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Abstract

The Poiseuille flow of a KBKZ-fluid, being a nonlinear viscoelastic model for a

polymeric fluid, is studied. The flow starts from rest and especially the transient

phase of the flow is considered. It is shown that under certain conditions the steady

flow equation has three different equilibrium points. The stability of these points is

investigated. It is proved that two points are stable, whereas the remaining one is

unstable, leading to several peculiar phenomena such as discontinuities in the velocity

gradient near the wall of the pipe ('spurt') and hysteresis. Our theoretical results are

confirmed by numerical calculations of the velocity gradient.

1 Introduction

In two papers [1] and [2], Malkus et al. analyzed a striking novel phenomenon in shearing

flows of non-Newtonian fluids called the 'spurt' phenomenon. They associated spurt with

a material property of the polymeric fluid in contrast to the widely accepted explanation

of spurt being the failure of the fluid to adhere to the wall ('wall slip'). In their analysis,

this effect is due to a jump in the steady strain rate profile, leading to a dramatic increase

in the volumetric flow rate. This phenomenon was also observed experimentally by Vino­

gradov et al. [3] in the flow of polymeric fluids through tubes. Similar effects are known in

industrial applications, such as injection moulding or extrusion of polymeric melts through

a capillary to produce fibres. The occurrence of a 'spurt jump' causes surface distortion

of the extrudate, making the final industrial product more or less worthless. Therefore,

the determination of a critical pressure gradient or volumetric flow rate, below which no

spurt occurs is of great practical value in the manufacturing of polymeric melts in chemical

industry.

Malkus et al. used a non-Newtonian fluid model (the so-called Johnson-Segelman­

Oldroyd fluid) that was described by (nonlinear) differential equations. Moreover, they
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restricted themselves to a two-dimensional shear flow trough a slit die. Although the re­

sults of Malkus et al. did explain (amongst other things) the spurt phenomenon quite

satisfactorily, we are of the opinion that a polymeric fluid is more adequately described

by a nonlinear viscoelastic model than by a fluid model. Such a viscoelastic model will

lead to integrodifferential equations (due to the hereditary effect) rather than differential

equations. To describe the elastic response of the dissolved polymer, we have exploited

a so-called Kaye-Bernstein-Kearsly-Zapas (KBKZ)-model (see [4, p. 141]) with an extra

viscous term, due to the small-molecule solvent. As a generalisation of [2] we consider the

three-dimensional axisymmetric shear flow through a pipe (Poiseuille flow). Since in simple

shearing the second normal stress difference may be neglected, we use Wagner's modifica­

tion (see [4, p. 209]) of the KBKZ-model. The constitutive equation contains a hereditary

integral, the kernel of which is taken from the form as explored by Papanastasiou (see [4,

p. 213]). The extra viscous term will dominate the initial response of the fluid. As we shall

show in the sequel, the occurrence of this term is essential for our further considerations.

The description of the Poiseuille flow of such a fluid leads to an integrodifferential

equation for the total amount of shear for a given pressure gradient. This equation will

be derived in Section 2. It is assumed that the pressure gradient is either constant from

the start or reaches a stationary value within a restricted time interval. If the pressure

gradient is prescribed, the volumetric flow rate is still an unknown of the problem for which

a global relation will be derived. The flow starts at t = 0 ( for t < 0 the fluid is at rest) by

a sudden application of the pressure gradient. After the transient phase in which the flow

is not stationary, the flow reaches a steady state profile. Due to the high viscosity of the

fluid, inertia terms will be neglected throughout.

In Section 3 the steady state solution is derived, that is, we have calculated the station­

ary velocity gradient w as function of the radial coordinate r (w = w(r)). In addition, this

gradient also depends upon the stationary value 1of the pressure gradient. However, this

solution is not always unique, depending on the value of the quantity F = F(r) := r1/2,

which represents the magnitude of the shear stress at r. For a certain range of values for

F, three distinct solutions for the steady state velocity gradient exist. The first essential

question is which of these three states will be attained by the fluid after the transient phase.

The second question concerns the (in)sta.bility of these states (of course this question is

related to the first one). The answer to this stability question will be given in Section 4. In

Section 5 we present some results of numerical simulations. These numerical computations

confirm the stability of the different states and show which particular steady state will

be attained in case there are two stable ones. Moreover, the influence of the hereditary

effect is observed by changing the stationary value of the pressure gradient. This involves

understanding phenomena related to spurt, such as shape memory and hysteresis. Finally,

in Section 6 we recapitulate the main conclusions of our paper.
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2 Mathematical formulation of the Poiseuille flow of

a KBKZ-fluid

The flow of an incompressible viscoelastic fluid under isothermal conditions is governed by

the conservation of mass

V·v=O

and the balance of linear momentum

v· T +ph = p ( ~: + (v· V)v ).

(2.1)

(2.2)

Here, p is the (constant) fluid density, h the body force per unit of mass, v the parti­

cle velocity and T the total (symmetric) stress tensor. Later on we shall show that for

strongly viscous fluids the inertia forces, represented by the right-hand side of (2.2), can

be neglected.

