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ABSTRACT. This paper is concerned with the transient waves created by a line heat source that

suddenly starts moving with a uniform velocity inside a thermoelastic semi-infinite medium with thermal

relaxation of the type of Lord and Shulman The source moves parallel to the boundary surface which is

traction-free. The problem is reduced to the solution of three differential equations, one involving the

elastic vector potential, and the other two coupled, involving the thermoelastic scalar potential and the

temperature. Using Fourier and Laplace transforms, the solution for the displacements have been

obtained in the transform domain. The displacements have been calculated on the boundary surface for

small time
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1. INTRODUCTION
The problem of heat sources acting in an elastic body is one of mathematical interest as well as of

physical importance The dynamic heat source problem was first investigated by Danilovskaya 1] using

the uncoupled theory of thermoelasticity. The problem of instantaneous and moving heat sources in

infinite and semi-infinite space, and static line heat sources in semi-infinite space were considered by

Eason and Sneedon [2], Nowacki [3] and others, under the coupled theory of thermoelasticity Dhaliwal

and Singh [4] gave the short time approximation due to a suddenly applied point source inside an infinite

space. Nariboli and Nyayadhish [5] gave exact solutions of the one-dimensional coupled problem of

impulse and thermal shock at the end of a semi-infinite rod for small time.

However, the coupled theory of thermoelasticity suffers from a serious drawback, namely, the heat

conduction equation is parabolic and consequently predicts an infinite velocity for heat propagation To
remedy this defect the theory of generalized thermoelasticity with one relaxation time was formulated by

Lord and Shulman [6]. The heat conduction equation here is a hyperbolic one so that there is a finite

speed of propagation for thermal waves.

Nayfeh and Nemat Nasser [7, 8] studied the problem of transient waves in thermally relaxing solids

Wang and Dhaliwal [9] have studied the fundamental solutions for generalized thermoelasticity, including

problems ofbody force and heat source.

In this paper, we make a study of the thermoelastic disturbances created by an internal line heat

source that suddenly starts moving uniformly inside a semi-infinite space with thermal relaxation. The

problem is solved by using joint Fourier and Laplace transforms. The expressions for displacements in
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the transform domain indicate the existence of dilatational, transverse and thermal waves inside the

medium. The displacement components have been evaluated on the boundary for small time only, the

general inversion being too complicated. Presence of high thermal damping makes the short time solution

meaningful.

2. FORMULATION OF PROBLEM
We consider a homogeneous isotropic thermoelastic solid occupying the region x2 _> h which is

initially at rest, and the free surface z2 h which is stress free. A line source starts moving suddenly
inside the medium at a depth h below the free surface uniformly in the xl direction. The line source is

parallel to the zs axis so that all quantities are independent of xs, and the third component us of the

displacement vector vanishes. The governing equations are:

1. Strain displacement relation

2e, u2j +us,,, i,j 1,2. (2.1)

2. Stress-strain relation

(2.2)

Heat conduction equation

( +o) + So(.., +o,.,)--o .,. 1,2. (2.3)

Equations ofmotion

(A + #)%.2: + #u2,v 70.2 i, j 1, 2. (2.4)

Initial conditions and boundary conditions

The initial conditions are

u2=O, 0=0, at <0 in x2E-h )
/2=0, =0, at _<0 in x2_)-h,

1, 2. (2.5)

The stress-free boundary conditions are

"r12--’r’22=0 on z2= -h for (2.6)

The regularity conditions are

O,ti--*O as 2--*oo, 1 --* q-O0. (2.7)

The thermal boundary condition at z2 h is

HIO + H20.2 =0. (2.8)

Scalar and vector potentials b, (0, 0, P) are introduced as follows:

where

b(x,x2,) and # p(x,x2,t).

