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Transient Convective Heat Transfer 
In nature, as well as within the human-made thermal systems, the time-variable regimes 
are more commonly encountered, if not always, than the permanent regimes. Nevertheless, 
studies in convection are still more frequent in the permanent regimes, undoubtedly due to 
the related difficulties in calculation in terms of time and cost of computation. 
One may distinguish two categories of time-dependent transfers: those which are due to 
external causes (variable boundary conditions) and those that are due to internal causes 
(sources of variable power, instabilities, turbulence), and the combination of these two 
types may also be encountered. 
In this presentation, we shall analyze some situations which belong to the first category. 
These are concerned with: 
 

− a group of boundary layer flows in forced, natural or mixed convection, where the wall 
is subjected to time-variable conditions in temperature or flux. 

− another group of fluid flows within ducts, in laminar mixed convection regime, where 
the entry conditions (mass flow rate, temperature) are time-dependent. 

 

The techniques of analysis are mainly extensions to the differential method and to the 
integral method of Karman-Polhausen in boundary layer flows, and the finite differences 
solution of the vorticity and energy equations for internal flows.  
The results presented in the transient state are caused by steps of temperature, heat flux or 
velocity, and in particular show the time evolution of the dynamic and thermal boundary 
layers, as well of the heat transfer coefficients. 
Three examples of applications will then be treated: the active control of convective 
transfers, the measurement of heat transfer coefficients, and the analysis of heat 
exchangers. 
The main idea in the active control is that of managing the temperatures or heat fluxes by 
employing a variable regime. Under certain conditions, this procedure may reveal itself 
quite interesting. 
The measurement of transfer coefficients by the photothermal impulse method possesses a 
great interest since it is performed in a non-intrusive way without contact. However, in 
order to be precise, it needs to account for the thermal boundary layer perturbation due to 
the radiative flux sent over the surface, which means to know the evolution of the transfer 
coefficient during the measurement. Previous studies therefore provide essential 
information. 
Within the domain of heat exchangers, we shall present a different global method, which 
allows for the evaluation of the time constant of an equipment in response to sample 
variations of temperature or mass flow rates at the entrance.  
In conclusion, a brief balance of the ICHMT Symposium “Transient heat and mass 
transfer”, Cesme, Turkey, August 2003, will be presented. 
Keywords: Transient, heat transfer. 
 
 
 

Introduction 

Transient convection is of fundamental interest in many 

industrial and environmental situations such as air conditioning 

systems, human comfort in buildings, atmospheric flows, motors, 

thermal regulation process, cooling of electronic devices, security of 

energy systems… Many works reported in literature deal with 

stationary velocity and temperature fields, but only a small number 

deal with time – variable boundary conditions [1, 2, 3, 4], either in 

forced, natural or mixed convection.1 

In this lecture, we intend to complete previous analysis and to 

introduce researches about transient convection realised at the 

UTAP-LTM laboratory in Reims. 

Forced Convection 

Description of the Problem 

The aim of this first part is to present a detailed numerical study 

of the transient forced laminar convective heat transfer over a flat 
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plate or a wedge, when the thermal field is due to different kinds of 

variations – in time and space – of some boundary conditions, i.e. 

wall temperature or wall heat flux. The governing equations are 

solved using extensions either of the differential method, or the 

Karman – Pohlhausen integral approach. Let precise that in this 

whole part, we consider uncoupled situations, i.e. the velocity field 

does not depend on the thermal field. 
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Figure 2.1. Representation of the physical model. 

Plate with No Thickness 

The considered case is a flat plate (or a wedge) with no 

thickness subjected to a change in either the wall temperature or the 

wall heat flux (fig.2.1, 2.2). 
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Differential Method [5] [6] [7] 

First introduce as an example transient laminar forced 

convection from a wedge subjected to a positive step change in its 

surface temperature. At time t < 0, a flow is deflected through an 

angle 2/πβ  between the x-direction on the wedge surface and the 

direction of flow. The coefficient β is defined as: β = 2m / (m + 1), 

where m is the pressure-gradient parameter along the x-direction, so 

that U∞ (x) = C xm, where C is a constant. Of course, the special case 

m = 0 describes the flow on a flat plate without pressure gradient. 

Initially, the flow and the surface wedge are both at the same 

temperature, T∞ . At time t = 0, the surface temperature of the wedge 

is changed to the value Tp and subsequently held constant, therefore 

setting up a time-dependent thermal boundary layer. 
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Figure 2.2. Flow over a wedge. 

 

The partial differential equations that describe the problem are: 
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The boundary conditions are as follows: 
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Defining the dimensionless quantities: 
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the velocity components in x and y directions are expressed as 

follows: 
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where ‘prime’ denotes the differentiation with respect to η. 

By introduction of the transformation variables in the 

momentum equation, the dimensionless stream function, F (η), 

verifies the known Falkner-Skan equation: 
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For a sudden change in the wedge temperature, we show that the 

dimensionless quantities η, t+ and *
T  verifie the differential 

equation: 
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with the boundary and initial conditions: 
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The gradient-pressure parameter m can be positive or negative; 

negative values are encountered, for example, near the rear of a 

wedge. For attached boundary layers, the solutions of equation (7) 

are limited to values of m in the range –0.09 ≤ m ≤ ∞. 

Integral Method [8] 

The use of the KP integral approach to solve unsteady 

thermophysical problems ineluctably leads to the questioning about 

the thermal boundary layer thickness behaviour (see § 2.2.4.2); 

indeed, this approach is based on the integration of the momentum 

and energy equations within the own boundary layers thickness. 

Under the usual boundary layer hypotheses, the integral 

equation of the temperature distribution Θ within the thermal 

boundary layer thickness is given by  
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where U is the streamwise velocity component and ν, Pr 

respectively the kinematic viscosity and Prandtl number of the fluid. 

It will be recalled that the formulation (5) is only suitable in the 

range Pr≥0.5 [7]. 

Using the 4th order Pohlhausen method, the velocity and 

temperature profiles are given by: 
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where pΘ is the surface temperature. 

We will chose here as example a condition of uniform flux 

steps: at time t = 0, the wall heat flux density changes suddenly from 

Φ0 to Φ1. Substitutions and application of the Fourier law (∂ Θ / 

∂y)y=0 = - (Φ1 / λf) gives the final equation for either heating or 

partial cooling problems, where ∆ =  δT / δ and ζ is a constant 

characterising the dynamical boundary layer (ζ ≈ 5,83) : 
 



J. Padet 

/ Vol. XXVII, No. 1, January-March 2005 ABCM 76 

Pr

Re

x
x

Pr

U

t
x

f

xppp

λζ
ν

∂
∂

ζ∂
∂

 

  

2 

 
 

 

 2

 

 
  

10

3 1

2

Φ
=







 Θ
+

Θ

∆
+

Θ
∆ ∞  

 

It will be noticed this equation is not suitable for unsteady fully 

cooling problems, in which  Φ1 = 0; in such cases, the condition of a 

zero surface temperature gradient leads to another temperature 

polynomial profile. 

