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Alternative formulations to the conventional Bloch equations
for the RF saturation of the solid component in heterogeneous
spin systems according to a spin-bath model are derived using
the concept of spin temperature as suggested by Redfield and
Provotorov. These formulations and the resulting equations de-
rived by the projection-operator technique provide an analytical
and explicit solution to the general problem of solid saturation
under continuous RF irradiation. Using the Provotorov theory,
a set of generalized (non-Markovian) equations of motions is
derived. The solutions to these generalized equations approach
those of the conventional Bloch formulation at one extreme when
the applied RF is weak and the Redfield formulation at another
when the applied RF is strong. In short, this development pro-
vides a simple alternative which removes the restriction of the
lineshape function used to represent the solid component; the
latter is well known to be non-Lorentzian, contrary to the tacit
assumption made in the conventional Bloch formulation. Ex-
perimental verification of the generalized theory is provided by
transient and steady-state longitudinal magnetization data ac-
quired from cross-linked bovine serum albumin under selective
saturation by continuous off-resonance RF irradiation. o 1994

Academic Press, Inc.

In previous developments ( /-3) concerning the general
solutions for the coupled equations which describe the re-
sponse of a heterogeneous spin system subjected to selective
RF saturation, the equations of motion have been based on
a set of coupled Bloch equations formulated assuming a bi-
nary spin-bath model (4-7). This model was invoked (4, 5)
to provide a simple framework for the description of the
nuclear spins in a heterogeneous system consisting of two
thermodynamic reservoirs. The spins in one reservoir, labeled
A, are water protons which are mobile with a typical spectral
linewidth of tens of hertz while the spins in the other res-
ervoir, labeled B, are macromolecular protons which are im-
mobile with a typical linewidth on the order of tens to a
hundred kilohertz. Because of the vast difference in line-

* Part of this article was presented at the 1ith Annual Meeting of the
Society of Magnetic Resonance in Medicine in August 1992, Berlin, Ger-
many.

widths of these two spin species, it is possible to saturate the
B spins selectively, while leaving the A spins virtually unaf-
fected, by applying a narrowband RF irradiation at a fre-
quency far from the water resonance. To study the transient
response of such a heterogeneous system, one simply satu-
rates the B spins selectively using off-resonance RF irradia-
tion while monitoring the time development of the longi-
tudinal magnetization of the A spins.

In our last article (3) in this series, we proposed and dem-
onstrated the use of projection-operator techniques (8, 9) to
obtain a simplified equation of motion and analytical solu-
tions to the general problem formulated by the Bloch equa-
tions. In this article, the problem of the validity of the Bloch
equations when applied to saturation of the solid component
in such spin systems is addressed. This problem arises from
our previous attempts (/) to interpret the relaxation-rate
data of heat-denatured albumin in terms of the conventional
Bloch equations. In these attempts, it was found that the
experimental data showed a systematic discrepancy with re-
spect to the theoretical curve at mid-frequency range. This
mid-frequency discrepancy raises the question about the va-
lidity of the Bloch equations. It is well known that the Bloch
equations cannot fully account for the experimentally ob-
served nuclear relaxation in solids under RF saturation (/0-
12). For this reason, it is intriguing to explore alternative
formulations of the relaxation equations based on the concept
of spin temperature according to the Redfield (/0) and Pro-
votorov (/1) theories.

