theory, also

with dispersive and dissipative terms, and paid particular at-

tention to the transients associated with the commencement

and cessation of the basin motion. Their study gave an ex-

plicit result for the initial linear growth rate of the resonated

wave. Solving the nonlinear problem numerically, the au-

thors produced amplitude response diagrams that showed the

same lean to the right as the studies listed above. Maximum

amplitudes were found to be one to two orders of magnitude

greater than the forcing amplitude and experiments were

found to agree very well with the theory.

The work of Waterhouse23 is significant in that it paid

special attention to resonance at near-critical depths. Follow-

ing the lead of Ockendon and Ockendon,24 the problem was

re-scaled to handle this special case. Prior to this, response

curves3,4 had demonstrated a transition from ‘‘hard spring’’

to ‘‘soft spring’’ behavior as the water depth had passed

through the critical value. The re-scaling by Waterhouse23

unified the two responses, illustrating that the shallow-water

hard-spring behavior was, in actuality, a soft-spring response

with an extra ‘‘kink.’’ As a result, a quintic equation in maxi-

mum amplitude was derived.

Finally, the important works of Faltinsen25 and Faltinsen

et al.26 must be discussed, as they closely relate to the cur-

rent analysis. In the former paper, the author used perturba-

tion methods and inviscid analysis to derive a cubic equation

governing the maximum wave amplitude in water of general

depth. A solution of this equation yielded an amplitude re-

sponse curve similar to those discussed above. The latter

paper relaxed many of the assumptions of the former and

used multi-dimensional modal analysis to analyze the tran-

sient behavior of the resonated waves. Damping was consid-

ered phenomenologically. Good agreement between theory

and experiment was reported and many of the observations

are consistent with the present analysis. Of particular note is

the conclusion that, in large tanks, steady-state analysis is not

particularly valuable. This is because ~i! the maximum tran-

sient amplitude can far exceed the steady-state amplitude and

~ii! the time that it takes to actually achieve a steady-state

can far exceed the duration of the forcing.

D. Present analysis

The present analysis distinguishes itself from previous

studies in that it simultaneously considers the effects of weak

viscosity, general water depth, and transient wave evolution.

Most previous studies focused only on steady-state analysis

and did not describe the temporal evolution of the amplitude.

Those that gave consideration to transient analysis22,26 were

numerical in nature, with only limited results being pre-

sented. By using a multiple-scales analysis, the present study

yields an amplitude evolution equation with extremely com-

pact coefficients. As a result, consideration of a wide range

of parameter space is possible. Upon comparison with exist-

ing experimental studies, the present analysis is seen to per-

form well.

The present study also elaborates upon the difference

between transient and steady-state amplitude response dia-

grams. In this context, ‘‘transient’’ refers to the maximum

amplitude the system will obtain once set into motion from

rest and ‘‘steady-state’’ refers to the fixed-point solution of

the system. Upon comparison, it is seen that previous

formulations20,21 will underestimate the maximum response

of a basin set into motion from a state of rest.

One potential application of the current study is to the

prediction of seismically forced waves in lakes, reservoirs,

and fluid storage containers. An understanding of the rate of

growth and maximum amplitude of resonated waves will al-

low for a prediction of shoreline inundation, spillway over-

topping, and dynamic loading. As an example, Ruscher27

conducted experimental studies of a scale model of the Los

Angeles Reservoir following the 1994 Northridge Earth-

quake. The results noted in particular the rich variety of

modes that can be generated in seemingly simple geometries.
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II. FORMULATION

As illustrated in Fig. 1, two-dimensional waves, of

wavenumber k , in a basin of depth h and length L are con-

sidered. The breadth of the basin is D . The fluid density and

kinematic viscosity are r and n, respectively. Periodic forc-

ing of the basin in the x direction is facilitated by prescribing

the velocity of the x50 and x5L vertical walls to be

U05UL5

bv

2
e2i(v1D)t

1c.c., ~3!

where b is a real-valued displacement amplitude, v is a lin-

ear resonant frequency of the basin, D is some small detun-

ing from this resonant frequency, and c.c. denotes the com-

plex conjugate.

