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1. Introduction

In this note the fundamentals of transient beam loading in electron-
positron storage rings will be reviewed. The notation, and some of the
material, has been introduced previously in Ref. 1. The present note is,
however, more tutorial in nature, and in addition the analysis is extended
to include the transient behaviour of the cavity fields and reflected power
between bunch passages. Since we are not bound here by the rigid space
limttations of & paper for publication, an attempt is made to give a reascn-
ably coherent and complete discussion of transient beam loading that can
hapefully be followed even by the uninitiated.

The discussion begins with a consjderation of the beam-cavity interaction
in the "single-pass" 1imit. In this Timit it is assumed that the fields in-
duced in the cavity by the passage of a bunch have decayed essentially to
zero by the time the next bunch has arrived. The probiem of the maximum
energy that can be extracted from a cavity by a bunch is given particu]ar-
attention, since this subject seems to be the source of some confusion. The
analysis is then extended to the "multiple-pass" case, where the beam-induced
fields do not decay to zero between bunches, and to a detailed consideration
of the transient variation of cavity fields and reflected power. The note
concludes with a brief discussion of the effect of transient beam loading on
quantum 1ifetime.
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It is assumed throughout that all rf generators external to the cavity

operate in the continuous {cw} mode. The case of pulsed rf will be dealt with

in a future note.

2. Some Fundamentals

Cavity voltages are taken to be complex (or phasor) quantities, written
with a tilde (e.g., V). The absolute value of the voltage, written without
a2 tilde, is the maximum energy in electron volts that can be gained by a
small non-perturbing test charge which traverses the cavity at the velocity
of light. Assuming V = Vejmt,a reference plane is defined in the cavity by
the position of this maximally accelerated test charge at t = 0. If, for
exampla, the cavity is symmetrical, the plane of symmetry (midplane) is the
reference plane. Thus the projection of V on the real axis gives the energy
gain for a test charge which crosses the reference plane at an arbitrary
phase. It is almost self-evident that the phase of the beam-induced voltaage
must lie along the negative real axis. We will return to this point again
in Section 4.

The analysis foilowing will be carried out assuming & point bunch.
Effects due to non-zero bunch length are then readily computed by considering
the bunch to be composed of an infinite number of vanishingly small stices
and parforming an appropriate integration. In cariying out the integration,
the principle of superposition must be invoked. Suppose, for example, that
a point charge q induces a voltage Vo in a particular cavity mode. A charge
dq then induces a voltage dV = (Vn/q)dq. Each elemert dV of induced voltage
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@V = - dyedt’

where »_ is the resonant angular frequency of the mode and t' is time of

0
passage of dq across the reference plane as defined above. Each element dv
then rings with a different phase, since the passage time t' is different for
each dqg. By superposition we obtain the total induced voltage by summing
over all the elements dV, assuming that each element of induced voltage rings
independently of any effect due to the presence of all the other charge ele-
ments. As an example, it is readily shown in this manner that a gaussian

bunch with standard deviation at will induce a total voltage
vy = Voe-m50:/2

where V, is the voltage induced by a point bunch of the same charge. Expres-
sions for computing the bunch-shape form factor far bunches of arbitrary
shape are given in Ref. 2. More commonly, superposition will be used in this
nate by assuming that the total voltage seen by a charge crassing a cavity
js the vector sum of an externally applied generator voltage and a component
due to the voltage induced by the charge itself. The magnitude and phase
of each component is assumed to be unaffected by the presence of the other
component.

A second powerful law that will be called upon is conservation of energy.
In particular, if a charge passes through a cavity, then conservation of
energy requires that the energy lost (or gainced) by the charge be equal to
the increase (or decrease) of energy stored in the cavity fields. As we shall
see in the next two sections, these twe laws -- superposition and conservation
of energy -- are sufficient to prove several interesting and useful theorems

about beam lpading, This application of superposition and conservation of
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energy to the computation of the charge-cavity interaction is not new (see,
for example, Ref. 3}. The present effort extends these previous results and
attempts to make the physics of the problem easier to visualize by the liberal
use of vector diagrams.

It should be noted that the analysis presented here 5 carried out in
the time demafn. The transient behavior of the cavity fields and the reflec-
ted power is worked out by applying superposition using simple vector diagrams
A paraliel analysis can be carried through in the frequency domain.* The
advantage of the time domain, for the author at any rate, is that it provides
a more direct physical feeling for the problem. It is important to recognize
however, that the time domain analysis breaks down when the charge is actually
inside the cavity. It would be an extremely difficult task indeed to work
out %n detail the development of the beam-induced fields as a function of time
for a cavity of arbitrary shape.* [t is simpler to treat the cavity as a

black box, with a certain energy transfer between the charge and each of the
normal modes {n the cavity. For our purposes here, it can be assumed that

the beam-induced fields appear instantaneously when the charge crosses the

reference plane in the cavity, as defined at the beginning of this section.