In the following sections, we start by giving a heuristic
and semiempirical derivation of the appropriate equations
governing the solid spins (the spins of the B reservoir) ac-
cording to the concept of spin temperature. We then solve,
once again utilizing projection-operator techniques, the
equations of motion for the binary spin-bath model in a
similar manner to the Bloch formulation except that the
solid-spin component is now described according to the
Redfield and Provotorov formulations, respectively. We
subsequently show that the solution of the Provotorov for-
mulation can be written in a generalized form which ap-
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proaches the Bloch formulation in one limiting case and the
Redfield formulation in another. These results differ from
the solutions of the Bloch equations in an important way;
the prescription of the lineshape function for the solid spins
is now completely general rather than strictly Lorentzian.
To verify this generalized formulation of the spin-bath model,
we first attempted to reinterpret the transient and steady-
state longitudinal magnetization data of heat-denatured hen
egg white albumin presented in 1 (/), using a multiple-pa-
rameter fitting program. This attempt failed since neither
Lorentzian nor Gaussian lineshape ( nor their convolutions)
functions yielded good fits for this biophysically “complex”
(as far as the NMR lineshape function is concerned ) system.
For this reason, we choose a simpler system, consisting of
cross-linked bovine serum albumin (XL-BSA), in which
both transient and steady-state magnetization and relaxation-
rate data are acquired using techniques similar to those de-
scribed in Ref. (/).

THE REDFIELD-PROVOTOROV FORMULATION
FOR COUPLED BINARY SPIN BATHS

Redfield (/0) and later Provotorov ( //) introduced the
concept of spin temperature in the rotating frame to explain
saturation phenomena in solids for which the conventional
Bloch equations failed. Since their theories are well known
and were thoroughly reviewed by Goldman (/2), only the
essential parts pertinent to the present development are pre-
sented here. The coupled spin bath with RF saturation of
the immobile spins in the Redfield-Provotorov picture is
best illustrated by the schematic diagrams shown in Fig. 1.
We focus our attention here on the solid or B spins (Fig.
1b). We first remove the spin-lattice effects by assuming 7',
1s infinitely long. In the rotating frame, the spin Hamiltonian
of the B spins is the sum of two terms,

Ho= A+ HY, (1]

where #7 is the Zeeman interaction, .#; = —yI- H,; H, =
(Hy — wo/v)k + H\i with i and k being the unit vectors
along the x and z axes, respectively. J# 9 is the properly
truncated dipolar Hamiltonian, i.e., the secular parts of .J#p
that commute with /.. In the absence of the RF field, #>
and .# {, themselves commute and are separately constants
of motion. In other words, the Zeeman and dipolar reservoirs
are thermally insulated. If we assume they are initially at
equilibrium with the thermal lattice, then their spin tem-
peratures in the laboratory frame are all equal, % = 8% =
-, 8" being the lattice temperature.

In the rotating frame, however, since the z component of
the effective field is much smaller than H,, 8% < % according
to Curie’s law, while 8, = 85 since # Y is invariant under
rotation around the z axis. Here the primes denote variables
in the rotating frame. The Zeeman reservoir is therefore

W= 1:0)21 gAw)

FIG. 1. (a) Schematic of the binary coupled spin-bath model by Edzes
and Samulski (4, 5). 774 and T3 are the intrinsic longitudinal relaxation
rates of the mobile (A) and the immobile (B) spins, respectively. N,r, and
Npr', are the forward and backward rates of magnetization transfer. respec-
tively, from the A- to B-spin reservoirs, where N, and Ny are the number
of nuclei in the A and B reservoirs and r, and r’, are the corresponding
specific cross-relaxation rates. Since, according to the principle of microscopic
reversibility (or detailed balance), Nyr, = Ngr'., r’. = r./f, where f = Ng/
N4. Note here that Ny and Ny refer to the nuclei in the reservoirs only,
which do not necessary include all nuclei in the liquid and solid phases. (b)
Schematic diagram of the solid-spin reservoir under RF saturation. The
vertical arrows indicate energy transitions by spin-lattice relaxation processes
while the horizontal arrows indicate energy flows as dictated by the Pro-
votorov equations. When the RF amplitude is sufficiently high that the RF-
induced transition rate 1/7* between the Zeeman and dipolar reservoirs is
much larger than the Zeeman relaxation rate, 771, the Z and D reservoirs
can be fused into a metastable or quasiequilibrium state characterized by
the spin temperature #* and with a thermal relaxation rate of 77, .