The free-surface displacement is described by j(x ,t). If

the fluid is assumed to be weakly-viscous, the velocity vec-

tor, u5(u ,v ,w), is given by the sum of the gradient of a

potential function, F(x ,y ,t), which satisfies Laplace’s equa-

tion,

¹2F50, 2h<y<j , ~4!

and a rotational velocity vector U5(U ,V ,W). By definition,

therefore, “•U50. Through a restriction to weak viscosity,

the rotational velocity vector is only of significance in the

vicinity of boundaries. A solution for these boundary layer

corrections and their incorporation into the boundary value

problem are discussed at length by Mei and Liu28 and Mei29

and will not be presented here.

The problem is to be solved subject to the familiar

boundary conditions

u50, all solid boundaries, ~5!

gj1F t1
1
2 u•u50, y5j , ~6!

j t1ujx5v , y5j . ~7!

Since cubic nonlinearity will be considered, the free surface

boundary conditions are Taylor expanded about the undis-

turbed free surface, yielding

gj1F t52
1
2 u•u2jF ty2

1
2 j2F tyy2

1
2 j@u•u#y ,

y50, ~8!

v2j t5ujx2jvy2
1
2 j2

vyy1uyjjx , y50. ~9!

Next, the problem is to be solved at successive orders,

based upon an expansion in a small parameter e. In this case,

the small parameter is formalized as the ratio of the forcing

amplitude b to the tank length L . For cubic nonlinearity to

balance the forcing, therefore, it is seen from ~2! that a

;e1/3 is required. Additionally, both detuning and the slow

time scale on which a evolves should scale by e2/3. Finally,

the viscosity of the fluid should scale by e4/3. Thus, the prob-

lem may be nondimensionalized by adopting the following:

h*5

h

L
, D*5

D

L
, b*5

b

eL
[1,

t*5tAg/L , v*5

v

Ag/L
, D*5

D

e2/3Ag/L
,

a*5

a

e1/3L
, n*5

n

e4/3L2Ag/L
, u*5

u

e1/3LAg/L
,

j*5

j

e1/3L
.

The asterisks are subsequently dropped and nondimen-

sional quantities are understood. In the results section, some

dimensional results will be presented to facilitate compari-

sons with previous studies. This will be clarified locally.

The free-surface displacement is taken to be

j5e1/3h01 cos~npx !e2ivt
1e2/3h10

1e2/3h12 cos~2npx !e22ivt
1eh21 cos~npx !e2ivt

1eh23 cos~3npx !e23ivt
1c.c., ~10!

where n is the integer mode number of the wave. As indi-

cated by this expansion, both a bound superharmonic and a

set-down of the water surface are expected at second order.

At third order, a bound superharmonic and a term in phase

with the fundamental are expected. The expansion for the

velocity potential is similar, with the exception that there is

no equivalent set-down term.

At the leading order, there is only the well-known solu-

tion for the linear standing wave,

h015

a

2
, ~11!

f015

2iav

2np sinh~nph !
cosh@np~y1h !# , ~12!

with v2
5np tanh(nph).

At the next order, the familiar Stokes wave solution for

the superharmonic is found:3

FIG. 1. Schematic of rectangular basin geometry. The basin length, breadth,

and undisturbed depth are given by L , D , and h , respectively.
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h125

a2np cosh~nph !

16 sinh3~nph !
@2 cosh2~nph !11# , ~13!

f125

23iva2

32 sinh4~nph !
cosh@2np~y1h !# . ~14!

The ‘‘zeroth’’ harmonic, i.e., the steady-state set-down of

the water surface, is given by

h105
1
8 v2uau2@11coth2~nph !#cos~2npx !

2

npuau2

4 sinh~2nph !
. ~15!

Tadjbakhsh and Keller3 derived the first term, which applies

to standing waves only, but omitted the second term, which

is well-known29,30 and which applies to both progressive and

standing waves.