(2.9)

Taking divergence and curl ofequations (2.4) gives

1
(2.10)

where

(2 11)
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a a

From equation (2.3), we have

vo ( +o + Oo(v +oV) o.
Introducing the following dimensionless quantities

l(C), l(C), e
l(Cr,), l(C), I,
",-o/, Q /,, % /,

where w k/pcC is ofthe dimension oftime,

the equations (2.10)-(2.12) become

where

(2 2)

(2.13)

12 , (2.15)

2 , (2 16)

(2 19)_
]"p O, (2.20)

where -1 denote the inverse Laplace transform.

Taking Laplace and Fourier transform ofboth sides of equations (2.15)-(2.17), we have

Inverting the transforms gives

v -= +

e a-v is the coupling parameter.and

Henceforth we shall omit the bars in equation (2.15)-(2.17). We shall also write x, y for xl, x2 and

u, v for ua, u2 respectively.

The Laplace transform ofa function A(z, y, t) with respect to is defined as

(A(z,y,t)) e-A(z,,t)dt .(z,,)

and the Fourier transform of. as
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( +) ( + r) ( + r)’. (221)

The stresses are transformed as

(2.22)

ru (p + 221*- 2i d__." (2.23)
dy

ru 2i de" d2
-Y + "- + p2,. (2.24)

The moving source is located at the origin, at time t 0+ and starts moving along the positive x-

axis, with uniform velocity V. The source is assumed in the form

Q Qo6(x Vt)6(y)H(t), Q* Qo6(y)/(p + iV). (2.25)

In solving the above equations (2.19) (2.21), we impose that *, *, 0", satisfy the regularity

conditions at infinity. Moreover,

Tv=’r=O on y= -h. (2.26)

Further, since the stress componems are continuous across y 0, it follows that

, de* d2 dqf d2b
W’ av’ ’’ d--f’ av (2.27a)

are all continuous across y 0.

To obtain the jump discontinuity due to the presence of 6(y) in Q*, equation (2.21) is integrated

from y r/to y r/, (r/> 0), and finally rt made to tend to 0+

dS" dO"
(l+pr)

Qo
(2.27b)

3. SOLUTION OF THE PROBLEM
Substituting from equation (2.19) in equation (2.21), we get a fourth order equation in*

)d2 + p(1 + )(1 +/rr) D + (1 + p’r) " Qo
(p iV)

6(y), (3.1/

where
d2

D 2. (3.2)

The solution of(3.1) satisfying regularity conditions is

f Ale-av + A2e-av + Aseatv + A4eav,

B1e-ay + B2e-’nu

-h<y<0

y>0
(3.3)

’=Cexp{-(2+p2)I/2y}, h < y < oo (3.4)

where
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.._ + ( + )( + r) + + / p(1 + p’r) (1 4- e)

a both are assumed to be real and positive.1,2

The displacement fields u’, v* are

f i(Ale-a + A2e-au + Aaea + Aea) Cbe-b,

iBa e-au + iB2e-a Cb e-by

1/2
4p3

(1 + Fr) (3.5)---
-h<y<O

y>O
(3.6)

f alAle-al a2A2e-au + alA3ea + a2A4ea iCe-b,

alB1e-au a2B2e-u iCe-b

-h<y<O

0<y<oo
(3.7)

where bl ( + p)1/2. (3.S)

Using conditions (2.27a) and (2.27b), we obtain a set of four equations involving the six constants

A1, A2, As, A4, B1, B2:

A1 + A2 + A3 + A4 B1 B2 0 (3.9)

alAa + aA2 + aA3 + a2A4 aB1 aB2 0 (3.10)

(3 11)

aA1 + aA2 + aAs + 4A, a3B, 4B2 o (1 +Fr)
(3.12)

The conditions (2.26) imply

_-axh A4e-h) h O,d(Aleaxh + A2eh + ,,x3e + + 2iblCebt (3.13)

2i(alAleah + a2A2eh alA3e-alh a2A4e-ah) dCeblh O, (3.14)

where d p2 + 22. (3.15)

The thermal boundary condition (2.8) gives

(A) H1 =1, Hz=0 i.e., O=0 on V=-h, (3.16)

(the zero temperature boundary condition)