3. Efficiency for Energy Extraction from a Cavity

Consider first the energy izit by a charge to all modes in a cavity when
the cavity is initially empty of any stored energy. Let Alge be the energy
lost to the fundamental mode, where the subscript e emphasizes the fact that
the mcde is initially empty. The total energy lost to all modes can be written

AUte = BAUM’ )

*
Chao and Morton® have solved this problem for two infinite conducting plates
perpendicular to the beam axis, but without a beam hole. It is difficult
enough to solve the problem of the development in time of the beam-induced
fields even for this simple geometry.



e B --

where B is called the beam loading enhancement factor. The enmergy lost to

higher-order modes only is

M= U - A, = (B 1)U, . (1)

After the charge has left the cavity, a beam-induced voltage Vbo and a

corresponding stored energy wn remain in the fundamental mode, where

Ho = a\fén . (2)

By conservation of energy, AU = W  and Eq. (1) becomes

A= (B -1V, . (3)

By superpos:lion, V. will be the same even if there is energy stored in the

bo
fundamental mode before the arrival of the bunch. Equation (3) is therefore
valid also when the fundamental mode is driven by an external generator.
Assume now that this is the case and consider the superposition of
voltages for the fundamental mode. The generator voltage component is assumed
to vary as ig = Vgejmt. The phase of this voltage is taken to be ¢ with
respect to the real axis just before the arrival of the bunch at the reference
plane in the cavity. The bunch is assumed to induce a voltage Vbo, which
appears instantaneously when the bunch crosses the reference plane. As men-
tioned previously, it is almost obvious that the phase of the induced voltage
is exactly opposite to the phase of the voltage which would produce maximum
energy gain {see Sec. 4). After the bunch has crossed the reference plane,

the net cavity field in the fundamental mode is, by superposition,
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Vo = 7: +¥%

where Ebo is real and negative and V: is the voltage produced by the external

generator, V: = ﬁ;. This vector sum is illustrated in Fig. 1.

V: = vgr

Reference PhasE_

Fig. 1 -- Vector addition of generator and beam-
induced voltages in the fundamental mode.

Applying the law of cosine ta the vector triangle in Fig. I,

vi2 o= Ve vE, - avin, cos &5 .
From conservation of energy, the energy gained by the bunch from the funda-
mental mode must be equa) tc the difference in the energy stored in the cavity

before and after the passage of the bunch. Since the constant a in £q. (2)

relates any stored energy to the sguare of the corresponding voltage, we have

- +2 -2
AU, = MW, - W =u(Vu-V°)

atzv:vbo cos ¢ - V;o)
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To obtain the net energy extracted from the cavity, we must subtract off the

energy radiated back into higher-order modes, as given by Eq. (3). Thus

ay

net

AU, - A,

a{2vivy,, cos &% - BV],)

This result has been derived previously by Morton and Neil.? The efficiency
for net energy extraction is now

2
au v v

n = net = 2 bo cos ¢+ - B bo . (4}
Wi H vi

The maximum efficiency as a function of V., for a given Vi {s readily obtained

as
cos? 4t (5)
= 5
nmax B
at a beam-induced voltage +
Vv, cos ¢*
Vy, = ——
bo B

Equation (5) is seen to be the condition for maximum energy extraction derived
by Keil, Schnell and Zotter.® For brevity we will call it the KSZ criterion.
The variation in efficiency as a function of V,, {which is proportional to

the charge q) is shown in Fig. 2 below. The constant of proportionality be-

tween V,, and q will be derived in Section 4.
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Fig. 2 -- Efficiency for net energy extraction as a function of
beam-induced voltage.

Two comments about Eq. (5) are in order. We note first of all that ¢
is not the synchronous phase angle. It is the phase of the cavity voltage
before the arrival of the bunch. The synchronous phase angie ¢ is the phase
of the effective cavity field acting in the bunch and will lie at some angle
¢ > ¢*, since the bunch will "see" some fraction of its own beam-induced
voltage. The exact relation between ¢ and ¢* will be derived in the following
section.

The second comment cancerns the maximum efficiency for energy extraction
when there are two counter-rotating beams in a storage ripg. We assume that
the cavity is located so that the fields induced by the q+and q charges are
coherent; that is, the cavities are located an inteqral multiple of half-
wavelengths from an interaction point. On the other hand, it is reasonable
to assume that the fields induced in the higher cavity modes are, on the

average, incoherent (see discussion in Ref. 7)., It can be shown that the
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KSZ criterion becomes for this case

cos? ¢t (&)
n = —_— . 6
‘max (B + 1)/2

The proof is left to the interested reader.

4. The Fundamental Theorem of Beam Loading

Consider a point charge crossing an initially empty cavity. After the
charge has passed out of the cavity, a beam-induced voltage V,, remains in
each mode. What fraction of V,, does the charge itself see as it crosses the
cavity? Since the induced voltage for mode n starts at zero and ends up at
Vpns the most nayve assumption is to take the average, or %V, ., &8s the effec-
tive fraction of the self-induced voltage acting on the charge. In this sec-
tion we will prove that this factoi of one-half is exact for any cavity. The
fact that & charge sees exactly one-half of its own beam-induced voltage we
will call the fundamental theorem of beam loading. This theorem is basic to
a correct computation of the effective cavity vaoltage acting on a bunch when
both a generator voltage and a beam-induced voltage are present. The theorem
also provides the key which relates the energy loss by a charge crossing a
cavity to the cavity parameters computed in the absence of charge. Following
is one of several possible proofs of the theorem.