Finally, at the third order, there are two problems to

solve. The first is for the bound superharmonic h23 , whose

free surface displacement is given by

h23

5

3n2p2a3@118 cosh6~nph !#

512@cosh6~nph !23 cosh4~nph !13 cosh2~nph !21#
.

~16!

Second, and of greater interest, an inhomogeneous prob-

lem for the fundamental harmonic is obtained. Because of

the choice of scalings, the forcing, damping, detuning, and

cubic nonlinearity all enter the problem at this order. Due to

the existence of a nontrivial solution at leading order, it is

necessary to impose an orthogonality condition on the homo-

geneous and inhomogeneous solutions to guarantee

solvability.31 Known as the Fredholm alternative, this appli-

cation of Green’s theorem leads directly to a temporal evo-

lution equation for the wave amplitude:

ȧ5iDa2~12i !aa1b2iluau2a , ~17!

where the differentiation is with respect to the slow time

scale t.

In this equation, a is a damping coefficient, given by

Keulegan32 as

a5

1

np
Anv

2
F 1

D
111

np~122h !

sinh~2nph !
G . ~18!

It should be noted that this result is not exact, as it is based

upon a boundary layer approximation and neglects damping

in the bulk. Indeed, the measurements of Keulegan32 differed

significantly from ~18! in the case of small, nonwetting ~dis-

tilled water and lucite! basins. If the basin was large or wet-

ting ~glass!, the differences were only slight. In both cases,

the discrepancies were partly attributed to surface-tension

and surface-contamination effects. Martel et al.33 give a

more complete treatment of damping, where the rate of en-

ergy dissipation in the bulk is included. Given the small vol-

ume to surface area ratio of their experiments on capillary

waves, this was warranted. Given the large volume to surface

area ratio of the experiments discussed in Sec. III A, this

level of detail is unwarranted in the present analysis. More-

over, within the formal framework of the current perturbation

approach and the chosen scaling of the viscosity, damping in

the bulk does not enter the problem until an order higher than

what is being considered. Thus, the use of ~18! is justified.

The forcing coefficient b is given by

b5@11~21 !n21#
1

Anp
@ tanh~nph !#3/2, ~19!

and the nonlinear interaction coefficient l is given by

l5

vn2p2

256 sinh4~nph !cosh2~nph !
@2cosh~6nph !

16 cosh~4nph !12417 cosh~2nph !# . ~20!

Setting l50 reveals the critical depth to be 0.162. Note as

well that l is a monotonically decreasing function of both h

and n and that l→` as h→0, indicating the invalidity of the

solution in shallow water.

Noting that the complex amplitude a can be expressed as

its amplitude and phase, i.e., a5uaue iu, ~17! is decomposed

into the coupled equations,

duau

dt
5b cos u2auau, ~21!

uau
du

dt
52b sinu1~D1a !uau2luau3. ~22!

As an example, Fig. 2 shows the evolution of the ampli-

tude uau with t for the case of a50.25, b51, l51, and D
50. Clearly evident are the maximum transient amplitude

AT and the steady-state amplitude AS .

III. RESULTS

Before considering the nonlinear results, there are a few

interesting points to make. First of all, note that, from a state

FIG. 2. Temporal evolution of wave amplitude uau, obtained from ~21!–~22!

for the case of a50.25, b51, l51, and D50.

1579Phys. Fluids, Vol. 15, No. 6, June 2003 Transient and steady-state amplitudes

Downloaded 12 May 2003 to 130.203.207.181. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



of rest, no growth (b50) is predicted for even modes. This

is because the horizontal forcing is anti-symmetric and two-

dimensional waves with even mode numbers are

symmetric.34

Next, if the linear limit is considered (l50), it is

straightforward to derive expressions for the maximum tran-

sient and steady-state amplitudes:

AT5

b

@a2
1~D1a !2#1/2 F11expS 2

2ap

ua1Du D
12 expS 2

ap

ua1Du D G
1/2

, ~23!