The initial and boundary conditions on the temperature 

are given by the classical theory: 
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Comparison in Steady State [9] [10] 

Two reasons have justified to check the semi-analytical 

solutions in steady state. The first one is that appears in the 

literature, on the one hand a lack of data in the whole range of fluid 

Prandtl numbers, and on the other hand that some published data 

seem to be wrong. The second reason is that the perfect knowledge 

of steady state solutions is of very important interest in treating 

transient convective problems because they are no more than 

asymptotical solutions of unsteady problems, i.e. the initial solutions 

for cooling problems and the final solutions for heating ones. 

The results have been plotted on fig. 2.3 and 2.4, in addition to 

the corresponding correlations with their Pr limit values. They show 

a good concordance between the two methods. 
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Figure 2.3. Evolution laws of Nux / (Rex)1/2  versus Pr deduced from 
INTEGRAL method. 
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Figure 2.4. Evolution laws of Nux / (Rex)1/2 versus Pr deduced from 
DIFFERENTIAL method. 

It was also shown that in the integral method, 2 or 3-order 

polynomials should be avoided, because the unicity of the solution 

is obtained only with the 4-order. 

Other comparisons were made under transient conditions. They 

show some tiny differences between the two methods in the external 

part of the boundary layers, but the results are very similar near the 

wall. 

Results 

Now, let us come back to transient states. 

Temperature Steps [11] 

Consider first a semi-infinite plate with constant and uniform 

temperature Tp1. Far from the plate, the velocity U∞ and temperature 

T∞ remain constant. At time t = 0, the plate  temperature is suddenly 

changed to Tp2 (Tp2< Tp1 or Tp2> Tp1). 

Results plotted on fig. 2.6 and 2.7 have been obtained from the 

differential method (§.2.2.1) and for a water flow (Pr = 7). The 

parameter Rt means T*p1 / T*p2. In these two cases, the steady state 

is reached at a dimensionless time t+ close to 4,36 (see also § 2.2.4.6 

for transient state duration). Fig.2.8 shows the evolution of the 

instantaneous dimensionless coefficient h+ in the same thermal 

conditions and for several values of Pr. It can be seen that highest Pr 

correspond to longest time durations. 
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Figure 2.6. Transient temperature profiles for a negative step change in 
the plate temperature. 
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Figure 2.7. Transient temperature profiles for a positive step change in the 
plate temperature. 
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Figure 2.9. Transient temperature profiles for a negative step change in 
the plate heat flux. 

Uniform Heat Flux Steps 

a)- Step from a zero state, followed by  relaxation [8] 

In order to discuss the behaviour of the boundary layer thickness 

in the general case, it is necessary to make a short description of the 

heating process from an isothermal state. In that case, we can attend 

the birth of a thermal boundary layer, which thickness δT grows 

from zero to its stationary value (an illustration is given § 2.2.4.3, 

fig. 2.13). 

Now, from the stationary state, heating is cut suddenly: the 

thermal boundary layer changes in a very different way: it does not 

collapse, it uniformly vanishes, without any variation in its 

thickness. 

b)- Change from a heating steady state to another one [8] [11] 

[12] [13] 

Consider now heating or cooling phases from a first heating 

steady state. We know that, in steady state, δT does not depend on 

the wall heat flux. So we are allowed to assume that δT remains 

constant during a heating phase. Indeed, this assumption has no 

interest with the differential method, but is very essential and useful 

in the Karman - Pohlhausen method, in which δT is a fundamental 

parameter. 

Some  results are presented below. The curves plotted on fig. 2.9 

and 2.10 were obtained from the differential method. The parameter 

G is the dimensionless temperature corresponding to an imposed 

wall heat flux Φ, and Rf = Φfinal / Φinitial. They show that the thermal 

boundary layer thickness does not change during the transient state, 

and that the duration of this transient is longer than in the case of a 

temperature step (t+ around 7.3 instead of 4.36, § 2.2.4.1; see also § 

2.2.4.6). 
 

0

0.4

0.8

1.2

1.6

2

2.4

0 0.5 1 1.5 2 2.5

ηηηη

G (ηηηη,t+) Pr = 7

t+ =3.65

Rf = 2

t+ > 7.3 (final steady state)

t+ = 1

t+ = 0.5

t+ = 0 (initial steady state)

 

Figure 2.10. Transient temperature profiles for a positive step change in 
the plate heat flux. 

 

Figures 2.11 and 2.12 show results obtained from the integral 

method, with  an air flow. Two step changes arise at times t = 0 and 

t = 0.3 s. It can be observed that the wall temperatures at different 

abcissas x admit a common envelope corresponding to the final 

steady state, and that the response is slower as x increases.  

As for instantaneous Nusselt numbers, they decrease from 

infinity after each step. 
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Figure 2.11. Wall  temperatures in the case of heat flux steps, from 10 to 
100 W/m². 
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Figure 2.12.  Transient Nusselt number at different locations x (heat flux 
steps). 
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Spatially Varying Heat Flux Steps [14] [15] 

An extension of the KP model has been performed, in which 

arbitrary flux densities are applied along the wall. 
 

 

Figure 2.13. Sinusoidal wall heat flux ϕϕϕϕ(x) step  (from ϕϕϕϕ = 0). 

 

First, fig. 2.13 shows the thermal response to a heat flux step, 

when the spatial distribution of ϕ(x) is sinusoidal. The diagram right 

is of special interest, as it shows the creation of a boundary layer, 

and the variation in time of its thickness, from zero to the steady 

state value (§ 2.2.4.2,a). 

The following figures correspond to step changes from / to three 

different spatial heat flux distributions, denoted as ϕ1, ϕ2, ϕ3 (fig. 