Assume that a charge q, crossing a cavity sees a fraction f of its own
induced voltage V., foraparticular mode. The energy lost by the charge is

then
AUI = qubl . (7)
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Now let & second equal charge follow the first charge by exactly ope-half

of an rf wavelength of the mode in question. The sequence of events is illus-
trated in the diagram of Fig. 3. When the second charge arrives at the cavity
reference plane, the field {nducec by the first charges has shifted phase by
180° and is now maximally accelerating for the second charge. Moreover, the
induced field Vbz of the second equal charge will exactly cancel the field
from the first charge, which is now - Vbl. Thus no stored energy will remain
in the cavity after the second charge has passed through. By superposition,

the energy gained by the second charge will be

AUl = q(vbl = fvbz) = qv’b]_(l - f) ] (8)

since the charges are equal and Vy, = V,,. Because the stored energy in the
in the cavity is zero before and after the passage of the two charges, we
must have by conservation af energy that the energy lost by the first charge
is equal to the energy gained by the second charge. Equating aU, = AU, in

Egs. (7) and (8),
qfV,, = qV,(1 - f)

1
f=3

By an extension of the proof, it can be shown that conservation of energy
will also be violated if the phase of the beam-induced voltage is not exactly
- 180° with respect to the phase of the field which would maximally accelerate
a test charge following the same space-time trajectory.
Substituting f = % in Eq. {7), we have for the energy lost to an initially

empty cavity 1
ay = -2-qu . (9)
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I Refore arrival of first charge:
W=0 V. =0
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Fig. 2 -- Thought experiment proving the fundamental
theorem of beam loading.
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The loss parameter k for radiation into an empty cavity is defined by
AU = kq? . (10}

From Egs. (2), (9) and (10) we obtain

1
vb = 2kg = —q (1la)
2o
V2 Vi V2
XK = = = » {11b)
4AU 4, au

where W, = AU is the stored energy in the cavity for a beam-induced voltaga
V. The expression for k in Eq. (11b) is valid whatever the source of cavity
voltage, so k = VZ/4W can be computed from the electromagnetic properties of
a charge-free cavity. In this case V is the maximum voltage seen by a non-
perturbing test charge traveling acrass the cavity at the speed of light when
the stored energy is W. It is obtained from cavity programs (e.g., LALA and

SUPERFISH) by finding the absolute value of the integral
L

vV = [E,_(z) e(ijZ/c)dz

[}
along the cavity axis, where w, is themode frequency and L the cavity length,

The parameter R/Q for a cavity is defined by

VZ

R
Q

wh

from Eq. (11b) we then have
w R
k = —[—] . (12)
4 qQ
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The effective voltage “seen" by a charge crossing an initially empty cavity

can be defined as
a0 = Qv

where AU fs the energy lost to a particular mode. From Eqs. (9) and {13) we
then have

c kg = L
Ve = ka = 3% . (13)

Since Veff is a voltage, superposition can be applied to construct a vector
diagram (Fig. 4) which shows graphically how the single-pass net energy gain
for a charge q can be computed, taking into account both the voltage provided

by an external generator and the voltage induced bv the charge itself.

i
I
{
I
|
}
|

| _Ref. Prase
Vieos gt

Fig. 4 ~- Vector diagram showing construction of the net single-
pass energy gain V_ cos ¢ for a driven cavity with
beam loading.
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Let us return now to the question of the maximum energy extraction accor-
ding to the KSZ criterior given in Eq. (5). Recall that KSZ was derived by
invoking superposition and conservation of energy. The formalism of Fig. 4
for computing the net accelerating voltage ¥s based on the fundamental theorem
of beam loading, which was aiso derived assuming superposition and conserva-
tion of energy. It seems reasonable to expect, therefore, that the net beam-
Toaded energy gain Vc cos $ as computed using the construction of Fig. 4 will

be consistent with KSZ. That this is indeed sois shown explicitly inAppendix A.

5. Multiple-pass Build-up of the Beam-induced Voltage

We next calculate the tu-n-to-turn build-up of the field in a cavity
when a charge (bunch) passes repetitively through the cavity, as is the case

in a storage ring. The situation is illustrated graphically in Fi . 5.

7 Jwe
——— e

Fig. 5 -- Dijagram illustrating the multiple-pass build-up of a
beam-induced voltage in a cavity.
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Here Vbu is the single-pass beam-induced voltage (for simplicity, shown here
as positive and real), e-T is the decay of the cavity field during one turn,

§ is the net phase shift per turn (subtracting off multiples of 27) and Qg

is the final cavity voltage for t + w. The minus superscript emphasizes

that fact that Vg is the equilibrium voltage just after the passage of a bunch.