AS5

b

@a2
1~D1a !2#1/2 , ~24!

which, in the inviscid limit, become AT52b/D and AS

5b/D .

Figure 3 shows the variation of AT with D and a for a

fixed value of b. The steady-state amplitude response curves

are similar in shape. From ~23!–~24!, it is clear that when

D52a , AS5AT and when u11D/au@1 or a→0, AS

→AT/2. Similar response curves were shown by Lepelletier

and Raichlen,22 minus the frequency shift due to viscosity.

Of much greater interest is the response when nonlinear-

ity is included. Considering first the steady-state response,

the derivatives in ~21!–~22! are set to zero and the equations

are subsequently squared and added to yield

uau6
2

2~D1a !

l
uau4

1

a2
1~D1a !2

l2 uau2
2

b2

l2 50. ~25!

This equation, which is cubic in uau2, is easily solved ~e.g.,

Abramowitz and Stegun35! to obtain the response diagram

for AS . For nonzero a, there are two bifurcation points. In

the inviscid limit, the single bifurcation point is easily shown

to be at

D5F27lb2

4
G1/3

. ~26!

The transient response is more difficult to obtain analyti-

cally, in the case of general a. However, as will be illustrated

in Sec. III A, it turns out that a!1 for water waves in large

tanks. As a result, the damping in this case has little role in

determining AT and it is reasonable to deduce a transient

response diagram for the inviscid limit. To do this, ~21!–~22!
are first divided and then rearranged to take the form of a

perfect differential. Integrating, it is seen that the quantity

buausin u2
1
2 Duau2

1
1
4 luau4 ~27!

is a constant of the motion.

Next, if the basin is being set into motion from a state of

rest (uau50), it follows that the constant is zero for all times.

Finally, when uau reaches a local maximum, the inviscid limit

of ~21! shows that u56p/2. Thus, the equation

uau3
2

2D

l
uau6

4b

l
50 ~28!

may be solved exactly to obtain AT . The single bifurcation

point of the transient response occurs at

D5F27lb2

2
G1/3

. ~29!

Figure 4 shows the variation of AS , as obtained from

~25!, with a and D for fixed values of b and l. In this case

l.0, so the water is relatively shallow ~i.e., less than the

‘‘critical’’ depth!. As the damping increases, there is a slight

migration of the response curve to the left and, more pro-

nounced, the two bifurcation points tend towards one an-

FIG. 3. Transient amplitude response diagrams, obtained from ~23!, for the

case of b51.0. The different curves denote different amounts of damping.

FIG. 4. Transient and steady-state amplitude response diagrams, as pre-

dicted by nonlinear theory ~25!, ~28!. Also shown are sample transient re-

sults from numerical integration of the nonlinear equation ~17! and sample

transient results from linear theory ~23!. b51.0 for all curves and l51.0

for all nonlinear curves. Damping values are specified in the legend.
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other. Note that the second bifurcation point is within the

graph axes only for the a50.5 case. At large enough values

of a, the bifurcation points vanish altogether and the ampli-

tude response becomes single-valued for all D. For the cur-

rent example, this occurs when a50.86.

Also shown, for the sake of comparison, are the un-

damped transient response curves, obtained from ~23! and

~28!. The former is included in order to highlight the inad-

equacy of the linear theory near resonance. Note that while

~28! predicts three possible amplitudes at values of detuning

beyond the bifurcation point, the two highest amplitudes are

spurious. This is because, in addition to the initial condition

uau50 that was used in deriving ~28!, there are other com-

binations of nonzero uau and u that result in ~27! being zero.

Finally, the damped (a50.1) transient response curve, ob-

tained by numerically integrating ~17! from the initial condi-

tion a50, is also shown. A fourth-order explicit Runge–

Kutta scheme, utilizing the Dormand–Prince pair,36 was used

to carry out the integration and, as alluded to earlier, the

omission of weak damping in ~28! leads to only a slight

overestimation of AT . Note also the ‘‘jump’’ to the lower

branch of the numerically-obtained transient response dia-

gram with increasing D.