2.14), including a heating process from uniform temperature, and a 

sudden change from cooling to heating (fig. 2.19). Specially, pay 

attention to fig. 2.21, corresponding to this last case. It shows a kind 

of propagation wave of the heat transfer coefficient, and the 

displacement of the point where the wall temperature equals zero, 

corresponding to h = ∞. 
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Figure 2.14. Choice of arbitrary flux densities. 
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Figure 2.15. Unsteady wall temperature  in heating process [0→→→→ϕϕϕϕ1(x)]. 
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Figure 2.16. Wall temperature evolution  in  the case [ϕϕϕϕ2(x) →→→→� ϕϕϕϕ3(x)]. 
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Figure 2.17. Wall temperature evolution in the case [ϕϕϕϕ2(x) →→→→� ϕϕϕϕ1(x)]. 
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Figure 2.18. Wall temperature evolution in fully cooling phase [ϕϕϕϕ1(x) →→→→�✁ ]. 
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Figure 2.19. Wall temperature evolution in the case  [-ϕϕϕϕ3(x) →→→→� ϕϕϕϕ3(x)]. 
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Figure 2.20. Thermal flow rate as a function of time for different abscissa 

(case [- ϕϕϕϕ3→→→→ϕϕϕϕ3]). 
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Figure 2.21. Heat transfer coefficient  for different times (case [- (3((3]). 

Uniform Periodic Heat Flux [16] 

A situation of practical interest consists in periodic boundary 

conditions, uniform periodic heat flux as example. A comparison 

between three different  signal shapes (in time) is reported on fig. 

2.22. As it can be seen, successive sinusoidal signals give a higher 

average wall temperature than triangular ones. 
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Figure 2.22. Average temperatures corresponding to different shapes of 
periodic flux Air flow. Period T = 0.008 s. 

Dimensioned and Dimensionless Results [12] [13] [17] [20] 

Regarding experimental or numerical results in convective heat 

transfer, a very important issue consists in the best way to express 

them: by the mean of dimensioned or dimensionless data?  Of 

course, dimensionless numbers seem to be more convenient, as they 

combine several physical parameters. But they can drive to wrong 

interpretations, because the appearances that we are able to see in 

the results can be very different according as they are dimensioned 

or not. Moreover, in a practical way, engineers are interested only 

by dimensioned data. Two examples are given below (see also § 

2.2.4.2). 

In the first case, heat flux density suddenly decreases. The 

Nusselt number and the heat transfer coefficient h (in an air flow) 

are plotted versus time: it can be easily observed that their trends 

appear very different (fig. 2.23, 2.24). 
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Figure 2.23. Sudden cooling: Nusselt number as a function of 
dimensionless time. 
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Figure 2.24 . Sudden cooling: heat transfer coefficient, at different 
locations x. 

 

In the second case (fig. 2.25, 2.26) a temperature step is imposed 

on the wall, in a water flow (U∞= 0.5 m/s). A unique curve describes 

the evolution of the dimensionless wall heat flux (T*)’ as a function 

of dimensionless time t+, but h versus dimensioned t does not obey 

to the same rule, and crossings in the curves appear, that cannot be 

guessed from the dimensionless plotting. 
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Figure 2.25. Wall dimensionless heat flux for Blasius flow (m = 0). 
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Figure 2.26. Instantaneous convective heat transfer coefficient at different 
abscissa. 

Transient State Duration [5] [12] [18] [19] 

Another fundamental and practical problem consists in 

characterising the “response speed” of a system. This can be done in 

several ways, for example: 

1- Time constant τ deduced from an exponential fitting of the 

temperature response, as shown below (fig. 2.27) in a Blasius air 

flow (U∞ = 1 m/s), with a heat flux step [18]. 
 

 

Figure 2.27. Time constant in seconds (air flow, velocity = 1 m/s). 

 

2- Transient duration defined as the time when the difference 

between instantaneous and steady state heat transfer coefficients 

become less than 1% [19] [12].  

An example is given on Table 1 for a wall temperature step on a 

wedge or in a velocity gradient flow (§ 2.2.1). It shows that the 

transient duration d (expressed in seconds) for the wall heat flux 

increases with x, except near m = 1 where it becomes independent 

of x. Obviously, it increases also with Pr. 

Once more, this offers the opportunity to pay attention to 

dimensioned compared to dimensionless presentation of numerical 

results. Dimensionless results show a transient duration increasing 

as m decreases [5]. On  the contrary, it appears on Table 1 that the 

real (dimensioned) duration has a minimum for m close to zero. 

Complementary data about transient durations can be found in § 

2.2.4.1. 
 

Table 1. Flow over a wedge: dimensioned transient duration d (in seconds). 

Pr m ββββππππ/2 U∞∞∞∞ (m/s) in  

x1 = 0.166 m 

d (s) in x1 U∞∞∞∞ (m/s) in 

x2 = 0.5 m 

d (s) in x2 U∞∞∞∞ (m/s) in 

x3 = 0.8 m 

d (s) in x3 

-0,0476 -π/20 0,545 0,647 0,517 2,053 0,505 3,359 

0 0 0,500 0,572 0,500 1,724 0,500 2,758 

0,111 π/10 0,410 0,663 0,463 1,766 0,488 2,682 

0,333 π/4 0,275 0,934 0,397 1,949 0,464 2,666 

0,71 

1 π/2 0,083 2,917 0,250 2,917 0,400 2,917 

-0,0476 -π/20 0,545 1,474 0,517 4,679 0,505 7,655 

0 0 0,500 1,304 0,500 3,929 0,500 6,286 

0,111 π/10 0,410 1,510 0,463 4,026 0,488 6,113 

0,333 π/4 0,275 2,129 0,397 4,441 0,464 6,077 

7 

1 π/2 0,083 6,649 0,250 6,649 0,400 6,649 

-0,0476 -π/20 0,545 3,839 0,517 12,187 0,505 19,940 

0 0 0,500 3,398 0,500 10,234 0,500 16,374 

0,111 π/10 0,410 3,934 0,463 10,485 0,488 15,924 

0,333 π/4 0,275 5,545 0,397 11,569 0,464 15,828 

100 

1 π/2 0,083 17,319 0,250 17,319 0,400 17,319 

Finite Thickness Plate 

The case of a finite thickness plate is of better practical interest, 

but is also more difficult to solve by the mean of half – analytical 

methods. Indeed, the differential method is inadequate to describe 

conduction -–convection coupled problems. Integral methods can be 

extended to such situations, but does not seem more suitable than 

purely numerical methods. 

 

Backward Face: Temperature Step [21] [22] 

An application of an integral approach is given here for an air 

flow (U∞ = 5 m/s) along a PVC plate (thickness E = 1 cm) and a 

temperature step on the backward face (fig. 2.1). The dimensionless 

temperature is defined as T(t) over the steady state temperature. 

Take notice that its evolution has to be divided in two phases (fig. 

2.28) : in the first one, the wall is considered as half – infinite; the 

second one begins when the thermal signal reaches the interface, 

and needs a polynomial temperature profile different than in the first 
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phase, due to the boundary condition on the upward face of the 

plate. 
 