much cooler than the dipolar one in the rotating frame. Upon
turning on the RF field, [ #2z, # %] # 0 and the Zeeman
and dipolar systems exchange energy. Since 67 < 0, energy
flows from the dipolar to the Zeeman reservoir. When the
RF field is large, this redistribution of energy occurs rapidly
with the formation of a quasiequilibrium state describable
by a temperature 6* (i.e., the density matrix is diagonal and
its elements follow a Boltzman distribution ) common to both
of these two reservoirs.
The characteristic rate 1/7* for the establishment of such
a quasiequilibrium state was found (/) to be dependent on
the offset frequency dw, the dipolar linewidth Ay, and the
transition probability W,
2
L*= W[l +(@—) ]; W= rwig(éw), (2]
T AD
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with g(6w) being the lineshape function. In this state of
quasiequilibrium, the magnetization aligns with the effective
field H., a condition commonly referred to as a spin-lock
(10). The rate constant 1/7* describes the rate at which the
RF induces transitions between the dipolar and the Zeeman
reservoirs. We note from [2] that 1/7* = W ~ 0l T, W
being the transition probability and #g(0) ~ T»g. Thus, if
w; > l/VTzBT,Z ,onecanassume 1 /7* > 1/T,;, T,z where
is the Zeeman relaxation time.

So far, we have excluded our main concern here: the effects
of the thermal lattice and the cross-relaxation effect with the
A spins. To include these effects within the Redfield-Pro-
votorov picture as described above, one abandons the Bloch
equation description of the B spins and replaces it with a set
of equations that describe the rate of change of spin energy
or the inverse spin temperature 1/6* which includes effects
of interaction with thermal lattice and cross relaxation with
the A spins. The problem that remains is to find a method
for including the two effects mentioned above. The relaxation
problem in the presence of an RF field has been solved ( /0-
12). To illustrate these solutions, we divide the problem into
two regimes according to the strength of the saturation RF
field. Here the RF field strength is considered high if w; >
1/VT»sT,z and low otherwise.

High-RF-Field Regime—The Redfield Formulation

When w, is large, as mentioned in the previous paragraphs,
one can assume that the energy redistribution among the
B spins occurs so rapidly that the spin states are effectively
in quasiequilibrium at all times. Therefore, the spin—lattice
interaction can be described by a phenomenological equation
for the expectation value of a Hamiltonian characterizing
the quasiequilibrium #*, ( # *), or equivalently the in-
verse spin temperature | /6*,

() ()7 Ale), - )]

where 7', is well-known spin-lattice relaxation time in the
rotating frame. Since from Curie’s law, M oc H./6*, M being
the magnitude of the magnetization along H,, one can write
an equation analogous to [3] for My of the B spins,

(3]

(5) My = — (M5, — My}, [4]
SL

dt T,

where T, is functionally dependent upon 7|, w,, dw, and
the dipolar linewidth Ap. This dependence assumes a par-
ticularly simple form if one assumes that nuclear relaxation
is caused by random uncorrelated fields with short correlation
time 7. € 1/wy,

1 1 dw? + w? + 2A3

R=Eéw2+wf+Aé’ [5]

If the short-correlation-time condition is not satisfied, [5]
must be modified to

dw? + c,wi + cpAd
dw? + w} + AR

1

T,

|
— , 6
- (6]
where ¢, is the ratio of the component relaxation rate of u
(along H, toward 0) to that of the Zeeman term along the
zaxis, or 1/ Tz, and cp is the ratio of the dipolar relaxation
rate (toward { # })eq) to 1/ Tz ie.,

_Tw _Te

ad coo b _ Tz
_ D
Tz Ty,

=-P_21Z g
Tz Tip 7]

Cll

Since the heat capacity of the dipolar reservoir is much larger
than that of the RF field, Ap » w;, the terms associated with
w( in [5] and [6] can be ignored.