The decay parameter T can be written

T = — {14a)

where T, is the passage time between bunches {assuming equal bunches in a
multiple-bunch machine) and T¢ = 2Gy/uw, is the cavity filling time. The
phase shift & is

§ = Tpw, - 2mh, = Tyl - w} (14b}

where w, is the resonant frequency of the cavity and h,, an integer, is the

harmonic number for a single-bunch machine, or the number of rf wavelengths

between bunches for a ring with more than one bunch. In constructing Fig. 5
we can therefore consider the reference phase to be rotating at the angular

frequency w of the external rf generatar. It is natural to use the external
generator as the basic clock for describing field variations in the cavity,

since the spacing of bunches in a storage ring is determined by the genera-

tor frequency and not by the cavity resonant frequency.

The final field is now readily obtained as the sum of a geometric series

QB = an(l + e Tell 4 g-2Tpi28 & | | )
Vr 1
BLE : (15)
Vio 1- e Teld
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After many turns, when the induced field approaches vg, what is the effective
field seen by & bunch passing through the cavity? By superpositior, the bunch
will see the field present in the cavity from all previous bunch passages,
plus exactly one-half of the total induced voltage arising from its current
passage. Let Vz be the voltage in L2 cavity just befere the bunch arrives.

Then the net voltage Vb acting an the bunch is

~ _ ~3 1 ~
Vp = Yy v 5V,
Since
- - -
oo = VotV o
we have also
-~ _ q._ 1 -
Vp = Vp -5 Vo - (16)

The d agram in Fig. 5 shows the build-up of the induced voltage just after

the passage of a bunch: Vbo is the induced field for the bunch that has just
passed, and the other vectors are the diminished and rotated voltacas remain-
ing from previous bunch passages. The relationship between Vb, ﬁbo, G; is
shawn in Fig. 6, where we now assume that V,, lies zlong the negative real axis,

representing an energy loss; that is, th = -~ Vy,. From Egs. (15) and (16),

Vi 1

1
1
o=

- 5 = F,(1,8) + jF,(1,8) (17a)
= Vuy -ele

i- e—2T

(17b)

F {1,8)
2(1 - 2e"T cos § + e 2T}

e~T sin &
(17¢}

Fo{1,6) -
- (1-2e"Tcosd + e 2T)
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Fig. & -- Diagram showing relation between the effec-
tive beam-induced voltage V, and the induced
voltages just befare and after the passage
of a bunch.

The quantities § and V. in Egs. {17) can be expressed in terms of more usual

cavity parameters, The tuning angle ¥ is defined by

(0, - w)
tan ¥ = 20, ——— = Telw, - w)
Wy
from Eqs. {14) we then have
Te 5
tany = §|——} = — ’ (18)
Tb T

From Eqs. (11a) and (12) we can also write

Vp, = 2%kg = — {—Jq = —— 1 , (19)
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where g is the cavity coupling coefficient such that Q, = (1 + B)Q;, and

i, = q/Ty, is the circulating current (asingle beam s assumed for the moment).

1t is useful to introduce the parameter t,, where

T = = . (20)
1+ Tfo

Here, Tg, is the unloaded filling time of the cavity, Tgo © ZQo/“n' Equation

{19} then becomes

Voo = 1,RT, (21)
and Eqs. (17) bacome
W = - [Fe) + aR(e] (22a)
whera
1- e-ZTo(l+B)
F(8¥) = (220)
2D
e'T°(1+B} sin [t,(i + B) tan ¥]
F(8,%) = (22¢)

D
D = 1.2 Tal*B) (g Pﬁ (1 +B) tan w] + g 2T (1M

6. Computation of the Generator Power

In a storage ring the desired cavity voltage is usually given. That ‘s,
a certain accelerating voltage V. cos ¢ and synchronous phase angle ¢ are
required. The beam-induced voltage is given in terms of the beam current

and cavity parameters by Egs. (22). The required generator voltage is then
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obtained from
- vb » (23)

since the net cavity valtage is the vector sum of the generator and heam-
induced voltages. This sum is illustrated in Fig. 7, in which a constant
generator voltage Vg has been added to the beam-induced voltages shown in

Fig. 6. For a resonant cavity, the generator voltage and generator power

Fig. 7 -- Vector sum of voltages in a beam- loaded cavity driven
by an externai generator.

are related (see, for example, Ref. 1) by
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Y 23%
Vg = (PSR)2 cos ¥ . (24)
1+p
Here, Pg is the incident power, and it is assumed that the generator is

matched by {(for example) the use of a circulator. We now take the real and
imaginary components of Eq. {23). With the aid of Fig. 7 and Eq. (223) we

can write the following expressions for the two components:

Vg cos 8, =V, cos ¢+ Vp, F (BsY) (25a)

Vgsingg = Vosind+ Vo F(8.0) (25b)

where V,  is given by Eq. (21) and 8y is the phase angle of the generator
voltage, Squaring and adding the two expressions, and then eliminating Vg

with the aid of Eq. (24), we have finally

(1+B)2
R cos? 48

c c

i,RT, : iRT, :
. cos¢+——v— F,(B, )| + [sin & + —— F.(8.¥)| . (26)

It will prove useful also to find the phase angle of the generator voltcge.
Dividing Eq. (25b) by Eq. (25a),
Y. sin ¢ + Vbon(ﬂ.qJ)

tan Bg = . (27)
Ve cos ¢ + Vy,oF, (B,¥)

For two equal counter-rotating beams of electrons and positrons, Egs. (25) and

(27) can be applied if i, is replaced by 21 .
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For T, << 1, Eq. (26) reduces to

V2 (1+8)2
P = £ . .