 

Figure 2.28.  Temperature profiles in the PVC wall (y/E ) and in the air (y/δδδδ), 
x = 15 cm. 

Upward Face: Heat Flux Step [23] 

Consider now a plate isolated on its backward face, and 

submitted to a heat flux step on the flow side face (upward face): 

this example corresponds to an experimental set-up used for the 

measurement of the heat transfer coefficient (§ 5). The same integral 

method has been recently applied to the determination of the 

temperature field (fig. 2.29). 
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Figure 2.29 . Heat flux steps on the upward face of the plate temperature 
profiles in the wall and in the fluid at different times. 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-0.007 -0.005 -0.003 -0.001 0.001 0.003 0.005

Y(m) dans la plaque                                       Y(m) dans le fluide  

Tp-Ti

x = 0.01

x = 0.02

x = 0.03

x = 0.04

x = 0.05

temps = 0.42 s

 
Profils de température pour t = 0.42 s 

0

1

2

3

4

5

6

-0.007 -0.005 -0.003 -0.001 0.001 0.003 0.005

Y(m) dans la plaque                                     Y(m) dans le fluide  

Tp-Ti

x = 0.01

x = 0.02

x = 0.03

x = 0.04

x = 0.05

temps = 0.56 s

 
Profils de température pour t = 0.56 s 

0

1

2

3

4

5

6

7

-0.007 -0.005 -0.003 -0.001 0.001 0.003 0.005

Y(m) dans la plaque                                                Y(m) dans le fluide  

Tp-Ti

x = 0.01

x = 0.02

x = 0.03

x = 0.04

x = 0.05

temps = 0.63 s

 
Profils de température pour t = 0.63 s 

0

1

2

3

4

5

6

7

-0.007 -0.005 -0.003 -0.001 0.001 0.003 0.005

Y(m) dans la plaque                                                                    Y(m) dans le fluide  

Tp-Ti

x = 0.01

x = 0.02

x = 0.03

x = 0.04

x = 0.05

temps = 0.77 s

 
Profils de température pour t = 0.77 s 

Figure 2.29 .(Continued). 

Impinging Jets 

Regarding laminar impinging jets, let me introduce too a 

valuable contribution realised by E. Mladin : A 2-D jet impinging 

over a thick flat plate is submitted to  sinusoidal variations of 

velocity, and a variable heat flux density is imposed on the 
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backward face. Numerical solution is obtained by the mean of an 

integral approach, using 4 – degree polynomials. A panel of results 

can be found in ref. [24]. 

Natural Convection 

Introduction 

Among the three types of convective transfers, forced 

convection is often used because of its efficiency. A contrario, 

natural convection has the advantage to be free in terms of energy 

expense but generates low heat transfer coefficient. Thus it will be 

interesting to improve free convection heat transfer, by the mean of 

time-dependent boundary conditions. 

Laminar free convection problem on a vertical wall has been 

plentifully investigated considering constant wall heat flux or wall 

temperature. But it appears in literature that the dynamic behaviour 

of free convection flows is poorly documented. 

Some recent investigations carried out with various time-

dependent boundary conditions are presented below. They deal with 

free convection over a vertical plate (fig. 3.1) and were performed 

by the mean of extended differential or integral methods. 

Equations to be solved are the same as in § 2.2.1 except the 

momentum equation that becomes: 
 

∂U/∂T + U ∂U/∂x + V ∂U/∂y = gβ(T - T∞) + ν ∂2U/∂y2 

 

 

Figure. 3.1. Velocity layer and coordinates system. 

Differential Method 

An extension of the method described by Cebeci [2] has been 

proposed, which  involves a generalisation of the differential 

method, and the use of Keller-box method to solve the equations. 

The results are quite similar to those obtained with the integral 

method, except far from the wall where the differential method 

gives higher boundary layer thickness [25 to 28]. 

In the case of periodical wall heat flux, it was found that the 

thermal boundary layer thickness does not vary and that for low 

period rates, when the steady state is reached, heat transfer 

coefficient h gets its optimal value. 

Integral  Method 

Using the Karman-Pohlhausen integral method [1, 29], 

physically polynomial profiles of fourth order are assumed for flow 

velocity and temperature across the corresponding hydrodynamic 

and thermal boundary layers. The method of analysis assumes that 

the velocity and temperature distributions have temporal similarity, 

meaning that the ratio Ω between the thermal thickness Tδ  and the 

dynamical thickness δ  depends only upon the Prandtl number 

during the transient [30, 31, 32]: 
 

)t,x((Pr))t,x(T δδ  Ω=  

 

Thus, combining this relation with Fourier’s law and adequate 

boundary conditions  leads to the following U-velocity and Θ-

temperature polynomial distributions depending mainly upon the δ 

dynamical parameter [33]: 
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where η = y/δ ≤ 1, ηT = y/δT ≤ 1. Parameters β, λ, ν, ϕw are 

respectively the volumetric coefficient of thermal expansion, the 

thermal conductivity of the fluid, the kinematic viscosity, and the 

wall heat flux density. 

The integral forms of the boundary-layer momentum and energy 

conservation equations become then: 
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The analytical resolution of the system under the assumption 

∂/∂t = 0 leads to the knowledge of the boundary layer ratio Ω and on 

the other hand gives the steady evolution of the asymptotical �-

solution.  

Thus, introducing the parameter K = ln(Pr), the evolution of the 

ratio Ω(Pr) is found to be suitable whatever Pr > 0.6 and 

satisfactorily approached with the following relation : 
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The asymptotical limit of the dynamical boundary layer 

thickness is analytically expressed as:  
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Considering the transient regime and using the assumption Ω = 

cst, the resolution  leads to the combined resulting governing 

equation of the free convection problem : 
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with the following boundary conditions: 

0),0( )0,( ==== txtx δδ . 

An explicit finite difference scheme has been used to solve this 

equation. 
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Results 

Eckert’s Theory Revisited [30] 

A preliminary issue dealt with the velocity and thermal 

boundary layers.  

First consider that, basically, two different definitions of a 

boundary layer thickness are commonly used, as for forced, mixed 

or natural convection: 

a)- A standard definition in agreement with the asymptotic 

structure of a boundary layer: at a distance from the wall equal to 

the layer thickness, the variation of the considered parameter 

(velocity, temperature gap) reaches 99% of its total value. 

b)- A mathematical definition linked to the Karman – 

Pohlhausen method: in this theory, the velocity and temperature 

fields are described by two polynomials, and δ (or δT) are the 

distances from the wall where these polynomials are equal to zero.  