The characteristic response of the material is described by the constitutive equation

for the stress. For viscoelastic fluids with fading memory, the stress depends on the defor­

mation history. If a polymer solution contains a small-molecule solvent, this solvent will

generally respond in a viscous manner to any signal, separately from the elastic response

due to the dissolved polymer. Therefore, it is assumed that the extra stress in the fluid

consists of a viscous component and an isotropic elastic one, namely

(2.3)

Here, p is the pressure, I the unit tensor and 1) is the rate-of-deformation tensor defined

by

(2.4)

Moreover, 'TJs is the coefficient of Newtonian viscosity. Finally, the elastic part Sp char­

acterizes the polymer contribution, and this part is here assumed to be described by a

KBKZ-model (d. [4, p. 141]), which in its general form reads

j t ( au -1 au )
Sp = -00 are-t C - arc Cdr. (2.5)

(2.6)

Here, C is the strain tensor (see definition (2.7)), C-1 (the Finger tensor) is its inverse,

Ie and Ie-t are the first invariants of these tensors, and the potential U is in general a

scalar function of Ie, Ie-t and t - r. We use Wagner's modification of the KBKZ model for

shearing flows by choosing aU/are-t = m(t-r)J{(Ie-t) and au/arc = 0 (see [4, p. 209]). If

we use the kernel J{ explored by Papanastasiou et al. (see [4, p. 213]) and restrict ourselves

to one relaxation rate >., then equation (2.5) becomes

j
t >.

Sp = J.l C-1e->.(t-r)dr,
-00 c + Ie-t
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where c, It and A are material constants. When a material particle moves from position x
at time T to x at time t (T ~ t), the strain tensor C is given by

and its inverse is

]='_ ox
- ox' (2.7)

(2.8)

In this paper we study an axisymmetric shear flow in a tube with radius R, starting at

time t = 0. With this flow aligned along the z-axis the flow parameters are independent of

the axial coordinate z and the azimuthal coordinate (). Hence, the velocity takes the form

v = v(r, t)H(t)ez , (2.9)

where H is the (Heaviside) step function. The conservation of mass is now automatically

satisfied. The no-slip boundary condition at the wall and regularity of the velocity at the. .
aXIS reqUIre

and

v(R, t) = 0,

ov
or (0, t) = 0,

(2.10)

(2.11)

respectively. To determine the stress components we need the strain tensor C and its

inverse. With the momentary position at time t represented in cylindrical coordinates by

x = rer + zez , the position of the same particle at an earlier time T is

x = rer + ( z -it v(r,s)H(s)ds ) ez •

Then (2.8) yields

C-

1

= U, ~ 1::' )

and IC-l = 3 + ,2, where

ft ov
, = ,(r, t, T) = - iT or (r, s)H(s)ds, t ~ T,

(2.12)

(2.13)

(2.14)

is the magnitude of the shear strain at time t when the strain is applied at time T. For

T < °no motion is observed, hence

,(r,t,T) = ,(r,t,O), T < 0.

4
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In terms of" the stress components according to (2.3) and (2.6) become

i
t 1_ _ -A(t-r)

Trr - Too - -p+ JlA 3 2( ) e dr,
-00 c++, r, t, r

T
- 'it 1 +,2(r,t,r) -A(t-r)d

zz - -p + JlA. 2() e r,
-00 c +3 +, r, t, r

T - av 'it ,(r,t,r) -A(t-r)d
rz - TJs - - JlA. ) e r,

ar -00 c +3 + ,2(r, t, r

(2.16)

Tro = Toz = 0,

where p = p(r, z, t). The balance of linear momentum (2.2), with pb = 0, is satisfied if the

pressure p takes the form

p(r, z, t) = - f(t)z +po(r, t),

with

j
t 1

po(r, t) = JtA 2() e-A(t-r)dr + Po(t),
-00 c +3 +, r, t, r

and if the shear stress Trz equals

1 p r av
Trz = - 2r f(t) + ;: 1

0
eat (e, t)de·

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

Here, f is the pressure gradient driving the flow and Po is a further irrelevant pressure term.

Substitution of (2.19) into (2.16) results in the following relation between the velocity and

the pressure gradient:

av( t) ,(r,t,O) -At 'it ,(r,t,r) -A(t-r)d
TJs - r, - Jl e - JlA. e r

ar c +3 + ,2(r, t, 0) 0 C +3 + ,2(r, t, r)

o:::; r :::; R, t > O.

Equation (2.20) can be made dimensionless by scaling length by R and time by A-I.

Furthermore we introduce dimensionless variables V, j and 1 by writing v = >.Rv'C+3 v,
, = v'C+31, f = Jlj/(Rv'C+3) , and the two dimensionless material parameters t: and a

by

t: = (c +3) TJsA, a = (c + 3) PR
2

A
2

Jl Jl

Then (2.20) turns into its dimensionless form, reading (since no confusion will arise we

omit the tilde)

av rt

-t: ar (r, t) + h(f(r, t))e-t +1
0

h(,(r, t, r))e-(t-r)dr

o:::; r :::; 1, t > 0,
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where the function h is defined by

X

h(x)=1+x2 '

while the variable f represents the total amount of shea.r

It {)v
f(1',t) = 1'(1',t,O) = - 10 {)1'(1',s)ds, °~ l' ~ 1, t ~ O.

So I' can be expressed in terms of r as

1'(1',t,T) = r(1',t) - r(r,T), 0 ~ l' ~ 1, 0 ~ T ~ t.

(2.23)

(2.24)

(2.25)

The parameter 6 represents a ratio of the Newtonian viscosity "ls to the shear viscosity

J1 / A and the quotient a / 6 corresponds to the Reynolds number. For the highly elastic and

viscous polymers we describe in this paper, a ~ 1. Thus, the last term in the right-hand

side of (2.22) may be neglected. In the original equation this amounts to the neglect of

the inertia terms. With the last term neglected and after division by 1'/2, equation (2.22)

becomes

2 {)v 2 21t

-6 - -{) (1', t) + -h(f(1', t))e-t + - hb(1', t, T))e-(t-r)dT = f(t).
r l' l' l' 0

The right-hand side of (2.26) is independent of 1'. Therefore, it is necessary that

-lim ~ {)v (1', t) =: u(t)
r!O l' {)1'

(2.26)

(2.27)

(2.28)

exists (as we shall assume here). By letting l' lOin (2.26) and performing one integra.tion

by parts, we obtain an expression for the pressure gradient f(t) in terms of the function

u(t) defined above, i.e.

f(t) = 26U(t) +21
t
u(T)e-(t-r)dT.