Low-RF Regime—The Provotorov Formulation

When w, is not sufficiently large for the transitions induced
by W to be comparable to those induced by the spin-lattice
coupling, or W ~ 1/T,, the Provotorov theory (11, 12)
must be invoked to evaluate the time evolution of the spin
system. Under this condition, one can no longer assume that
the Zeeman and dipolar reservoirs have a common spin
temperature. We therefore let 87 and 6, respectively, be the
temperatures of these two reservoirs (see Fig. 1b and the
figure legend ). The differential equations which govern the
time evolution of the corresponding inverse temperatures
can be written (9, 10) as

(=) {7l

dy(1 1 w2 111
— —_———] = — W —_— —_— —
(dl)(oo 015) [ Ab Tu)](oo BILD)

dw? [ 1 |

e (az o*z-) WAL

Since 85 < 8% = 6%, one can ignore 1/85 in the last term in
[8a] and [8b].

To introduce the cross-relaxation effect between the A and

B spins on the coupled spin system, we provide the details

for the Provotorov formula in Eq. [8] here. In the next sec-

tion, a generalized solution to the apparent relaxation for all

three different formulations mentioned above is given. Cross
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relaxation occurs between the longitudinal magnetization of
the A and B spins. The contribution to the relaxation of the
B spins from the A spins is the same term, rx( M%< —
MZ%°, where r is the specific rate of magnetization transfer
from the A spins to the B spins (for the symbol definitions
of the spin-bath parameter, see Fig. 1a and the figure legend),
as used in the coupled Bloch equations. On the other hand,
for the B-spin contribution to the A-spin relaxation, although
the components that are involved in energy exchange are no
longer purely longitudinal, one may introduce the cross-re-
laxation term through the Zeeman reservoir in Eq. [8a].
Furthermore, since Eqs. [8a] and [8b] are written for the
inverse spin temperatures, they equally apply to the expec-
tation value of any traceless operator A, such as 7, I, or
HD, since (A oc Tr{[l — # /k8}A} o 1/6. The B-to-A
cross-relaxation term is therefore (ry/ /) (M3 — Z 5"). Note
that the difference between the Provotorov and the Bloch
formalisms is not at all how the cross-relaxation terms are
introduced, but rather the way these two formulations treat
the magnetization in the presence of RF irradiation. In the
Bloch equations, the magnetization is driven by a torque
due to an effective field. In the Redfield and Provotorov for-
mulations, on the other hand, the motions of the ‘““magne-
tization components” polarized along the Zeeman and di-
polar interactions, respectively, are described by spin ther-
modynamics. A dipolar “magnetization,” for example, can
be defined by the Curie’s Law as CHp/0p, where C is the
heat capacity, Hp and #p being the local field and temper-
ature, respectively, of the truncated dipolar Hamiltonian.
With this understanding, the equations of motion that govern
the energy exchange between these two reservoirs and the
thermal lattice can thus be written as
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dw?
W+
Ap

1

Gy =iz alier

0
e ()0 ari) + w2 arg (90)

dM% : .
T OMaE (ra (MRS = M3)
15 -
— (ME— M), [%c]

with the superscripts Z denoting Zeeman (which in our cases
is synonymous with the Z direction) and L the lattice.

SOLUTION OF THE COUPLED EQUATIONS USING
REDFIELD-PROVOTOROV FORMULATION
OF THE B SPINS

With the cross-relaxation terms between the two spin baths
modified according to Eq. [9] above, we can rewrite the
equations of motion of the heterogencous spin system in the
cardinal form ( 3),

dX
—+RX=Y
dr ’

[10]
where all parameters and variables are defined as nondi-
mensional quantities; with 7 = w,/; and with the vectors X,
Y and the matrix R defined respectively by

dM 1 rx . X = col{ whz, Whp, Ua, Ua, Wa } (11]
=W+ — + = MZL__M-
dt [ T f]( 5 M)
| Oy (S 2
dw Y=Col{—aw,———(-—>,0,_1,o]
L ACASTERE DY 21T 2
_1 _aw (0N
- rx (M5~ Myz) — WME- [9a] myewe ~op|g ) e e [12]
aw+ag+(‘¥7)£ —awF 0 0 _a‘;(‘
Oy 6 2 5 2
=\ 7 - —| + 0 0 0
F (6) [“W(BB) cote -
R = 0 0 6 s o ’
0 0 -8 fa -2
1
—ax O O 5 aA+01x
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where

a, = V/(w Ty, = o, B, = 1/(0iTy);
s = As B’ ax = "x/wl’