Anyway, for a long time, Eckert’s theory was accepted. It 

assumed that, in steady natural convection along a vertical flat plate, 

δ = δT. This assumption was very useful as it gave a simple way to 

obtain the h coefficient, but in fact, had no real physical support and 

it appeared necessary to check it. A study driven by the mean of the 

integral method [30] concluded that it is acceptable for the 

computation of h, but is not adequate for the description of the 

dynamical field. It was shown that δ / δT depends on Pr, and a 

relation δ / δT = Ω (Pr) was proposed for a large range of Prandtl 

numbers. 

Evolution of Boundary Layers [33] 

In natural convection, dynamical and thermal fields are linked, 

so that transient phenomena are of special interest. A panel of 

results is presented below; all of them have been got from the 

integral method. 

On fig. 3.2, dynamical boundary layer thickness is plotted at 

different times, in the case of a wall heat flux  ϕw = 100 W/m2 in 

initially quiescent water (Pr = 7). As predicted by other authors, the 

transients in free convection are found to start as a one-dimensional 

conduction process, to be terminated by the arrival of the leading 

edge effect. This is the reason why the viscous layer profiles present 

a flat vertical shape in the early transient. Fig.3.3. is a plot of 

velocity at the chosen elevation x = 0.10 m within the viscous 

boundary layer where the velocity distributions are shown to 

increase in time to reach a steady profile in close agreement with the 

commonly presented shape in literature. 
 

 

Figure 3.2. Transient behaviour of the velocity boundary layer. 

 

 

Figure 3.3. Transient velocity profiles at the x = 0.1 m abscissa. 

 

 

Figure 3.4. Volumetric flow rate versus time. 

 

To complete this hydrodynamic analysis, variations of the 

volumetric flow rate with position and time have been investigated. 

Thus the integral formulation indicates that the flow rate grows 

downstream as x0.8. It is worth mentioning from fig.3.4 that 

whatever the x-position, before reaching its asymptotical value, the 

transient volumetric flow rate evolves in time as t2. 

Dimensioned Versus Dimensionless Results 

As it was mentioned in the second part (forced convection, § 

2.2.4.5), dimensionless laws can suggest trends very different from 

dimensional ones. Another illustration applied to natural convection 

can be found in [34]. It concerns the time-dependence of the heat 

transfer coefficient for a panel of usual fluids. 

Free Convection Around Cylinders Mounted on a Plate [35, 

36] 

Flow visualisation is a very efficient experimental meaning to 

get information on the dynamical behaviour of fluid flows. Two 

kinds of techniques were employed to get streamlines in the 

meridian section of the flow. The first one is based on an electrolytic 

precipitation method leading to the generation of white smoke 

composed of metallic salt used as a tracer material. In the 

experiments, electrolysis of water is made by applying a voltage 

between a tin wire considered as an anode, and a copper plate inside 

the water tank as a cathode. For the second one, the fluid is seeded 

with suspended fine rilsan particles (75 < diameter < 150 µm, ρ = 

1.06 g/cm3) illuminated by a laser sheet (2 W argon laser) from 

which instantaneous integrated streamlines can be drawn. 

Two applications of these techniques are reported here and in § 

3.4.5. 
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The first study describes experiments on flow visualization and 

local convective heat transfer of three-dimensional cylinders 

embedded in a transient natural boundary layer under uniform wall 

heat flux condition (fig. 3.5 and 3.6). 
 

 
Figure. 3.5. Schematic of the experimental model. 

 

 

Figure 3.6. Angular positions of a square cylinder. 

 

 
Figure 3.7. Heat transfer performance of a square cylinder compared with 
the smooth plate. 

Especially, emphasis is put on the influence of the angular 

positions of the cylinder around a given axis and on its square or 

circular geometry on both local thermal measurements and flow 

patterns. For example, it is shown that for the square cylinder, a 60° 

position induces a singular behaviour by reducing the convective 

heat transfer coefficient (fig.3.7); this singularity is confirmed with 

visualisations of the separation region. 

To have an idea of the near wake shape, in fig.3.8 are presented 

examples in the symmetrical (P,Y,Z) plane. Details are seen from 

metallic salts emitted from both downstream and upstream the 

obstacle. One can see the separation area downstream and the 

development of vortical structures just behind the bluff body. 
 

 

  

Figure 3.8. Details of the near wake for αααα = 0 at two times t = 120 s (a) and t 
= 170 s (b). 

Free Convection Along Large – Scale Roughness Plate [37] 

Moreover, transient natural convection on a vertical ribbed wall 

has been studied experimentally with a wall – boundary condition of 

uniform heat flux. This situation is of importance to both 

fundamental scientific research in understanding the interaction 

between large-scale flow features and local heat transfer, and 

practical interest in many industrial applications such as electronic 

equipment or climate control within building interiors where passive 

heating and cooling techniques are employed.  

To get an idea about the roughness geometry influence on the 

heat transfer, several distinctive ribbed geometries were tested 

(denoted as I, II, III on fig. 3.9 and 3.10). The experimental analysis 

is deduced from both flow field visualisations and thermal 

measurements. It is shown that instantaneous flow patterns result in 

complex eddy structures in the vicinity of the ribs. As well vortex 

birth as vortex shedding process are evidenced during the transient 

in the open cavities between the ribs to evolve increasing time 

towards 3D turbulent structures. Whatever the arrangements and the 

time, one observe a degradation of the convective heat transfer 

below the first rib and an enhancement past the last one compared to 

the smooth case. In the open cavities, conclusions are contrasted: 

during the early transient an important heat transfer enhancement 

occurs in the upstream part of the cavity while increasing time 

reduces the heat transfer performance in the whole cavity. 
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 I II  III 

Figure 3.9. Streakline patterns visualised with an electrolytical 
precipitation method (t = 300s). 

 

Figure 3.10. Instantaneous streamlines: (a) t = 57 s; (b) t = 112 s; (c) t = 610 
s. Right below: detail of the rotational flow in the lower cavity, 
configuration (II), t = 112 s. 

Mixed Convection 

Introduction 

Unsteady mixed convection problems can occur in various 

thermal systems, either occasionally or when the boundary 

conditions are normally changing with time. The first kind of 

situations can be met in starting processes, or accidental transients, 

regarding for example security in power plants and electric 

transformers. In the second one, interest is stimulated by the needs 

of regulation of heat transfer equipment, as hot water heating 

systems in buildings. 

Publications reported here deal with computational studies on 

water flows in vertical pipes, especially when steps of temperature 

or flow rate are imposed at the entrance (fig. 4.1). Two methods 

have been employed, either by using the classical parameters (§ 4.2) 

or by introducing the vorticity function (§ 4.3). The first formulation 

is more usual, but the second one suits better for describing reverse 

flows, and does not need any assumption on the pressure term. 