The inverse of this relation is

lIlt 1 + E:
u(t) = 26 f(t) - 262 1

0
f(T) exp[- -6-(t - T)]dT, (2.29)

(2.30)

(2.31)

which can be used to calculate the function u when f is given. The boundary conditions

pertinent to (2.26) read in dimensionless form

{)v
v(l,t) = {)1'(O,t) = 0, t> 0.

We conclude this section by deriving an expression in terms of f for the volumetric flux Q

defined by

Q(t) = 271" 1
R

v(1', t)1'd1',
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or in dimensionless form

- [1
Q(t) = 2 Jo v(r, t)rdr, (2.32)

(2.33)

where Q = Q/(1rR3 AJC+3). After one integration by parts with the aid of (2.30), relation

(2.32) transforms into (omitting the tilde)

[1 OV
Q(t) = - Jo r

2
or (r, t)dr.

Integration of (2.33) with respect to t yields a relation between the total amount of shear

and the volumetric flow, of the form

(2.34)

Since, according to (2.26), r is determined by f(t), relation (2.34) provides an (implicit)

relation between Q and f.

3 The steady state solution

(3.1 )w(O) = o.

In this section we investigate the asymptotic behaviour of the flow profile as t -+ 00. It

turns out that the velocity profile reaches a steady state (in which the flow variables are

independent of the time) as t -+ 00. This steady state plays an important role in the

explanation of the spurt effect. The steady state velocity profile will be expressed in terms

of the steady state velocity gradient w, defined by

w(r) = lim - oov(r,t),
t--+oo r

From the stability analysis in Section 4 it follows that this steady state velocity gradient

exists. In this section we shall derive an equation for w. Let the pressure gradient f(t)
be prescribed and take a = 0 in equation (2.22). For t -+ 00 this equation turns into a

relation between the steady state velocity gradient wand the given pressure gradient J.

Proposition 3.1 The steady state velocity gradient w defined by (3.1) satisfies

0:::; r :::; 1, (3.2)

if

7 = lim f(t)
t--+oo

(3.3)

exists.
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Proof. Given the existence of 1, suppose that also w(r), as defined by (3.1), exists (this

will be confirmed by the results of Section 4). Then for t -+ 00, the first and last terms

of equation (2.22) (with a = 0) tend to ew(r) and r1/2. Since h is bounded, the function

h(f(r, t))e-t vanishes for t -+ 00. Hence, to verify that equation (2.22) turns into equation

(3.2) as t -+ 00, it remains to prove that

lim [t[h(,(r, t, r)) - h(w(r)(t - r))]e-(t-T)dr = O.
t .....oo Jo

Let 6 > 0, then there exists a time T1 such that

(3.4)

I ~~ (r, t) + w(r) I< 6, (3.5)

Choose to > T1 arbitrary and let T = maxi to, T2 }, where T2 is such that

to
e-

t
Jo Ih(,(r, t, r)) - h(w(r)(t - r))leTdr < 6, (3.6)

For all t > to the remaining integral over [to, t] is bounded by

it Ih(,) - h(w(t - r))le-(t-T)dr ~ it lI(r, t, r) - w(r)(t - r)le-(t-T)dr < 6, (3.7)
~ ~

since (3.5) implies

lI(r, t, r) - w(r)(t - r)1 < 6(t - r), to ~ r ~ t. (3.8)

The inequalities (3.6) and (3.7) imply that the integral in (3.4) is bounded by 26, for all

t > T. This completes the proof. 0

We introduce the integral J defined by

1
00 re-T

J(w) = w 2 2 dr.
o 1 +w r

(3.9)

Then the steady state velocity gradient can be determined for each n[O, 1] by solving

w = w(r) from

cW + J(w) = F, (3.10)

where F is given by F(r) = r1/2. The steady state velocity profile v(r) is next obtained

by integration of w(r) using the boundary condition at the wall. In the Appendix it is

shown that the function

F(wjc):= cw + J(w), w ~ 0, (3.11 )

is nonmonotonic in w when 0 ~ c < C1, where C1 = _JI(W**) = 0.02886. In Fig. 1 the

function F(Wj c) is plotted if 0 < c < C1. Since the viscosity 'fJs of the small-molecule solvent

is small in comparison to the shear viscosity J.l/A, we will henceforth assume that 0 < c < C1·

8



F

1

Fw

FM

.. &r --.-.- .

WM -w

Figure 1 The function F(wjc) = cW + J(w), if 0 < c < Cl. In steady flow the

velocity gradient W satisfies F(Wj €) = F, where F denotes the shear stress.

Then the function F(w;c) has two extreme values, a maximum FM = cWM + J(WM) at

W = WM and a minimum Fm = cWm + J(wm ) at W = Wm ; see Fig. 1. If c i c}, the two

extreme values coincide at the inflection point w** = 2.6255. Besides WM and Wm the

equations F(w;c) = FM and F(w;c) = Fm both have another solution, denoted by WM

and Wm , respectively; see Fig. 1.

Since F( r) = r1/2 with constant 1, F( r) reaches its maximum at the wall r = 1. This

maximum, called Fw (= 1/2), exceeds the maximum FM, if 1> 2FM. Denote the critical

pressure gradient by lcrit := 2FM and let 0 < c < El. Then in supercritical flow (i.e.

1> lcrit) equation (3.10) has

• one solution if 0 :::; F < Fm ,

• three solutions if Fm < F < FM,

• one solution if FM < F :::; Fw ;

see Fig. 1. Let rM := 2FM/l, then rM < 1 in supercritica.l flow. Consequently, we expect

that if 0 :::; r < rM then w(r) < WM, whereas if rM < r :::; 1 then w(r) > WM. Hence, the

steady state velocity gradient suffers a jump at r = rM, i.e.