8 R cos? ¢ 48

2
iR iR
+ lcos ¢ #+ ————— cos? W] + |sin¢ + —————— cos ¥ sin P .
Vo(l + 8) V(1 + 8)

which is the expression for the required generator power in the absence of
transient loading effects (see, for example, Ref. 1). The minimum generator

power as a function of ¥ is, for this case,

Vi (1+8) i,R cos ¢
Poliy) = . 1+ (22a)
R 48 v.(1+8)
where
iR
tany, = - —————sindp . {23b)
Vo( 1+ 8)

The coupling coefficient can in turn be adjusted to minimize the generator

power given by Eq. (28a). The result is

vig
PalBa) = ——— {29a)
R
at iR cos ¢
B, = 1+ —— {29b)
Ve

The tuning angle for 8, becomes, cambining Eqs, (28&b) and (29b),

-1
tan W¥(g) = - (—i——-—) tan ¢ . {2yc)
By + 1
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In the general case where 1, > 0, the minimum generator power as a func-
tion of B and Y can be obtained from Eq. (26) for a given cavity voltage V.-
synchronous phace angle ¢, beam current i  and cavity parameters R and T,.
It is not possibl2 to write simple analytic expressions equivalent to Eqs.
(28) and (29), so the optimizations of B and ¥ must be done numerically. It
is found that the dincrease in minimum generator power due to transient effects
is not very laroe (less than a few percent) for typical storage ring designs
at T, up to about 0.5. For 1, > 1, the generator power incresses rapidly
compared to the powsr required in the continuous beam 1imit. For large T,
where the time between bunches is large compared to the cavity filling time,
it 1s ¢lear that some sort of Lulsed ri system would be desirable. In such
a system power is applied to the cavities faor abaut a filling time preceding
the arrival of the bunch. For most of the period between bunches, there is
no stored energy in the cavities and hence no power dissipation.

From Fig. 7, the net accelerating voltage per turn acting on charge q
cos ¢. From Eq. (282) the energy gained by the charge from the

is Vv, = Vc

fundamentai cavity mode is, using Vy, = 2kq,
AU = gV, cos ¢ = qV; cos B, - qu[ZFl(T)] .

Since kq? is the energy loss for a single passage of the bunch through an
empty cavity, the factor 2F (1) takes into account the cumulative effect of
the charge passing through the cavity on successive revolutions. From En.
(17b) the factor 2F, 1is seen to approach unity for large 7, as it should.
For small t, it is convenient to rewrite the net accelerating voltage in a

form which is more natural for a nearly continuous beam,
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ioR
V, = V, cos e, - Tis [TFl(T)]

As T approaches zero, TF, reduces to cos? ¥,

7. Time Variation of the Cavity Voltage between Bunches

In Appendix B it is shown that if ﬁ(m) is the steady-state voltage a
resonant cavity would eventualily reach for t + =, the transient approach of

the cavity voltage to V(=) is given by
V(t) - ﬁ(m) + [Q(D) _ v(m)] e“(t/Tf)(l-j tan ) , (30)

where V{0) is the value of G(t) at t = 0. To see how to apply this expression
to the case of a beam-loaded cavity, we must first draw the appropriate vector
diagram. This is shown in Fig. 8. When the bunch crosses the cavity reference
pléne, the cavity voltage changes instantaneously (in our model} from VZ to
VE. The magnitude of the change is - Vbu. The voltage then begins to charge
toward ﬁg along the spiral path shown. At the precise moment the voltace
once again reaches GI, another bunch comes by to repeat the cycle. We can
now make the following correspondences between the voltages in Eq. {30) and
those in Fig. 8:

V(t) ~ V.(t)

V(o) ~ Vg

V(o) ~ ¥

We have therefore
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Fig. 8 -- Vector diagram illustrating the transient variation of
valtages in a beam-loaded cavity.