4

aw = — = 1g%(8);
1

g8(8), normalized B-spin lineshape function,

8k w— w
- D= ()
2{HA D)8

F

M3~ M3
IME

[15]

! p—
M”BZ =

and e, = col{é,}.

By using the same procedure as that illustrated in (3) ap-
plied to Bloch formulation, one can show that, under the
Provotorov formulation, the “secular” part of the spin system
will satisfy an asymptotic equation,

dw
T k(WA — W) =0, [16]
in which the apparent relaxation rate of the observed A spins
is given by
(12 44
afpp =(as + ax) — _f_x [(ag + —fx—)
achagﬁzg

-1
— 2B+ oagf(s), [17
aW62+CDa86%] WgL( )’ [ a]

where the subscript L in g; (8) indicates a Lorentzian line-
shape:

1
g () =" [17b]

762+ B

The steady-state magnetization w is then given by

ss 1 1 ’ _ lﬁ\i _é_z_ i
"”“ag’pp{zaaw sz(ﬂB) d], [18a]

where

, ax{aw(/B8s)’ + cpag}
" (ap + ax/f)(aw(6/B8)? + cpag] + awcpan
B ay awF
(ag + ax/f)[aw(8/8s)* + cpap] + awcpas’

[18¢]

a , [18b]

b =

_ —Ba/2

d= o e

[18d]

Substituting [18b]-[18d] into [18a], one has

wi

= I [ ax {2a(/B8s)? + Cpapaw }
20‘5:’:: (ap + ax/f)[aw(a/ﬁn)z + cpag] + Cpapaw

+ wg,”j(&)] . [19]

Note that the first and the third terms in [17a] are the same
as those in the equivalent expression derived in (3) starting
from the conventional Bloch equations. The difference oc-
curs, as expected, in the second term, which represents the
correction of the cross-relaxation contribution between the
A and B spins without the simplifying assumption of constant
saturation of the A spins.

The form of a&,, the apparent relaxation rate for the
Redfield formulation, can be obtained in a similar fashion.
In fact, it can be shown that «,,, for all three of these for-
mulations can be written in a simple unified manner as

2
= ax/f A
- = + —_— — + -
aapp ap ax (aB + ax/f)+ g__: 7"gL(a)~
= =B,P,R, [20a]
B_ _,B P _ 78%(8)coasBi
WgL(é)s g- 7I'gB(6)62 T CD(XBB% >
_ 2
R = (cp — 1apfs [20b]

(62 +B8)

where the labels B, P, and R represent, respectively, the Bloch,
Provotorov, and Redfield formulations, and ¢ can be con-
sidered a generalized nondimensional lineshape function for
the B spins. Note, for instance, that {F = aw = ng2(8) = (B
when the B-spin lineshape is Lorentzian and é small or

C >a—w(—6—)2= ! !
7 ag \Bs]  awBs | + (Ba/6)’

or ¢p>» = wiTpTm. [21]

agBy

In other words, the Provotorov solution approaches that of
the Bloch equations in the limiting case for which gB(8) is
Lorentzian and & or w, is small. Conversely, when the H,
field is large, aw > cpag, and when & is large, the Provotorov
solution approaches the Redfield limit. These consequences
are exactly what one would expect on physical grounds. For
when H, is small, so is W, and when cp is large, T,z > Tp,
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the dipolar reservoir can be considered as part of the lattice.
Therefore, the condition of Eq. [20] guarantees the appli-
cability of perturbation theory from which the Bloch equa-
tions result. On the other hand, under conditions opposite
to Eq. [21], the Zeeman and the dipolar reservoirs quickly
reach a state of quasiequilibrium corresponding to the Red-
field picture described earlier.