(13) H=0, H2=l i.e., 0,=0 on y=-h, (3.17)

(the zero heat-flux condition on the boundary).
For case (A), on using equation (3.3) and (2.19) condition (3.16) reduces to

A1 (a2 b)e.’h + A2 (4 b22) ea’h + As (al b)e-’’h +A (4 b)e-’ 0

where b + (p/2). (3.19)

From equations (3.9)-(3.14) and (3.1 $), we obtain

A K[e(a’-a’)h(al + a2){d2(a, a2) 42b,aa2 + 42blb}
+ 8al2bl (4 b)]/al
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A= K[e(a-=)(a + oa){d2(oa a) 4f2baoa + 4f2bb}
(3.21)

As K/aa, B1 Aa + A3, B2 A2 + A4,

and C ide-b + + A3 + /2b,

where K
2(aQ(1-a)(p

+ pT)+iV)’ (3.21)

/k (al a2){d2(al + a2) 42blalaa 4f2blb}.
The surface displacemems are

(3.22)

2,Qop2bl (1 + p’r)u" (e-’’h e-’’) (3.23)
,=_,, ( + iv)A

Qop2d(1 + p’r)

u=-h (P + ifV)A (e-’lh e-’’h)" (3.24)

For the case B, the condition (3.17)c beuen

IA( b)e= +A2( b)e aA3(a b)e-= A4( b)e- 0, (3.25)

wch when combined th (3.9)-(3.14) eld the coesponding vues of the conts. The sace
displacementse ven by

u*
2,Qoba(1 +) (e_a h ae_=) (3.26)

=_ (+iv)

v’] Qp2d(1 + p’r)

u=_h (p-b iV)/kl (a’2e-a’h ale-a’h)’ (3.27)

where /1 (al a2) [d2 (a21 + ala2 +a b) 42blala2(a1 + a2)]. (3.28)

4. SMALL TIME APPROXIMATION
To the first order ofapproximation in 1, a and a may be written as

p p(1 + p’r)
(4.1)a= + fl’z fl(1 + p-r’) ’

a 2 + .rp2 + p + p(1 +/rr)2 , (4.2)

whe
1-- -.. (4.3)
p"

For a short time approximation to the displacement components, we expand al, 0,2, bl in terms of

powers ofp, and consider relevant terms as

Then

pro1 (4.4)
P
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2 (4.6)b,,.,p+ 2-
where

m 1-
2T’’ m2 1 + T;T (4.7)

It is clear from (4.4)-(4.6) that there are three waves with velocities B/m, 1/m2v/ and 1

respectively represeming the dilatational, the thermal and the transverse elastic waves.

However, the inversion of u*, v* inside the medium is too complicated, we evaluate the surface

displacements only from (3.29) and (3.30) for the zero temperature on the boundary.
For a small time, using (4.4), (4.5) in (3.23), (3.24),

u. 2,Qo(l + Fr)(e-’a e-’a)
(4.7)

=_ (;, +qV)L

v*[ QO(1 + gr)(e-":h
(4.s)___

(p + qv)2;L

where L + r + Er (4.9)

Finally, taking inverse Laplace and Fourier transform from (4.7) and (4.8) gives

2Q ((h/23Tt2 -r (1- -’/) (4.10)

vl,=_h ,. - exp{ (eh/2B3r’2) }f_ -e (I--)f4, (4 11)

where

(4.12)

1 ( x mlh) ( m,h x) (413)12=V t+r-t
V 3

H
3 V

(4.14)

(4.15)

It is observed that the surface displacements for small time consist of dilatational waves propagating with

velocity (B/ml) and a thermal wave moving with velocity (1/m2v). Also the waves are attenuated

by exponential factors depending on and r. The terms containing fl, f3 in u represent the displacement

at the point x 0, while terms comaining f2, $4 represent the surface disturbance up to the point above
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the position of source at the time. The non-relaxing thermoelastic case may be obtained simply by putting- 0 in the above results.
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