WM = lim w(r) < lim w(r) = WM,
rlrM r!rM

resulting in a kink in the velocity profile at r = rM; see Fig. 2.

4 Stability analysis

(3.12)

As the steady state equation (3.2) can have more than one solution, we investigate the

stability of the different solutions and we estahlish which particular solution eventually

will be attained. In this section especiaUy the stahility question will be discussed. To
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v(r)

1

o rM 1 -r

(4.1)

Figure 2 The steady state velocity profile in supercritical flow with a kink at

r = rM.

investigate the stability properties of any solution w we assume that the system is in

the steady state at t = to; this will be accomplished by making a special choice for f(t)
during the period 0 ::; t ::; to (see (4.4)). The steady state is then slightly perturbed at

t = to. The behaviour of the perturbed solution for t > to determines the stability of the

unperturbed solution: If the perturbed solution remains bounded (or tends to zero) then

the unperturbed solution is (asymptotically) stable. The definitions of stability of solutions

of integrodifferential equations used here are similar to the usual definitions for ordinary

differential equations (see [5], [6] and [7]).
To obtain an equation in terms of the total amount of shear, we substitute

av of
- or (r, t) = at (r, t)

into (2.26) and find the integrodifferential equation for f

c: ~f (r, t) + h(f(r, t))e-t + rt h(f(r, t) - f(r, T))e-(t-'T)dT = ~r f(t), t > O. (4.2)
vt Jo 2

Since f(t) can be prescribed, we choose f(t) for t ::; to, such that avjar = -w (for given

w) holds exactly for t ::; to. Then the total amount of shear equals

f(r, t) = w(r)t, (4.3)

The corresponding function f = fw(t) can simply be found by substituting (4.3) into (2.26),
yielding

fw(t) = ~ [ c:w(r) + h(w(r)t)e-t +I t
h(w(r)T)e-'TdT ] , (4.4)

Then limt.....oo fw(t) = 1, as occurring in (3.2). As the dependence on r is irrelevant for our

stability analysis, we disregard this variable and represent all functions as depending only

on t.
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To investigate the stability of the steady state associated with a given w-value, we

consider perturbations on this state for t > to. These perturbations can be thought of as

due to a short pulse in the pressure f(t) at t = to, causing a small discontinuity in r (i.e.

r(tt) =1= r(to)= wto). From now on we consider only times t 2: to. The perturbation of

the velocity gradient is denoted bye, so that

t 2: O. (4.5)

Integration with respect to t of (4.5) yields

r(t + to) = wt + X(t) +wto,

where X is defined by

t 2: 0, (4.6)

X(t) = X o + l t

e(r)dr, t 2: O. (4.7)

Here, Xo stands for the jump in r at t = to. We replace t by t + to in (4.2), substitute

(4.3) and (4.6) into (4.2), use relation (3.2) for wand represent the function h by a Taylor

expansion around wt. Thus, we find an integrodifferential equation for X, holding for t > 0,

with

dX ft
di(t) = B(t + to) - A(t + to)X(t) + io a(t - r)X(r)dr +9(X(.), t, to), (4.8)

and

1
a(t) = -h'(wt)e-t

,
c

A(t) = a(t) +it a(T)dr,

b(t) = -100

a(r)dr,

r -
B(t) = -[f(t) - j] - wb(t),

2c

(4.9)

(4.10)

Here, the prime denotes differentiation with respect to the argument. The functions

Oi, i = 1,2,3, are given by Ol(t) = w(t + to) + K1X(t), 02(t,r) = wr + K2X(t) and

(J3(t,r) = w(t - r) + K3[X(t) - X(r)], for some Ki, i = 1,2,3, between 0 and 1. Since

ae:L1(0, 00) and A is locally integrable, the solution X of (4.8) is known to exist locally

(see Driver [8]). The functional 9 in (4.10) is of 'higher order', which means that

9(0, t) = 0, and 9(X, t) = o(IIXII), IIXII ~ o.

11
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Hence, g is locally Lipschitz continuous in X, implying that the initial value X(O) = Xo
determines the solution uniquely. Under these conditions Grossman and Miller [5] proved

that the stability of (4.8) is determined by the stability of its linear form (with g = 0)

X'(t) = B(t + to) - A(t + to)X(t) +I t

a(t - r)X(r)dr, X(O) = Xo. (4.12)

The resolvent R associated with this linear equation, is defined as the unique solution of

R'(t) = -AooR(t) +It

a(t - r)R(r)dr, t > 0, R(O) = 1. (4.13)

Here, Aoo is defined as the limit for t -+ 00 of the function A, i.e. Ax> = -b(O). We shall

show that the stability properties of (4.12) depend on the behaviour of R and its derivative.

If R is locally integrable, then equation (4.12) is equivalent to its variation of constants

form

X(t) = R(t)Xo+It

R(t - r)[B(r + to) +C(r + to)X(r)]dr, t ~ 0, (4.14)

as A and a are locally integrable (see [5] for details). Here, the function C is defined by

C(t) = Aoo - A(t) and belongs to Ll(O, 00). Since we are interested in the behaviour of e,
we differentiate equation (4.14) with respect to t and obtain

e(t) = p(t)Xo+B(t+to)+C(t+to)X(t)+It

p(t-r)[B(r+to)+C(r+to)X(r)]dr.(4.15)

Here, the integral resolvent p is defined as the derivative of R by the relation

R(t) = 1+It

p(r)dr,

and satisfies (see Grossman and Miller [7])

p(t) = b(t) +I t

b(t - r)p(r)dr.

(4.16)

(4.17)

Since b(t)t:L1(0, 00), the Paley-Wiener theorem [9, p. 60] states that p(t)t:L1 (0, 00) if and

only if

1 - b*(z) -I- 0, Rez ~ 0, (4.18)

where b* denotes the Laplace transform of the function b. Analogous to Miller [6], we show

that the integrability of the integral resolvent is crucial.