Further insight into the steady-state and transient solu-

tions shown in Fig. 4 can be gained by introducing u

5uaucos u and v5uausin u, in which case the constant given

in ~27! becomes

bv2
1
2 D~u2

1v
2!1

1
4 l~u2

1v
2!2. ~30!

Figure 5 shows contours of this constant for b51, l51, D
51, 2, 3. Recall as well that a50 was assumed in obtaining

~27! and, therefore, ~30!. In the case of D51, there is a

single, stable steady-state solution, as was shown in Fig. 4.

Tracing the zero contour from the initial condition of u5v

50, it is clear that the maximum transient response exceeds

the steady state. In the case of D52, there are two stable

steady-state solutions, corresponding to the maximum and

minimum roots of ~25!, and one unstable solution. Consider-

ation of the contour passing through the origin reveals that

the maximum transient response exceeds all of the steady-

state values. Finally, in the case of D53, there are again two

stable steady-state solutions and one unstable steady-state

solution. While Fig. 4 suggests that there should be three

possible solutions for AT at this value of detuning, recall that

the two largest solutions are spurious. This is evident when

the contour passing through the origin is considered. Com-

paring Figs. 5~b!–5~c!, it is clear that the zero contour has

‘‘pinched off,’’ leading to the dramatic jump to the lowest

branch of the transient response diagram, as was observed in

the numerical results in Fig. 4.

An additional point of significant interest is under what

conditions the linear and the nonlinear theories diverge. Re-

calling Fig. 4, the linear and nonlinear transient response

diagrams were nearly coincident at large values of detuning.

Figure 6 shows, in gray, the regions of validity of the linear

theory for multiple values of a and l. Here, validity is de-

fined by the arbitrary criterion that the linear prediction be

within 610% of the nonlinear prediction. Regions that are

white indicate linear predictions that are more than 10%

above the nonlinear predictions and regions that are black

indicate linear predictions that are more than 10% below the

nonlinear predictions.

FIG. 5. Phase-plane diagrams of ~30! for b51 and l51. Note that ~30! was

derived assuming a50. ~a! D51; ~b! D52; ~c! D53. In ~a!, one stable

steady-state exists while in ~b! and ~c!, two stable and one unstable steady-

states exist. Tracing the contour that passes through the origin reveals the

maximum transient that occurs in a basin excited from rest.
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Consider first the undamped (a50) moderately nonlin-

ear (l51) case shown in ~a!. First, it is clear, and intuitive,

that as the system is forced harder, the detuning band where

the linear theory is invalid increases. More interesting is the

change in behavior with D at a fixed value of b. If the spe-

cific value of b51 is considered, the conditions are the same

as the inviscid transient curve in Fig. 4. At large negative

values of D, the linear response is limited by the detuning,

yielding amplitudes consistent with the nonlinear theory. As

D approaches 0, the ‘‘hard-spring’’ nature of the nonlinear

response results in the linear theory over-predicting the am-

plitudes. As D becomes positive, the two response curves

cross, leading to a brief band of agreement before the linear

theory begins, severely under-predicting the response. Fi-

nally, when the nonlinear response ‘‘jumps’’ down to the

lower branch of the response curve, the two theories are

FIG. 6. An illustration of the range of validity of the linear theory. Gray denotes regions where linear predictions of AT are within 610% of nonlinear

predictions of AT . White regions indicate linear predictions that are more than 10% greater than nonlinear predictions and black regions indicate linear

predictions that are more than 10% below the nonlinear predictions. ~a! l51, a50; ~b! l51, a50.5; ~c! l51, a51; ~d! l510, a50; ~e! l510, a
50.5; ~f! l510, a51.
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again brought into agreement. The other plots in Fig. 6 illus-

trate that, as damping increases, the range of applicability of

the linear theory broadens while, as nonlinearity increases,

the range obviously narrows.