COMPARISON OF CALCULATIONS TO
EXPERIMENTAL DATA OF THE
SPIN-BATH MODEL

Cross-linked bovine serum albumin was prepared by add-
ing 200 ul of 20% glutaraldehyde (Sigma Chemical Co., St.
Louis, Missouri) to a 20 ml solution of 20% (w/w) BSA
(Sigma Chemical Co., No. A-8022). Data consisting of dis-
persive relaxation-rate and steady-state longitudinal mag-
netization under “broadband saturation” ( /3) were obtained
using a similar experimental procedure to that described in
1(7). The generalized spin-bath model described above was
fitted to the data. In this procedure, the experimentally de-
termined parameter 7,4 (23.7 ms) was fixed. In addition,
the relaxation rate 1/ 7,5 could not be varied independently
since its value, along with the other variables, is constrained
by the measured 1/77% = 0.83 s~!. For the Provotorov for-
mulation, we also need the parameter ¢p, the ratio of spin-
lattice relaxation rates of the dipolar to Zeeman reservoirs
for the solid spins (¢p = T2/ T p). As discussed by Goldman
(12), for nuclear relaxation in solids caused by correlated

randomly fluctuating fields, cp = 3. For uncorrelated fields,
however, ¢}, is instead given by

p=2+ Jwirl. [22]
Thus, for correlation times satisfying the extreme narrowing
condition wpr. € 1, ¢p = 2. But when wgr. > 1, ¢p can be
very large. For the types of heterogeneous systems that are
of biological interest, the latter condition is most likely sat-
isfied. This conjecture is partly substantiated by our expe-
rience in fitting Eqs. [17] and [19] to the experimental data
for the heat-denatured albumin and the XL-BSA. We found
that large values of ¢ (e.g., >2500) give consistently better
fits to the data than any smaller values. As noted earlier, a
large c¢p tends to lend support to the Bloch formulation for
these systems, provided that the solid-spin lineshape is Lo-
rentzian. However, for heat-denatured albumin and for XL-
BSA, we found that in fitting the experimental data, the as-
sumption of a Lorentzian lineshape for the solid spins is not
supported in either case. For the XIL-BSA data, as shown
below, a Gaussian lineshape provides a much better fit to
the experimental data than a Lorentzian shape.

Theoretical fits to the experimental data were performed
with a multiparameter nonlinear fitting program contained
in an interactive software package called MATLAB (South
Natick, Massachusetts ). These were performed using a Mac-
intosh computer. The experimental data, as we reported pre-
viously in [ (1), consisted of a set of apparent T, values as
well as steady-state M. data acquired at different amplitudes

FIGS. 2 and 3. The figures show the resulting plots of the fits of a binary spin-bath model using Provotorov formulation of the solid spins to the
experimental data of cross-linked bovine serum albumin at different saturation RF amplitudes. The consistent sets of the model parameters obtained with

two different B-spin lineshape functions are shown in the following table:

Lineshape f TAG™Y TR rnxG") Twws) TzTo
Lorentzian 0.086 0.752 1.80 347 35.8 3500
Gaussian ~ 0.075  0.832 0.85 3.47 11.6* 2750

aT'3 is obtained by implication (rather than by independent fit) from its
relationship with the measured apparent Tiys and the other parameters

such as /, 774, and r x.

*The time constant T, for a Gaussian lineshape is defined here as the
inverse of the half-width at half-maximum, ! /8, where 6 = 1.18 VA{,, with
M, the second moment of the normalized Gaussian curve.