Proposition 4.1 If p(t)t:Ll(O, 00) and B(t)t:V(O, 00)' then the solution X(t) of (4.14) is

bounded, whereas its derivative e(t) is bounded and tends to zero as t -+ 00, independent

of to.
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Proof If p(t) and B(t) fLl(O, 00), then the functions R(t) (see (4.16)) and J ~ IB(r + to)ldr
are bounded. This implies that there exist positive constants M 1 and M 2 such that the

solution X of (4.14) satisfies

(4.19)

By applying Gronwall's lemma to this equation we obtain

(4.20)

Since C(t)fLl(O, 00), X(t) is bounded for all t ~ 0, independent of to. Hence, there exists

a positive constant M3 such that the derivative e(t) satisfying (4.15), can be estimated by

le(t)l::; Ip(t)IIXol + IB(t + to)1 + M 3 IC(t + to)1

+it Ip(t - r)I(IB(r + to)1 + M 3 /C(r + to)l)dr.
(4.21)

Since the convolution of two V-functions results in a £I-function (by Fubini's theorem),

the last term of (4.21) is bounded, implying that e(t) is bounded for all t ~ 0, independent

of to. Moreover, p(t) (see (4.17)) and the last term of (4.21) tend to zero as t -7 00, as the

convolution of an V-function with a function that tends to zero yields a function that also

tends to zero as t -7 00 [9, p. 59]. Thus, e(t) tends to zero as t -7 00, independent of to· D

Lemma 4.1 If p(t) (j. L1(0, 00) then the solutions X(t) and e(t) are unbounded.

Proof This is trivial since p(t) (j. L1(0, 00) implies that R(t) is unbounded. Hence, the

solution X of (4.14) is unbounded, which implies by (4.15) that eis unbounded. D

Using these results in the Paley-Wiener theorem, we present the necessary and sufficient

condition for stability of the solution w, expressed in terms of the function Gw , defined by

w
Gw(z) = cwz + J(w) - J(-),

l+z

Lemma 4.2

Rez> -1. (4.22)

• IfGw(z) =1= °for Rez ~ 0, z =1= 0, and G~(O) =1= 0, then the solution w is asymptotically
stable;

• ifGw(z) has a zero Zo with Rezo > 0, then the solution w is unstable.

13



Proof Since b'(t) = a(t) and b(O) = -Aoo , the Laplace transform of the function b is equal

to b*(z) = (a*(z) - Aoo)/z. Hence, condition (4.18) is equivalent to z - a*(z) + Aoo i- 0

for Rez ;::: 0, z i- 0, and b*(O) i- 1. Calculation of Aoo = J(w)/ew and of the Laplace

transform a* of the function a,

1
00 1100 1 W

a*(z) = a(t)e-ztdt = - h'(wt)e-(z+l)tdt = -J(--), Re z > -1,
o e 0 ew 1 + z

(4.23)

turns the condition into Gw(z) i- 0 for Re z ;::: 0, z i- 0, and limz-+o Gw(z)/z = G~(O) i- O.

D

We investigate the zeros of Gw(z) in the half-plane Rez ;::: O. The derivative of Gw equals

(4.24)Rez> -1,G ~ (z) = w [ e + (1 : z)2 J/ (1 :) ] ,

implying that G ~ ( O ) = w(e + J/(w)). To investigate if there are any zeros of Gw on the

positive real axis we substitute z = x, where x is real and positive.

(4.25)O~W<WM.x> 0,

Lemma 4.3 If 0 ~ w < WM or w > Wm , the function Gw(x) increases strictly on the

interval (0,00).

Proof Suppose 0 ~ W < WM. Then w/(l + x) < W < WM, x > 0, implies J/(w/(1 + x)) >

J/(WM) = -e (see Appendix). Substitution of this inequality into (4.24) yields

G ~ ( x ) > ew [1- (1 :X)2] > 0,

(4.26)

Suppose W > Wm . For u[O,w/wm -1) or U(W/WM -1,00), the variable w/(l +x) exceeds

Wm or remains below WM, respectively, implying that J'(wj(l + x)) > -e in both cases.

Hence, inequality (4.25) also holds for u[O,w/wm -1) U (W/WM -1,00), W > Wm • For

w/wm - 1 ~ x ~ W/WM -1, we can estimate G ~ ( x ) by

wG~(x) = ew2 + ( -1W )2 J/(~) > e(w2
- w~) > 0,

+x 1 +x
W

WM ~ 1+ x ~ Wm , W > Wm ,

since the function w2J/(w) decreases strictly if W > w* (see Appendix). o

Lemma 4.4 For x> 0 the function Gw(x) has

• no positive zeros if 0 ~ W < WM or W > Wm ,

• at least one positive zero if WM < W < wm .

14



(4.31)

(4.29)

W( r) exists (as we

Proof Suppose 0 ::::; W < WM or W > wm • Then Lemma 4.3 and Gw(O) = 0 im­

ply that Gw(x) is positive for x > O. For WM < W < W m , G~(O) is negative. Since

Gw(x) = cwx[1 +0(1)], x -+ 00, and Gw(O) = 0, the function Gw must have at least one

positive zero. 0

Lemma 4.5 The function Gw(z) has no complex zeros in the quadrant Re z > 0, 1m z > O.

Proof. Write z = x +iy =: (e -1) +iev, with e> 1 and v > 0, and define a := efw, a > O.