8ut from the diagram

VeV = ¥
i+in+edy, =¥ -
g b " 2 "ba c

Therefore
Vlt) = ¥, +¥; [e-unfm-j tan¥) _ 1] - 1w,

To simplify the notation, we introduce a normalized time x = t/T,, such that



n
(343

x =1 when t is equal to the arrival time of the next bunch. Recall also
that tan ¢ = §/t. Substituting for V; from Eq. {19), and again taking into
account that ¥y, = - ¥y, we find
. L Y, feTed* ) 'A
Vo(v) = V. - -

1- e"l'ej"S 2

Separating this expression into real and imaginary components,

Volx) cosp = V_ cos ¢ + V Fo(x) (31a)
Vo(x) sinp = ¥V, sin ¢+ V Fylx) (31b)
where
Falx} = [1 - e 2T - 2e7FT cas x6 + 20" (IVHIT (4 (1l - x)]/ZD {37a)
Fg(x) = [e'T sin 6 - e T sin x5 - e 17T gyn g(1 - x)]/U (32b)
D = 1-2e"" cos 6+ e 2T

Squaring and adding Egqs. {31), and using Vpe = 1,RTy

b4 2

Vi(x) i,RT iR ]
: + |cos ¢ 4+ ——— Fulx}] + Isineg + — Fe(x)] , (33)

Vé vc VC J

where T = 1,(1 + B) and § = T tan &. For a given 1,, B and ¥ are obtained

by minimizing the generator power as given by Eg {26). Equation (33), together
with the definitions of F, and Fg given by Egs. (32), determine the transient
variation in the amplitude of the cavity voltage. The transient variation

in the phase of the cavity voltage is obtained by taking the ratic of Egs. (31),
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V. sin ¢ + VpoFp(x)

tan p(x) (34)

Vo cos ¢ + Vp,Falx)

8. Reflected Power

The reflected power P. can be computed using conservation of energy,

Py = Py - P - didt (35)

where Py is tie incident generator power, P_. = Vi(t)/R is the instantaneous
cavity dissipated power, and W is the stored energy given by
ve(t)

W(t) = — = %Tfupc(t) )
w(R/Q)

where Tg, 1s the unloaded filling time. Equation (35) now becomes
P(t) = P, -P(t)-L11 d—[P (t)] (36)
T B c ? 'fodt | e .

If a normalized cavity voltage v(t) = V_(t)/V. is introduced, the above

expression can be written in normalized form, using x = /Ty, as

vz 1
Prix) = P8 - . v3{x) +

27, 3_‘: [Vz (X)]
The function v3(x) is just that given by Eq. {33).

The above derivation does not give the phase of the reflected power,
which may sometimes be of interest. An aiternative derivation of the reflec-
ted power is given in Appendix €. Although considerably longer, it gives both
the magnitude and phase of the reflected power.
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9. Effect of Transient Beam Loading on Quantum Lifetime

The quantum 1ifetime is given by®

Tg = —_— (37)

[at]
oy

where T, is the damping time for energy oscillations and

Ls

1

£ = / [v(t) . Va]dt (38)

TaHa ty
s

v V{wt)

TR O RCU R e

2nhH, v,

u

Here V(t) is the total voltage, including the beam-induced voltage, seen by
an electron gscillating through the bunch. V, is the total energy Toss in
volts per turn, including losses due to synchrotron radiation, parasitic
modes in the vacuum chamber, and higher-order modes in the rf cavities. The
subscripts g and u refer to the stable and unstable synchronous phase angles.
T, is the revolution time, h is the harmonic number and H  1s a lattice para-

[
meter related to the momentum compaction factor o and energy spread oo by

H, = of (o /E,)?

The integral in Eq. {38} can be represented gecmetrically as the area

lying below the total cavity voltage {including the effect of the beam-
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induced voltage) as a function of time, and above a horizontal line giving
the total energy loss per tura, ¥,- This area, which is proportional to the
depth of the potential well trapping a single particle osciilating incohe-

rently through the bunch, can be computed with the aid of the diagram in Fig. 9.

p— It

Fig. 9 -- Diagram showing the reduction due to beam loading in
the potential well trapping incoherent oscillations.

The solid curve in Fig. 9 gives the rf voltage for the case of negligible
beam 1cading, while the dashed curve shows the voltage for the case of a
short bunch which produces a discontinuity of magnitude - Vp, = - 2kq in
the cavity voltage. We see that the parameter £ will bé reduced by beam

loading in proparticn to the shaded area.
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Call the integral in Eg. (38) AD for the case of no beam loading and A

with beam loading. Then

¢s
cos wt
A, = [ [—— - 1)dlet) = 2tan ¢, - 0 (39)
cos ¢
_¢3 -]
¢
y cos wt
A = f - 1) d(wt)
+ cos ¢
sin ¢ +
= (tdﬂ¢5'¢5)+——"¢ ;
cos Gg
thus
£ (tan ¢g + sin 67/cos &g) - (¢ + ¢°)
= (40)
) 2(tan ¢g - ¢s)

The relation between ¢+ and ¢, s given by the basic beam-loading vector

trianjle. This is repeated for conveniemce in Fig. 10.

5% =-Rg

!
I
|
|
|
i
i
!
]

Vothg

Fig. 10 -- The beam-lpoading vector triangle.
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From the triangle in Fig. 10,

Vi cos ¢t = V, + kg
+ocin ot =
Ve sin o7 = V_ tan ¢
tan ¢,
tan ¢+ = 7 {491)
1+ kq/V,

As a numerical example, consider the parameters for the LEP-70 ring:?