A. Comparison with experiments

Figure 7 shows the predictions of the present analysis,

along with the experimental measurements of Lepelletier and

Raichlen.22 The dimensional parameters for this dataset are

L50.6095 m, D50.23 m, h50.06 m, b51.9631023 m,

n59.431027 m2 s21, and n51. The relative depth is there-

fore 0.0492. The corresponding nondimensional parameters

are a50.0605, b50.185, l5141, and e50.00321. The ex-

perimental results have been converted to the present nondi-

mensional convention. Note that the vertical axis indicates

the maximum crest elevations, not the maximum values of

AT and AS .

Considering first the steady-state results, the agreement

is quite good. The theory correctly predicts the major bifur-

cation at D;3.1, but is unable to predict the dispersion-

associated bifurcation at D;21.5. This clearly shows the

inability of the present analysis to treat resonance in the shal-

low water limit.

With regards to the transient results, the agreement is

reasonable, but it is clear that the theory consistently over-

predicts the free-surface elevation and fails to correctly pre-

dict the location of the major bifurcation. Portions of the

discrepancy can be attributed to the shallowness of the basin

and the omission of viscosity in deducing the transient re-

sponse diagram, as was illustrated in Fig. 4. A possible ex-

planation for part of the balance of the discrepancy is offered

by Faltinsen et al.26 They note that the maximum transient

amplitude is quite sensitive to initial conditions. They found

that very slight motions existing in the tank at the com-

mencement of an experiment could lead to values of AT that

were ;10% different those predicted with the assumption,

which was used in deriving ~28!, of zero initial conditions.

Some data on experiments in water of greater relative

depth are provided by Feng.34 The reported dimensional pa-

rameters are L50.2286 m, D50.127 m, h50.104 m, and

n53. The relative depth is therefore 0.67. The kinematic

viscosity was not reported and is assumed to be 1

31026 m2 s21. Regarding the forcing amplitude, the author

controlled his tank with a function generator. The unfortu-

nate aspect of this is that, as the forcing frequency was var-

ied, so was the forcing amplitude. The only reference to the

actual amplitude of oscillation is a statement that ‘‘the peak-

to-peak amplitude of the moving platform...is about 0.3

mm.’’ Assuming, therefore, that b50.15 mm, the nondimen-

sional parameters are a50.0808, b50.651, l5234.0, and

e50.000656. As shown in Fig. 8, the agreement between the

observations and the theory is reasonable, although large dis-

crepancies exist at low forcing frequencies. More accurate

information about the forcing amplitudes is needed to further

investigate this discrepancy.

Additional experiments were conducted by Faltinsen

et al.26 Note that, in the following comparison, the variables

are assumed to be dimensional, so as to facilitate comparison

with reproduced figures. In their study, first-mode oscilla-

tions of a tank 1.73 m in length and 0.2 m in breadth were

considered. The water depth was 0.6 m, yielding a relative

depth of 0.173. While the authors do not present amplitude

response diagrams, they do provide transient records of free-

surface elevation at the tank end-wall.

Figure 9 shows the initial evolution of the free-surface

displacement at the tank end-wall for two different values of

detuning. For each case, the measurements and calculations

of Faltinsen et al.26 are shown, along with the calculations of

the present study. In the first case, b53.2 cm and D
50.424 rad s21. The corresponding nondimensional param-

FIG. 7. A comparison between the present theory and the experimental data

of Lepelletier and Raichlen ~Ref. 22!. Both transient and steady-state am-

plitude response diagrams are shown. a50.0605, b50.185, l5141, e
50.00322.

FIG. 8. A comparison between the present theory and the experimental data

of Feng ~Ref. 34!. Only steady-state amplitude response diagrams are

shown. a50.0808, b50.651, l5234.0, e50.000656.
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eters are e50.0185, a50.015, b50.453, D52.55, and l
520.409. In the second case, b52.9 cm and D
51.07 rad s21. The corresponding nondimensional param-

eters are e50.0168, a50.0160, b50.453, D56.83, and

l520.409.