The function Gw(z) has a real part

ReGw(z) = cf(e -1) + J(f) - a[(1 + v2)T1(v,a) +T3(II,a)] (4.27)
a a

and an imaginary part

ImGw(z) = V;2 { c+(Z)2[(1+v2)T1(v,a)-T3 (v,a)]}, (4.28)

where

1
00 tn e-ut

Tn(v, a) = ( 2 2)2 2 dt , n=1,3.
o 1 - v + t +4v

By elimination of c from the two equations ReGw(z) = 0 and ImGw(z) = 0, we find

R(e, v, a) := (2e - 1)(1 + v2)T1(v, a) +T3 (v, a) - f J (f) = o. (4.30)
a a

Thus, Gw(z) has a complex zero if and only if the two equations R(e,v,a) - 0 and

1m Gw ( z) = 0 have a solution. Numerical calculations reveal that the equation

(1 + v2)T1(v,a) - T3 (v,a) = 0

has a unique solution v = vo(a), plotted in Fig. 3, while

(1+v2)T1(v,a)-T3(v,a»0, if v>vo(a). (4.32)

Also by numerical calculation we find that, for fixed e> 1, the equation R(e, v, a) = 0 has

a unique solution v = ve (a), as plotted in Fig. 3 for e= 1,2,3,4. From these calculations

it is evident that ve(a) > vo(a) for e> 1 and a > O. Hence, R vanishes only in the region

v > Vo, whereas ImGw(z) > 0 in this region, according to (4.32). This implies that there

are no triples (e,v,a) such that the corresponding values of z and W satisfy ReGw(z) = 0

and ImGw(z) = O. 0

Conclusion We conclude this section by recapitulating the results concerning the sta­

bility of the unperturbed solution w. We proved that

1. steady states with 0 ::::; W < WM or W > W m are asymptotically stable,

2. steady states with WM ~ W ::::; W m are unstable.

Moreover, the stability analysis implies that limt.....oo -8v(r, t)/8r

needed in the proof of Proposition 3.1).
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Figure 3 The curves v = vO(O') and v = v~(O'), for ~ = 1,2, ... in the (0', v)-plane.

5 Some numerical results

In this section we present some results of numerical calculations based on the integrodif­

ferential equation (4.2). These results will confirm the conclusions of our stability analysis

and will provide extra information on such phenomena as spurt, shape memory and hys­

teresis. When starting up the flow from rest, given a fixed value 1 for the pressure gradient

f(t), the velocity gradient will attain a steady value w(r), where w lies either below WM or

above wm , whereas steady states with w between WM and W m are unstable and will never

be attained.

Consider experiments in which the flow is initially in a steady state, reached at time

t = to, corresponding to a forcing 10, and the forcing is suddenly changed to 1 = 10 +fj.].
If fj.l is positive, we call this process loading, otherwise unloading. Suppose lfj.ll is

sufficiently small to reach another steady state after some time. The outcome of this

experiment depends on the initial state 10' Malkus et al. [2] discussed the quasi-static

loading-unloading cycle, where the load is gradually increased from 1 = 0 up to 1max >
lcrit' followed by an unloading sequence until the initial state 1 = 0 is reached. During

the first part of the loading, where 1 < lcrit = 2FM (subcritical flow) the entire flow is

classical: The velocity gradient satisfies w( r) < WM and is continuous in r for all r€[O, 1]. In

Fig. 4 the stationary volumetric flow Q (calculated by means of (2.33) with -avlar = w)
is depicted as a function of 1; the curve AB corresponds to the subcritical flow. When the

flow becomes supercritical (1 ~ lcrit) a kink in the velocity profile forms at the wall, moving

away from the wall to a position rM = 2FM 11, for further increasing]. The high values of

the velocity gradient near the wall cause an enormous increase of the volumetric rate (from

B to C in Fig. 4). For 1 = 1max the spurt layer r* ::; r ::; 1, where r* = 2FM l1max, is of

maximum thickness. From this point we start to unload. At first the spurt layer remains

fixed between r = r* = 2FM 11max and r = 1; this phenomenon called shape memory

corresponds to the path from C to D in Fig. 4. During this unloading the magnitude of

the shear stress ITrzl = F at r* decreases according to F*:= F(r*) = r*1/2 = FM 111max'
If F* falls below Fm (i.e. if 1 < Fm1maxiFM ), the layer position r = rm := 2Fml1 moves

back towards the wall for further decreasing]. This loss of shape memory corresponds to
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the path from D to E in Fig. 4. The spurt layer disappears for 1 = 2Fm (i.e. rm = 1,

which corresponds to point E in Fig. 4) and after that (1 < 2Fm ) the flow becomes entirely

classical again. In the final unloading path EA, the flow is classical and this path coincides

with the initial part of the loading curve. The phenomenon that no part of the loading

curve in Fig. 4 is retraced until the flow has become entirely classical again, is typical for

hysteresis.

0.7,-------,----,----,----,----.----.----.---__

Q

1 0.6

0.5

0.4

0.3

0.2

0.1

A

A: 7=0
B: 7=2FM = 0.7546

c: 7=7m". = 0.80

D: 7 = Fm 7m"./FM =0.7605

E: 7 =2Fm =0.7173

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-1

Figure 4 Hysteresis under cyclic load. The stationary volumetric flow Q versus

the loading 1, with c = 0.02 and 1max = 0.80.