T = 24 hours

T. = 5.8msatE = 15 GeV

£, = 20.2

Y, = 1079 M

R = 32.3 62

i, = 10.5 mA per beam

T, = Ty/Tge = 0.52

kg = iRty = 176 MV (two beams)
b = 29.8°

Using values for ¢5, V, and kq in Eq. (41), we compute that o = 26.2°.
from Eq. (40), we then have £/£, = 0.990. Equatfon (37) implies

dt dg
= (£-1) —
13

Tq

The reduction in quantum lifetime due to beam lpading is therefore about 20v.

However, from Eq. (39) we can work out that, using cos ¢g = V,/V¢,
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de dA 2 tan g dV,

& Ag Ry Ve

From Eq. (39), A, is about 0.1 for ¢, = 29.8°. Thus only a trivial increase

in V_ (about 0.1%) is required to restore the quantum lifetime to 24 hours.
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APPENDIX A

Consistency of the Beam-loaded Energy Gain
with the KSZ Criterion

The beam-loaded energy gain is given by V. cos ¢ in the diagram of
Fig. 4. We will prove that this energy gain is always consistent with the
KSZ criterion as expressed by Eq. (5). Let V. be the sum of the synchrotron
radiation loss and all parasitic mode losses external to the rf cavities,

Then the fundamental mode must provide a voltage gain

Vocosd = V.o + Vo »

where qVpy = AUpg i5 the energy loss to higher modes. From Egs. (1) and {10),

th = (B - ])kq

Frem Fig. 4, the voltage VZ before tne arrival of the bunch is related to

V. cos ¢ by
V: cos ¢* = V. cos ¢ + kq
Combining the preceding three expressions,
V: cos ¢t = V. + Bkq . {A-1)

The net energy extracted from the rf cavities is simply gq¥;. The energy
stored in the cavities before the arrival of the bunch is W* = oV}Z.

Therefore the efficiency for net energy extraction is

Vs

+
av;?
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Using 1/a = 4k from Eq. (11a), and eliminating Ve® with the aid of Eq. (A-1),

the efficiency becomes

cos? ¢+
n = —— (A-2)
F
(V + BKq)?
F=o — .
4kaqVg

To be consisten. with KSZ, the factor F must never be less than B. By

differentiation, the minimum value of F as a function of kq is found to be
F(min) = B at kq = Vg/B. Thus the actual efficiency for energy extraction
as expressed by Eq. {A-2) can never exceed cos? ¢*/B as long as the proper

allowance for higher-mode losses, given by

Vip = (B - Dkqg = i 7.

we Ty

20,

hm [

TO
—(B-1R ; T
2
has been included in computing the total required voltage gain, V. cos ¢.
It should be noted that the preceding expression for the higher-mode-loss
impedance for the rf cavities is valid in the single-pass limit. If the
induced higher-mode fields do not decay away between bunch passages, the ac-
tual loss can be more or less, depending on the phase length of the ring cir-

cumference for the modes in guestion.
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APPENDIX B

Transient Response of a Resonant Cavity to a

Step Change in Driving Voltage

Consider first an undriven cavity with resonant frequency w, and damping
time T;. Suppose the cavity is initially charged to vo1tage§d(o), and that
this voltage is allowed to decay as e /Tf while viewed in a reference frame
rotating at angular frequency w (the rf driving fregquency). The time varia-

tion of the cavity voltage is
Va(t) = Ty(0)e7/Te et | (8-1)

where dw = w, - w. The time variation of V,{t) [the reason for the subscript

will become clear shortly] is illustrated in Fig. B-1.

Fig. B-1 -- Discharge of a resonant cavity viewed in a
rotating coordinate frame.

The relevance of this seemingly simple physical picture may not he

obvious at first glance. 1In a storage ring we are dealing with driven rf
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cavities, and the bunch repetition frequency is also a sub-harmonic of the
driving frequency w. Thus all steady-state drives valtages are phasors viewed
in a coordinate system rotating at the driving frequency w. Transient varia-
tions can, however, be viewed as the superposition of a final steady-state
voltage level plus an undriven discharge toward this voltage, which occurs

at the natural cavity resonant frequency w,. Thus, by adding a final steady-
state vector V(=) to the diagram in Fig. B-1, we obtain the general transient
varfation of the cavity valtage V(t), where V(t) = ¥(0) at t = 0. V4{t) in

Eq. {B-1) now gives the time variation of the “"difference vector”,

V(1) - V(=) (6-2a)

vd(t)
where

Val0) = V(0) - ¥(=) . (8-2b)

The relationship of these vectors is shown in Fig. B-2.

Fig. B-2 -- Transient change of the cavity voltage between V(0)
and V(=).
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Ustng the definition of the tuning angle, tan ¥ = TgAw, Eq. (B-1) becomes

Va(t) = Tg(0) e (t/Tp) (1] tany) (5-3)

Substituting for Vy(t) and V4(0) in this expression using Eqs. (B-2), we

abtain He) = (=) + [F(D) _ V(m)] e~ (t/Tg)(1=f tand) (B-4)
This expression can also be considered as giving the transient reponse of a
resonant cavity to a step change indriving voltage fromV{0) to V(=) at time t = 0.
It is interesting to show that Eg. (B-3) represents an equiangular spiral.
That is, the tangent to the curve at any point P in Fig. (B-1) makes a con-
stant angle with respeci to the difference vector joining point P to the
origin. Thederivative V=dV/dt is tangent to the curve ¥(t). From Eq. (B-3),

Valt) = - Vg(t)i ~ 5 tan w}/T,

Since
e-iw

(1 -3 tan ¥) cos ¥ s

we have -
Valt) = - Vy(v)

Te cos

Thus 1f V,(t) is rotated by angle + ¥, it will lie along the direction of
- V4(t) as shown in Fig, B-3.