 

Figure 4.1. Schematic of the mixed convection model.. 

Direct Solution Method [38, 39] 

The  physical  system  under  consideration  is  a  vertical  pipe  

of  radius R. The z  axis  is  chosen  to  follow  the  flow  direction  

(upward  or  downward). The  fluid  is  considered  to be  newtonian  

with  constant  dynamic  viscosity,  conductivity,  specific  heat  

capacity  and  expansion  coefficient.  Density  variations  are  

assumed  to be  negligible  except  in  the  buoyancy  term  of  the  

vertical  momentum  equation (Boussinesq  approximation). So  the  

problem  can  be  formulated  by  the  governing  equations,  

expressed  by  the  mean  of  cylindrical  coordinates: continuity, 

axial-momentum and  energy. 
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with gzpp* ρ−=  ; upward flow : ε = + 1 ; downward flow : ε = - 1  

The  physical  problem  is  characterised  by  the  following  

initial  and  boundary  conditions: 

- thin  pipe  wall 

- on  the  outer  surface  of  the  pipe: averaged free 

convection heat transfer, so  that  the  wall  heat  flux  is: 
 

)TT(h ww ∞−=ϕ  

 

- on  the  inner  surface  (r  =  R): 
 

U  =  V  = 0 
 

- on  the  axis  (r  =  0): 
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- at  the  entrance  (z  =  0) : fully  developed  velocity  profile  

oU   and  injection  temperature  eT : 

- t  <  0:  flow  rate  qo ;  Reynolds Reo, temperature T0 

- t ≥ 0 :  flow  rate qe = qo + ∆qe (∆qe > 0 or < 0), i.e. Re∞ 

= Reo + ∆Re 

and / or temperature Te = T0 + ∆Te (∆Te > 0 or < 0) 

- at the exit (z = L): ∂U / ∂z = 0 

Equations were solved by a finite-difference, fully implicit 

procedure. The pressure gradient was written as the sum of a steady 

term and of a time – dependent term in relation with the flow rate 

conservation [39]. 

Vorticity Method [40, 41] 

The situation considered is a laminar flow upward through a 

vertical pipe, that is imposed by a heat transfer coefficient on the 

outer surface of the pipe. Flow entering the pipe is solicited by a 

temperature step. In this part, governing equations are formulated in 

terms of the stream function Ψ and the vorticity Ω, with the 

following dimensionless quantities: 
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The non-dimensional equations in terms of these variables and 

temperature are : 
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The initial and boundary conditions are as follows: 
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where 
f

a* Rh
Bi

λ
=  (generalised Biot number) 

The foregoing equations were solved by a finite – difference 

procedure, with an explicit numerical scheme [41]. 

Applications 

Temperature Steps at the Entrance [41] 

As an application of the vorticity method, the following 

conditions were selected: upward water flow, pipe of diameter 20 

mm, bulk velocity = 0.045 m/s. On the external surface, authors 

assumed a constant mean coefficient ha = 5 W/m2.K, with ambient 

air at Ta = 20 °C. 

Regarding the case where ∆Tinlet = + 10 °C, velocity and 

temperature profiles have been plotted on fig. 4.2, at a distance from 

the entrance z = 200 mm. A short time after the perturbation, under 

buoyancy effect the fluid velocity increases in the central part and 

decreases near the wall, with an invariant point at r+ ≈ 0.66; the 

distortion is maximal at about 11 s, and can lead to reverse flow. 

In the case of a negative step (∆T = -10 °C, fig. 4.3) the velocity 

profile shows another kind of distortion, with a fluid velocity 

increasing first near the wall and decreasing in the central part. The 

perturbation reaches its maximum value sooner (at t ≈ 9 s) and is 

stronger with increasing distance from the entrance. 
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Figure 4.2. Velocity and temperature profiles for z = 200 mm, ∆∆∆∆T = + 10 °C. 
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Figure 4.3. Velocity profiles for z = 200 mm (left) and z = 600 mm (right), ∆∆∆∆T 
= - 10 °C. 

Flow Rate Steps [39, 42] 

Using direct solution method, other studies have dealt with flow 

rate steps, positive or negative (fig. 4.4 and 4.5). In such 

circumstances, perturbations in the velocity field are rather 

progressive with an increase of flow rate, but more complex in the 

case of negative steps. Computations show also that the response is 

slower with negative steps (fig. 4.6) as the contrary was observed 

with temperature steps. Moreover, the buoyancy ratio RiRe has a 

strong influence on the wall heat transfer [42]. 
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Figure 4.4.  Velocity  and  temperature  profiles  for  different  times  at  z  
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Figure 4.4. (Continued). 
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Figure 4.5.  Velocity  and  temperature  profiles  for  different  times  at  z  

=  300 mm l/h5v
�

q −=  ;  other  variables  unchanged. 
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Figure 4.6.  Time  constant  evolution  for  positive  and  negative  flow 
rate  steps  at  z  =  400 mm ;  Re = 530; T0 = 40 °C. 

Combined Temperature and Flow Rate Steps 

Unfortunately, combined temperature and flow rate steps have 

not been widely investigated, despite of their special interest as they 

can lead to amplified or smoothed effects, depending on their sign 

and amplitude. Examples plotted on fig. 4.7 to 4.9 come from ref. 

[43] and show in a special case that the friction factor along the wall 

is more regular when the two steps are positive. 
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Figure 4.7. Velocity and temperature profiles at  z = 300 mm ; ∆∆∆∆qv = + 5.10
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Figure 4.8. Same datas as on fig. 4.7. except ∆∆∆∆qv = - 5.10
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Figure 4.9. Friction factor along the pipe….. : same datas as fig. 4.7. ; ----- : 
fig. 4.8. 
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Flow Instabilities [44, 45] 

Very interesting complementary informations on the structure of 

the flow are brought by streamlines and isotherms [44], as they 

specially permit to observe reverse flows and vortex that can occur 

during the transient (see examples on fig. 4.10 and 4.11). These 

structures are of practical interest because of their influence on 

friction and heat transfer at the wall, but also of fundamental 

importance, as they can be considered as signs of instability. 
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Figure 4.10. Time development of streamlines and isotherms along the 

pipe for ∆∆∆∆T = +10 °C, (a): 5 s, (b): 15 s and (c): 25 s. 
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Figure 4.11. Time development of streamlines and isotherms along the 

pipe for ∆∆∆∆T = -10 °C, (a): 10 s, (b): 30 s and (c): 50 s. 