The loading-unloading behaviour of the flow as described above, is confirmed by the

results of numerical calculations of the velocity gradient. At t = 0 the velocity profile is

parabolic

(5.1)

as can be obtained by letting t lOin (4.2). For t > 0 the velocity gradient -8vj8r = 8fj8t

is obtained by computing the total amount of shear f(r, t) as solution of equation (4.2)

for a fixed value of r and the pressure gradient f( t) prescribed. We solve this differential

equation with initial condition f(r,O) = 0 by using Euler's forward discretisation method

with fixed step length. The integral is approximated by the trapezoidal rule. Since e is

small, the term e8f j8t dominates the initial response of the fluid, implying that the step

length must be sufficiently small. Because of the hereditary effect we have to use all values

of f(r, T), T :::; t, to compute f(r, t). However, for t sufficiently large (t > T) the integral

can be approximated by the integral over the interval [t - T, t], since

(5.2)
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By choosing T = 20, we prevent the exponential growth of the number of calculation steps

for increasing time t.

r = 1.00

...J = 0.95

8

6

4

Wrn ----------- ------------------------------------------ ----------------------------

12.--------r--------,,-------,---------r----..,-----------,

ov(r, t)

or

1

10

WM

2

W M t-~-~-~- -~- -~-~- -~-~- -~-~- -~-~--~-~- -~-~- ==-:--:-:--:-:--:-:--:-:--:-:--=-:--=-=--=-=--=-~- -~-~-=- -=-=--j-r~- -~~~- -[-.]--~-=- -=-=--~-
r = 0.90

30252015105

OL.-------'-- --L- ----' ---L.- -'-- _

o

----+-. t

Figure 5 The velocity gradient -8v(r, t)j8r for E = 0.02 and f(t) = 0.8H(t),

computed by Euler's forward discretisation method with step length ht = 0.005.

The steady state velocity gradient jumps at r = rM = 0.9432.

The total amount of shear is computed for a prescribed pressure gradient of the form

f(t) = 1H(t), (5.3)

and we take c = 0.02 « Cl) and 1 = 0.8 > 1crit 2FM = 0.7546 to let the flow be

supercritical. In Fig. 5 the computed velocity gradient as a function of t is plotted for

some values of r. We observe that the velocity gradient approaches a steady state value,

equal to solution W numerically computed from cw + J(w) = r1/2 and represented by

the dotted lines in Fig. 5. As long as 0 ~ r < rM = 2FM11 (= 0.9432 for c = 0.02 and

1 = 0.8), the steady state value w(r) lies between 0 and WM. When r > rM, the steady

state velocity gradient jumps from a value below WM to a value that exceeds WM (> wrn)j

see Fig. 1. Hence, for r < rM the steady state solution W satisfies w(r) < WM = 1.7063,

whereas for r > rM it satisfies w(r) > WM = 9.0094; see also Fig. Sa.
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Figure 6 The velocity gradient -8v(r, t)/8r for c = 0.02 under a changing load

f(t) = 0.80H(t) - 0.02H(t - to) at to = 27, computed by Euler's forward discreti­

sation method with step length ht = 0.005. Both steady sta.te velocity gradients

jump at r = rM = 0.9432.

The process of unloading is numerically implemented by prescribing the pressure gra­

dient as

f(t) = 70H(t) + (11 - 70)H(t - to), (5.4)

where to is sufficiently large to achieve a steady state at t = to. We take c = 0.02, 70 = 0.80

and to = 27. To account for the phenomenon of shape memory, related to a position

between the points C and D in Fig. 4, we choose 71 = 0.78 > Fm 70/FM = 0.7605. The

numerically computed solution following from this change of load is plotted in Fig. 6. We

observe that after the load has changed from 70 = 0.80 to 71 = 0.78, the jump in the steady

state velocity gradient is still situated between r = 0.94 and r = 0.95, implying that the

position of the spurt layer remains fixed at the maximum position r* = 2FM /70 = 0.9432.

This is called shape memory, because the spurt layer is unchanged, regardless of the change

in loading. The set of w(r) values (for n[O, 1]) can be read off from Fig. 8b.
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Figure 7 The velocity gradient -8v(r, t)j8r for c = 0.02 under a changing load

f(t) = 0.80H(t) - 0.05H(t - to) at to = 27, computed by Euler's forward dis­

cretisation method with step length ht =0.005. The second steady state velocity

gradient jumps at r = rm = 0.9564.

The choice 11 = 0.75 > 2Fm = 0.7173 corresponds to a position between the points D

and E in Fig. 4, where the kink forms at r* = 2Fm /11 = 0.9564. In Fig. 7 the solution for

this particular loading is presented. We observe that when the load is equal to 11 = 0.75,

the jump in the steady state velocity gradient occurs between r = 0.95 and r = 0.96, which

is closer to the wall than its position for 10 = 0.80. This moving back of the spurt layer

position to the wall corresponds to loss of shape memory. As shown in Fig. 8c, the jump

in the velocity gradient is now from W m to the value wm < WM.

We conclude that the numerical calculations support our expectations concerning the

occurrence and the specific behaviour of a jump in the velocity gradient under a loading­

unloading cycle, as expressed in the beginning of this section.
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f> fcrit =2FM· FmfolFM < f 1 < fa· 2Fm < f 1 < FmfolFM'

Figure 8 The set of w-values for different values of the stationary pressure

gradient f.

6 Conclusions

Stability analysis and numerical simulations have been used to analyse the Poiseuille flow

of a KBKZ-fluid supplied with an extra viscous term. This fluid model describes the

behaviour of highly elastic polymeric fluids. The addition of a viscous term, leading to a

nonmonotonic constitutive behaviour, is essential in this analysis: A kink in the velocity

profile, due to a jump in the steady state velocity gradient, provides an explanation of

the spurt phenomenon. Hence, internal material properties of the fluid itself account for

the spurt phenomenon and not a global external effect as 'wall slip'. Since in industrial

practice this spurt effect distorts the extrudate by forming a pattern of irregularities at its

surface, a good estimate of the critical value of the pressure gradient (or the associated

critical stationary volumetric flow rate) beyond which spurt occurs, is of great practical

value.

The aspect which distinguishes our approach from that of [2], where a differential equa­

tion is used, is that we analysed a nonlinear viscoelastic constitutive equation containing

a memory integral, leading to a nonlinear integrodifferential equation. Recapitulating our

main results we proved by analytical means that

• for t -+ 00, the flow reaches a steady state;

• if the stationary pressure gradient exceeds a critical value, equation (3.2) has three

distinct solutions for the steady state velocity gradient w(r) for a certain range of

radial coordinates r;

• a steady state w with WM ~ w ~ W m is unstable;

• steady states w with 0 ~ w < WM and W > W m are stable.