Note first of all that, in both experimental runs, the basin

was not set into motion until t;6 s, hence the lack of syn-

chronization between the observations and the calculations.

For both experimental cases, the present analysis, which is

extremely compact, performs very well in terms of predict-

ing the maximum free-surface elevation. The present analy-

sis correctly predicts the period of the nonlinear ‘‘beating’’ to

be ;6 s in the case of D51.07 rad s21, but somewhat over-

estimates the period at ;15 s for the case of D

FIG. 9. A comparison of end-wall free-surface displacement between ~a! the measurements of Faltinsen et al. ~Ref. 26!; ~b! the calculations of Faltinsen et al.

~Ref. 26!, and ~c! the calculations of the present study. Note that this figure presents results in dimensional format. L51.73 m, D50.2 m, h50.6 m, b

53.2 cm, n51, D50.424 rad s21, n5131026 m2 s21. Portions ~d!, ~e!, and ~f! are similar, but with b52.9 cm and D51.07 rad s21. Portions ~a!, ~b!, ~d!,
and ~e! reproduced with permission from Cambridge University Press.
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50.424 rad s21. The observations and calculations of Faltin-

sen et al.26 show the period to be closer to 13 s.

B. Comparison with existing theories

As discussed in Sec. I C, there have been many previous

theoretical studies of forced waves in tanks. It is therefore

worthwhile to highlight the distinctions between those works

and the present study. For example, consider the results of

Ockendon and Ockendon24 and Faltinsen.25 Both approaches

were inviscid investigations of the steady-state response of

an oscillating tank.

As shown in Fig. 10, the steady-state predictions of both

Ockendon and Ockendon24 and Faltinsen25 are very nearly

identical to those predicted by ~25! with a50. Since, as

suggested by the data in Fig. 7, transient amplitudes can far

exceed steady-state amplitudes, an application of these pre-

vious theories will underestimate the maximum amplitude in

a basin set into motion from a state of rest. Another short-

coming of steady-state analysis is that, as pointed out by

Faltinsen,26 it can take an inordinate amount of time for a

weakly-damped system to attain a fixed-point solution.

IV. SHALLOW WATER

As is well known and as pointed out by Faltinsen,26

theories formulated in general depth fail in shallow water.

Quadratic self-interactions of the fundamental mode will re-

sult in higher harmonics evolving on a slow time scale,

rather than being bound. Thus, the problem must be re-

formulated, following the lead of Mei and Unluata.37 Note

that the formulation in this section is presented in a dimen-

sional format. Using the shallow water equations,

j t1hux1jux1ujx50, ~31!

u t1uux1gjx1
1
3 h2uxxt50, ~32!

the free-surface displacement and horizontal velocity are ex-

panded as

j5 (
q51

n
aq

2
cos~qkx !e2qi(v1D)t, ~33!

u5 (
q51

n
ivaq

2kh
sin~qkx !e2qi(v1D)t, ~34!

where n now refers to the number of modes retained and the

complex conjugate is once again understood.

If weak detuning, viscosity, nonlinearity, and dispersion

are all considered simultaneously, the following evolution

equation for the qth mode is obtained:

ȧq5FqiD1

i~qv !3h

6g
2~12i !Aqnv

2

2h1D

2hD
Gaq

2

3iv

8h
Fq

2
aq/2

2
1q (

p51

n2q

ap
*ap1q

1q (
p51

q/221

apaq2pG , q even;

ȧq5d1q

2bvh

L
1FqiD1

i~qv !3h

6g
2~1

2i !Aqnv

2

2h1D

2hD
Gaq2

3iv

8h
Fq (

p51

n2q

ap
*ap1q

1q (
p51

(q11)/221

apaq2pG , q odd; ~35!

where d is the Kronecker delta. As an example, if seven

modes are retained, the evolution equation for the primary

(q51) mode is given by

ȧ15

2bvh

L
1F iD1

iv3h

6g
2~12i !Anv

2

2h1D

2hD
Ga1

2

3iv

8h
@a1

*a21a2
*a31a3

*a41a4
*a51a5

*a6

1a6
*a7# .