*/Te)fon ¥

J Y@

Fig. B-3 ~- Diagram showing the equiangular property of
Eq. (B-3).
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APPENDIX C

Alternative Derivation of the Reflected Power

For reasons which will become apparent later, we must first compute the
phase angle between the instantaneous cavity veltage V.(t} and the generator
voltage at resonance, Eg,. The generator voltage off-resonance is related

to Vgr by* . -

Vg Vgr cos v el¥

That is, as the cavity is tuned off resonance, the phase rotates through angle
¢ and the magnitude decreases by a factor cos ¢. The relatiorship of V_(t)

to ¥, and Vg is shown in Fig. C-1.

Fig. €-1 -- Diagram showing phase angles used to compute angle
Y(t) between Vc(t} and Vgr.

It is seen that angle Y(t) between V.(t) and ﬁg, is given by

*
In tuning-angle notation, the impedance Z of a parallel resonant circuit
off-resonance is related to the impedance on resonance I, by I/, =

(1 - j tan ¥)-*, where tan ¥ = 2Q; (v, - w)/w,.
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(t) = w(t) -8+ % (c-1)

where 8g s the phase angle of the generator voltage and u(t) is the
instantanegus phase angle of the time-varying cavity voltage. The two angles

8, and u{t} have been computed previously by Eqs. {27) and (34), and Y(t) is

g
therefore determined through Eq. {C-1).

We next switch our attention to the input transmission line t. the cavity,
where we consider a different kind of superposition of voitages. The total
reflected wave traveling away from the cavity coupling aperture (or loop} can
be considered to be the vector sum of a reflected wave equal in magnitude to
the incident wave from the generator, but reversed in phase after reflection
from the plane of the coupling aperture, and an emitted wave radiating from
the coupling aperture. The emitted wave is the wave that would be present
if the generator were suddenly switched off. The amplitude of the emitted
wave is therefore proportional to V.(t), and the phase is fixed by the phase

of Vc(t). The superposition gives

This vector triangle is shown in Fig. C-2.

Fig. C-2 -- Vector triangle for waves traveling away
from the cavity in the input transmission line.
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The diagram represents wave volitages at the piane of the detuned short in
the input transmission line. If the cavity is shorted out, ¥ = 0 and

= - ¥;. Assume now the cavity is exactly at resonmance, with no beam.

<t

r
Vy nust then also be real at the plane of the detuned short; that is, it is

co-linear with V;. Hence V, must also be co-Tinear with V;. But inside the
cavity we know that Vc is then co-linear with Vgr. The angle Y in Fig. C-2
is therefore the same as angle ¥ in Fig. C-1, since the phase and amplitude
of V. are determinad by V..

Applying the law of cosines to the triangle in Fig. C-2,

v3 vz v
: = 1+ i -2 — cos ¥ . {C-2}
Vi Vi Vi

Now use the fact that, when the generator is switched off, the emitted power
is related to the power dissipated in the cavity through the definition of

the coupling coefficient,
Pe = BP. = BVi(L)/R

The amplitude of the emitted voltage wave is then given by

3%
Ve [Pe \ S ©3)
vy Py / RP )

This expression for the voltage of the emitted wave 15 valid whether or not
there is a generator voTtage present. Substitutinn this expression, together

with Vi/Vi = P./P, in Eq. (C-2),
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P v2(t v2
Pele) 1+ Blc(t) -2 Bt cos ¥(t) . (c-8)
Pg RP, RP,

The diagram in Fig. C-2 is just the familiar Smith chart {reflection
coefficient plot) of transmission line theory. Angle a, measured with respect
to 71. is the phase angle of the reflection coefficient. Angle o is readily

obtained in terms of the geometry of Fig. C-2 as

(Ve/Vi) sin vy
(Ve/Vi) cos v - 1

The computation of the voltage v.(t) inside the cavity and V.(t)/Vy in
the input transmission line, carried out in the preceding section for the case
of equal bunch charges with equal spacing in time, can be extended to any com-
bination of hunch charges and bunch spacings by superpesition. In particular,
suppose unequal electron and positron bunches pass through a cavity, with the
positron bunch delayed in time by at. IfV__(t)and ch(t) are the voltages
that would resul* if these bunches passed separately through the cavity at
t = 0, then the net cavity voitage which results when both bunches pass through
the cavity is

Volt) = V() + V (t - at)

When the net cavity voltage has been computed (both magnitude and phase),
then the reflected voltage wave can be computed using Eq. (C-4). or,

alternatively, by conservation of energy using Eq. (36).