 

Indeed, stability in transient states remain a widely open issue. 

As a starting point, two stability diagrams were proposed in the case 

of an upward flow, using similitude criteria Ri and Re (fig. 4.12). 

They show a stable zone (free of reverse flow or vortex) larger for 

negative than for positive temperature steps [45]. 
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Figure 4.12. Stability diagrams Ri-Re  for ∆∆∆∆Te > 0 (left) and ∆∆∆∆Te < 0 (right). 

Mixed Convection Boundary Layers [46] 

Transient mixed convection of laminar boundary layer past a 

vertical plate has been also investigated, using a finite-difference 

procedure with fully implicit numerical scheme. Boundary 

conditions combined heat flux step at the wall and velocity step (> 0 

or < 0) in the external flow, taking in account the wall heat capacity, 

either in aiding or opposing mixed convection (fig. 4.13). Results 

show that, especially in the case of opposing flow, a weak 

perturbation of velocity can lead to instabilities near the wall. 
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Figure 4.13. Velocity profiles at different times t
+
 for a flow velocity step 

∆∆∆∆U
+
 Pr = 1; E(ρρρρ Cp)wall /L(ρρρρ Cp)fluid = 5; left: aiding flow, RiRe = + 50, ∆∆∆∆U

+
 = - 

0.4;  right: opposing flow, RiRe = - 50, ∆∆∆∆U
+
 = + 0.4. 

Measurement of the Heat Transfer Coefficient [18] [47 To 

50] 

A major practical application of transient convection deals with 

the measurement of heat transfer coefficients by pulsed 

photothermal radiometry. 

The method consists of analysing the transient temperature on 

the front face of a wall, after a sudden deposit of luminous energy, 

and is generally used for non-destructive testing operations as well 

as measurement of thermophysical properties. But it was also 

proposed to consider pulsed photothermal radiometry as a tool for 

the measurement of convective heat transfer coefficient on the front 

side of the sample [47]. A scheme of the experimental device is 

presented on fig. 5.1. 
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Figure 5.1. Experimental device. 

A theoretical model was initially based on the assumption of a 

constant h coefficient during the transient used for the measurement. 

Compared to other experimental techniques as fluxmeters, the 

results gave rather good evaluations for h. An extension of this 

method was also described, allowing to simultaneous determination 

of the exchange coefficients on both sides of a thermally thin wall 

[48]. 

Indeed, assuming h = cst is not satisfactory if a precise measured 

value is required, and it becomes necessary to take into account that 

h = h(t) during the measurement process. So, results obtained from 

transient forced convection over a thin flat plate ([6, 11, 18], § 4.1) 

were used to introduce a variable coefficient h(t) in the theoretical 

model, as an exponential function of time [49, 50). This study leads 

to the conclusion that, in an air flow, h = cst in an adequate 

approximation with a dirac pulse. But in the case of finite duration 

pulses, this simplification is less and less valid as the duration 

increases (tables 5.1 and 5.2: lines 1 to 5 correspond to different 

values of air flow velocity, from 1.1 to 2.4 m/s), and a h(t) model 

gives more accurate values. 

A second improvement will consist in considering the thickness 

and heat capacity of the plate, which modify h(t) compared to the 

case of a thin plate [20, 23]. 
 

Table  5.1. Convective heat coefficient in (W m
-2

 K
-1

) for dirac excitation. 

  

Fluxmeter 

 

Model h cst 
0c

0c

h

h∆
 

 

Model h(t) 
0c

0c

h

h∆
 

1 37 35,2 -5% 40 +8% 

2 50 46,5 -7% 49,5 -1% 

3 62 67 +8% 63,2 +2% 

4 74 77 +4% 71,8 -3% 

 

Table  5.2. Convective coefficient in (W m
-2

 K
-1

) for 5 s excitation. 

  

Fluxmètre 

 

Model h cst 
0c

0c

h

h∆
 

 

Model h(t) 
0c

0c

h

h∆
 

1 37 49 +32% 42,3 +14% 

2 50 65 +30% 56 +12% 

3 62 70,6 +14% 67 +8% 

4 74 80 +8% 80 +8% 

Heat Exchangers Under Transient Conditions 

Though it is based on an overall modelling, unsteady behaviour 

of heat exchangers can be considered as a special case of unsteady 

convection. It can occur in various conditions such as natural time-

varying inlet temperatures or flow rates, start-ups, shut-downs, 

power surges, pump failures…. So an accurate knowledge of the 

thermal response of such systems during unsteady periods of 

operation is very important for effective controls, as well as for the 

understanding of the adverse effects which usually result in 

modified thermal performances or increased thermal stresses which 

will ultimately produce mechanical failure. 

Assumptions and Modelling 

Most of previous studies have made the assumption of constant 

heat transfer coefficient, but generally this coefficient is time 

dependent in most non-stationary states. Another kind of methods 

that avoid the use of this coefficient during the transient phase is the 

two-parameter method with time lag and time constant. In fact, the 

experimental observation of exit temperatures when inlet 

temperatures or flow rates are submitted to sudden change, shows 
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that  they can be approximated by an exponential curve 

(characterised by a time constant τ) after a time lag tr (fig. 6.1). 

The model is based on the assumption that τ and tr do not vary 

inside the exchanger, and can be considered as overall 

characteristics of the system. Obviously, this is an approximation 

(indeed, it replaces h = cst !) but it leads to elementary analytical 

expressions  and to very good agreements with experimental results 

[51, 52, 53]. 
 

 
Figure 6.1. Water-water heat exchanger: example of exit temperature after 
a flow rate step. 

General Expression of the Time Constant [52, 54] 

The model describes a heat exchanger, initially working in 

steady state, submitted at time t = 0 to sudden variations of inlet 

temperatures and/or flow rates. A new steady state is reached at t = 

∞. 

Several index will be used in the following formulas: “c” or “h” 

for “cold fluid” or “hot fluid”, “e” or “s” for “inlet” (entrée) or 

“outlet” (sortie), “0” or “∞” for “t = 0” or “t = ∞”, “i” for the tubes 

(if necessary) and “a” for the shell of the exchanger. Bulk 

temperatures T will be considered. 

The following quantities will be defined: 

- overall heat capacity C and averaged temperature ℑ : 
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- - heat capacity flow rates (qm = mass flow rate): 
 

qtc = qmc Cc ; qth = qmh Ch 
 

By the mean of an energy balance, and using assumptions 6.1, it 

can be shown that the time constant is expressed by: 
 

( )
( ) ( )∞∞∞∞

∞
−+−

ℑ−ℑ
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cscstchshsth TTqTTq

C

00
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We can observe that the time constant depends on the initial and 

final exit bulk temperatures, which can be expressed as functions of 

the initial and final entrance  temperatures and of initial and final 

flow rates, i.e. consequently as functions of NTU, unbalance factor 

R = qt min / qt max and effectiveness E. 