Numerical results showed how and under which conditions the different stable states are

attained. This strongly depends on the radial position and the deformation history of

the fluid. In this respect, our calculations reveal that for supercritical flow in the loading
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phase, the flow reaches its steady state gradually as long as r < rM (i.e. F(r) < FM ) (see

e.g. Fig. 5). However, for r > rM one observes a rather small time interval in which the

velocity gradient jumps from a value below WM to a value that exceeds W m , after which

the flow becomes gradually stationary. Since the latter w-value is much larger than the

first one, a kink in the velocity profile appears at r = rM. In the layer near the wall, the

so-called spurt layer, the magnitude of the velocity gradient is very large, which causes an

enormous increase of the volumetric flow rate. Since in our analysis the no-slip boundary

condition v(l) = a is maintained (see Fig. 2), wall slip can not account for this effect.

In the unloading phase the following peculiarities are observed:

• As long as the unloading is small enough, the spurt layer remains fixed; this effect is

referred to as shape memory;

• the decrease of the velocity gradient is at first rather fast, after which it becomes

gradually stationary again;

• when the unloading step exceeds a certain value, the thickness of the spurt layer

starts to decrease and the layer disappears as soon as the flow becomes subcritical

agam;

• the unloading and loading paths do not coincide, implying the occurrence of hystere­

SIS.

Up to now, the observations listed above are only supported by numerical calculations.

A mathematical proof for the qualitative behaviour of the fluid remains for further research.

Due to the integrodifferential character of our equations, an analogy with the methods used

by Malkus et al. [2] is not possible. However, we expect that a continued study of e.g.

• the relationship between the shear stress and the (first) normal stress difference,

• the asymptotics for small e-values,

will provide a further insight in the problem under consideration. Hence, one of the aims

of our future investigations is to derive an analytical explanation for effects such as shape

memory and hysteresis.

Another peculiar effect, not yet mentioned, that is observed in experiments as well as

in industrial circumstances, is the occurrence of the so-called 'shark-skin' instabilities at

the surface of an extrudate (d. [10]). These shark-skins occur in extrusion processes before

spurt turns up. It is very well possible that these effects, which show a typical time scale

behaviour, are associated with the sudden increase of the velocity gradient in the loading

phase as depicted in Figs. 5, 6 and 7. This small time scale behaviour is related to the small

value of e. This supports once more the expectation that a study of the asymptotics with

respect to e will lead to a better understanding of the flow problem under consideration.
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Appendix Properties of J(w)

(A.l)w ----+ 00,

According to Abramowitz and Stegun [11, p. 232], we have the following expansions for

the function J defined in (3.9):

J(w) = logw _ C + ~~ _logw + O(~),
w W 2w2 2w3 w3

and

J(w) = w - 6w3 +O(w5
), W ----+ O. (A.2)
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(A.3)

Here, C = 0.57721 ... is Euler's constant. The derivative J' of the function J is obtained

by differentiation inside the integral sign and integration by parts, yielding

1
00 r2-r l-L(w) J(w)

J'(w) = 1 2 2 e- Tdr = ---
o +w r w2 w

where the integral L is defined by

L(w) = [00 e-
T

2
2 dr.

Jo 1 +w r
(A.4)
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1
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Figure 9 The function J(w) for w 2:: o.

Numerical calculations reveal that on the interval [0,00) the function J is non-negative

with one maximum J(w*) = 0.34794 at w* = 1.2979. Its derivative J' has one minimum

J'(w**) = -0.02886 at w** = 2.6255. Hence, J' decreases strictly on the interval [0, w**]

with J'(O) = 1, whereas on [w**, 00) it increases strictly to zero. In Fig. 9 the function

J(w) is plotted. If 0 < c < C1 := -J'(w**) = 0.02886, the function c + J'(w) has two zeros

denoted by WM and wm. Let WM < wm, then w* < WM < w** < wm. Thus, if 0 < c < Cll

C WM FM WM Wm Fm Wm

(= cWM + J(WM)) (= CWm + J(wm))

0.010 1.4519 0.36164 25.4974 9.9609 0.28661 0.4703

0.020 1.7063 0.37730 9.0094 5.2439 0.35867 0.9242

0.025 1.9463 0.38637 5.5151 3.9248 0.38149 1.3454

Table 1 The zeros WM and Wm of the function of(Wj E) / ow for different values of

E (0 < E < Ed, the maximum FM = F(WMiE) and minimum Fm = F(WmjE), and

the zeros WM of F(WiE)-FM and wm of F(WjE)-Fm, where F(WjE) = EW + J(w).

the function F(Wi c) = cW + J(w) has two extreme values, a maximum FM = cW + J(WM)

at W = WM and a minimum Fm = CWm + J(wm) at W = wm. Moreover, the equations
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F(w; c:) = FM and F(w; c:) = Fm have both (besides WM and wm ) a second solution,

denoted by WM and Wm , respectively. Numerical values of WM, Wm , FM, Fm , WM and wm

for various c: are given in Table 1.

Another useful property is that the function w2 J'(w) decreases strictly for w > w*. If

w* < w < w**, this is trivial since d{w 2 J'(w)}jdw = 2wJ'(w) +w2 J"(w) < O. By repre­

senting J" in terms of J and L (by integration by parts), we transform this derivative

into

d{W
2
JI(W)} 1 [ J(w) ]

d
= - 2L(w) -1- - .

w w w
(A.5)

For w ~ w** the right-hand side of (A.5) is negative since L is a strictly decreasing function

with L(w**) = 0.36177.
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