Figure Symbols

RF amplitude (rad/s)

Model calculation

Experimental data

8325
1665.0
2497.6
33300

|
|
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FIG. 2. (a) Apparent T;' vs Aw and (b) steady-state M. vs Aw assuming a Lorentzian lineshape for solid spins.

and frequency offsets of the saturation RF. While the key
subroutine used in the fitting program is basically an unre-
stricted (downhill simplex) minimization procedure for a
single data line, the MATLAB software provides a convenient
environment for combining various data inputs with ad-
justable weights in their contribution to the sum-square de-

viation. This feature allows us not only to fit a combined set
of dispersive relaxation-rate or M data at various RF am-
plitudes, but also to fit simultaneously both the 1/7, and
the M data sets, weighted individually according to some
subjective criteria. We believe that for a parameter set ob-
tained by such a fit to be credible, it must satisfy multiple
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FIG. 3. (a) Apparent 7' vs Aw, and (b) steady-state M. vs Aw assuming a Gaussian lineshape for solid spins.

data lines, rather than one or two. Ideally all data points
should be fitted with equal weights, if they are equally ac-
curate.

In the results presented herein, the fits were ail performed
with a combination of two rate data lines (1/ 7', vs frequency
offset) and four steady-state A/#' data lines corresponding
to two and four, respectively, distinct RF amplitudes. As-

suming a Gaussian lineshape, one can obtain good fits to
each of the rate and M% data independently, as one may
expect. But the parameter sets obtained by these fits are not
consistent. A consistent fit of the these two data sets can be
obtained by the minimization of the weighted sum-square
deviations of these two individual fits. By adjusting the
weighting factors, one can arbitrarily bias the weight toward
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either of the two sets. In our case, we assume both data sets
are equal in accuracy and thus should be “equally weighted”
in the fitting process. Figure 2 and 3 show the results of such
fits to the experimental data using the Provotorov formu-
lation with a Lorentzian and Gaussian lineshape, respec-
tively, for the solid spins. It is clear from these results that,
at least for XL-BSA, the solid lineshape function is better
represented as a Gaussian than a Lorentzian.

DISCUSSION

Transient decay experiment were first performed by For-
sén and Hoffman (/4, 15) to obtain dynamic information
for a simple chemical system with resolvable peaks under-
going chemical exchange. Since the system of concern here
i1s more complex, it is no longer possible to extract an isolated
dynamic parameter, such as the rate of magnetization trans-
fer, by performing one or two simple experiments as was
done by Forsén and Hoffman. For a complex heterogeneous
system, our only alternative, as we have illustrated by our
present and previous ( /) work, is to perform an entire series
of experiments enabling determination of the multiple-pa-
rameter set required by the theoretical model.

From the data and analysis just presented, it is doubtful
that in the general case one can always achieve this goal.
There are two possible situations in which the procedures
outlined above would not be expected to work. In one case,
the lineshape function of the immobile spins does not con-
form to any well-known analytical function and as a result
confounds any attempt to fit the data. The second is possibly
even less optimistic. It is possible that at least in some cases,
the binary model is too simplistic. In the first case, one must
determine the solid lineshape function experimentally by
recording the free induction decay of the solid protons after
exhaustive substitution of the freely exchangeable protons
with deuterium (there are other fine points to this technique,
e.g., the correction for residue signal due to nonexchangeable
mobile protons such as imides and the experimental setup
for recording fast transients). In the second case, it is theo-
retically straightforward to extend the theory, again using
projection operators, to accommodate the situation which

allows more than two components in the system. The real
problem arises when one tries to experimentally verify the
more complex models. As the number of components in-
crease, so do the number of parameters characterizing these
components. The resulting multiparameter fits are subject
to much greater ambiguity, resulting in less confidence in
the fitting process.

We conclude with the following remarks: First, in com-
parison to our previous effort ( /), we have significantly ex-
tended the validity of the calculations, both by increasing
the range of applicable frequency offsets and by increasing
the capacity to encompass various B-spin lineshape func-
tions. We have also demonstrated that, at least for XL-BSA,
the model-predicted transient and steady-state responses
agree well with experimental data under the assumption of
a Gaussian lineshape for the solid spins. We shall leave the
pursuit of finding the correct lineshape for more complex
system such as tissue-like substance to a future effort.
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