Results 

An analytical formulation of the time constant τ, though it is 

approximate, allows easy and interesting parametric studies. 

First it can be shown that the flow arrangement (parallel or 

counter-flow), which has a strong influence on the thermal 

performances of the exchanger, has a very little effect on the time 

constant [52]. Another elementary property is that τ appears as a 

linear function of the exchanger length [52, 54]. 

In the case of shell-and-tube heat exchangers, fig. 6.2. shows on 

a special case the influence of a flow rate step (expressed as a heat 

capacity flow rate): as the heat capacity flow rate of the hot fluid 

increases (∆qh > 0, upper curve), τ increases almost exponentially; 

in the case of a decreasing flow rate (∆qh < 0, lower curve), τ 

decreases slightly and linearly. 
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Figure 6.2. Flow rate step on the hot fluid: influence on the time constant  
( heat capacity flow rate of the cold fluid: qtc = 210 W/K). 

 

Moreover, when only one temperature step is applied, the time 

constant is independent of its value. In such circumstance, τ 

decreases as the hot (or cold) flow rate increases (fig. 6.3). A similar 

evolution is observed  when a negative flow rate is applied (fig. 6.4: 

τ is plotted as a function of the final value qth∞ of the heat capacity 

flow rate, which initial value is 1400 W/K). At last, it can be seen 

that the time constant is smaller with flow rate variations than with 

temperature variations.   
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Figure 6.3. Influence of the flow rates on the time constant (temperature 
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Figure 6.4. Influence of the flow rate on the time constant (step on the hot 
fluid, qth0 = 1400 W/K). 



J. Padet 

/ Vol. XXVII, No. 1, January-March 2005 ABCM 92 

Fig. 6.5 shows another case where the cold fluid is submitted to 

a flow rate step. As we observe, it is difficult to give a simple law 

for the variation of the time constant as a function of the initial flow 

rate of the cold fluid, but we can realise that there is a big variation 

of the time constant in the transition state from laminar to turbulent 

flow. Moreover, this variation seems to be more sensitive as the 

final flow rate is  in the transition state. This shows the simultaneous 

influence of the different parameters in such situations and the 

difficulty to separate one parameter from the others [54]. 
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Figure 6.5. Bitubular heat exchanger: influence of the initial flow rate of 
the cold fluid in the annular tube, for different values of the final flow rate 
(qh∞∞∞∞ = 0.12 kg/s = cst). 

Time Lag 

An accurate prediction of outlet temperatures under variable 

conditions needs the knowing of both time constant τ and time lag tr. 

Unfortunately, evaluations of tr cannot result from a theoretical 

approach, and need experimenatal procedures. 

Some trends have been investigated on a 2m length, double pipe 

water-water heat exchanger [55], in which the hot water flows inside 

the inner duct, and is submitted to flow rate steps. Correlations have 

been built to express the two time lags trc (cold fluid outlet) and trh 

(hot fluid outlet). Some examples are plotted on fig. 6.6 to 6.9 as 

functions of the final flow rate qc∞, and show that qc∞ has a stronger 

influence on trc than on trh, whatever the flow arrangement. 
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Figure 6.6. Time lag of the hot fluid case of parallel flow with a flow rate 

step on the cold fluid (∆∆∆∆qc = 2.5 l/min). 
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Figure 6.7. Time lag of the cold fluid case of parallel flow with a flow rate 

step on the cold fluid (∆∆∆∆qc = 2.5 l/min). 
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Figure 6.8. Time lag of the hot fluid case of counter flow with a flow rate 

step on the cold fluid.(∆∆∆∆qc = 2.5 l/min 
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Figure 6.9. Time lag of the cold fluid case of counter flow with a flow rate 

step on the cold fluid.(∆∆∆∆qc = 2.5 l/min 

 

Take also notice that the two-parameter model has been 

successfully applied to water plane solar collectors [56]. 

Effectiveness Under Variable Conditions [57 To 60] 

As a complementary investigation to the previous studies, a new 

method has been proposed to determine the thermal effectiveness of 

heat exchangers when one of the fluids is submitted to any kind of 

flow rate variations. When the operating conditions are varying with 

time, the validity of the classical definition vanishes, so the method 

leads to the concept of an average effectiveness in unsteady state. 

This average effectiveness can be easily determined by measuring 

continuously during a time te the exit temperatures and flow rates. 
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The method is applicable under the condition te > 10 τ, and fig. 6.10 

shows that the instantaneous effectiveness converges quickly toward 

its averaged value [58]. 
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Figure 6.10. Temporal evolution of the effectiveness on the hot fluid side. 

Numerical Model [64] 

In order to get a better understanding of transient states in heat 

exchangers, local investigations are necessary. Analytical and 

numerical methods have been employed in the case of a single duct 

[61, 62, 63]. They were completed by a numerical study (using a 

finite difference scheme) of a parallel plate heat exchanger, when 

the two fluids are submitted to temperature steps at the entrance 

[64]: the two channels (thermally insulated on their external sides) 

are separated by a thin plate with on thermal resistance, and their 

thickness are 2 cm. Some results are presented on fig. 6.11 to 6.17 

for water-water or air-water arrangements, and show complex 

evolutions of the temperatures in the system. 
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Figure 6.11.  Temperature profiles at x=0.5m for ∆∆∆∆The= +10 et ∆∆∆∆Tce= 0°C 
(water-water). 
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Figure 6.12. Temperature profiles at x=0.5m for ∆∆∆∆The= -10 et ∆∆∆∆Tce= 0°C 
(water-water). 
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Figure 6.13. Temperature profiles at x=0.5m for ∆∆∆∆The= +10 and ∆∆∆∆Tce= -10°C 
(water-water). 
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Figure 6.14. Temperature profiles at x=0.5m for ∆∆∆∆The= +10 et ∆∆∆∆Tce= -10°C 
(air-water). 
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Figure 6.15. Exit bulk and plate temperatures  ∆∆∆∆The= +10  and ∆∆∆∆Tce= -10°C 
(water-water). 
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Figure 6.16. Exit bulk and plate temperatures∆∆∆∆The= +10  et ∆∆∆∆Tce= -10°C 
(water-air). 
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Figure 6.17.  Evolution of the plate heat flux at different locations ∆∆∆∆The= 

+10 , ∆∆∆∆Tce= -10°C (water-water). 
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