While the techniques that led to ~25! and ~28! could, in

principle, be applied here to obtain coupled equations for the

transient and steady-state solutions, it is more expedient to

integrate the evolution equations numerically from the initial

condition of a15a25¯5an50. As in Sec. III, a fourth-

order explicit Runge–Kutta scheme is used to carry out the

integration. As an example, Fig. 11 shows the transient am-

plitude response curves for primary-mode resonance in a

shallow basin (L5117.5 cm, D512 cm, h56 cm, b

53.9 mm, n59.431027 m2 s21), as computed from the

general-depth and the shallow-water theories. For compari-

son, the data of Lepelletier and Raichlen22 are shown as well.

Note that the dimensional results are plotted in a nondimen-

FIG. 10. A comparison of amplitude response diagrams obtained from the

present transient theory ~28!, the present steady-state theory ~25!, the theory

of Ockendon and Ockendon ~Ref. 24!, and the theory of Faltinsen ~Ref. 25!.

a50, b50.185, l5141, e50.00322.
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sional format consistent with Lepelletier and Raichlen.22 It is

clear that the general-depth theory ~28! is inadequate, as it

massively over-predicts the response. However, the shallow-

water approach outlined above, with seven modes retained,

does a very good job of reproducing the observations. Not

only are the amplitudes well predicted, but the major bifur-

cation point „(D1v)/v;1.08… and both minor bifurcation

points (;0.97, 1.02! are captured by the theory. For recent

and much more detailed work on the transient response of

shallow basins, the reader is referred to Faltinsen.38

V. CONCLUDING REMARKS

The conclusions of the present study can be summarized

as follows. First, steady-state analysis has, with some slight

differences, reproduced the theoretical amplitude response

predictions of previous investigations. It was shown that the

inclusion of viscosity is of minor consequence for large ba-

sins. In the inviscid limit, an extremely simple expression for

the bifurcation frequency was found. The theory was found

to compare reasonably well with existing experimental data

in both shallow and deep water.

Second, transient analysis, which has received only lim-

ited attention previously, has been pursued and has revealed

several interesting results. First of all, as with the steady-

state response, it was shown that weak damping plays little

role in determining the maximum response. Next, a compari-

son of the transient and steady-state amplitude response

curves showed that the maximum response of a basin set into

motion from rest can far exceed the steady-state response of

the basin. In the analysis of a reservoir or storage container

during a shaking event of finite duration, this may be of

significance in terms of overtopping potential or ceiling im-

pact. Finally, the bifurcation point of the transient response

was found to occur at a larger ~by a factor of 21/3) value of

detuning than the steady-state response.

Third, the theory, as formulated in water of arbitrary

depth, is invalid at the critical depth and is also invalid in

very shallow water. By revisiting the analysis with the

shallow-water Boussinesq equations and retaining a suffi-

cient number of modes, it was shown that good agreement

with experiments in shallow water could be obtained. In par-

ticular, the additional bifurcation frequencies associated with

dispersion were shown to be captured by the shallow-water

theory.

In closing, the differences between the transient and

steady-state responses raise some interesting questions that

could be answered by future experimentation. Of particular

interest is the hysteretic behavior that is observed in steady-

state response diagrams when experiments are performed by

scanning through forcing frequencies both forwards and

backwards. When scanning along the lower branch, there is a

jump to the upper branch in the vicinity of ~26!. Scanning in

the opposite direction along the upper branch, however, re-

sults in a jump to the lower branch at a detuning value of

greater magnitude. In light of the presence of an additional

bifurcation frequency ~29! associated with transient motion,

and the lack, to the author’s knowledge, of any published

experiments on the matter, it would be interesting to inves-

tigate the experimental location of this second jump. Also of

interest is the question of whether steady-state response

curves obtained in a continuous experiment, where the fre-

quency is incrementally adjusted, are identical to those ob-

tained in a series of experiments at different frequencies,

each beginning from rest.
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