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Abstract In this study, a semi-analytical numerical
method, the scaled boundary finite element method, is
employed to investigate the time-dependent behaviour of pile
foundations when subjected to ocean wave loads. Individual
piles present steady-state vibrations at the same frequency
as external waves considering the material damping effect.
In the case with a group of two piles, the structural behav-
iour of pile foundations is a multivariable function of the
wave properties and the spatial arrangement of piles, and each
pile responses differently to various parameter combinations.
The leading pile, which interacts with incoming waves ear-
lier, normally experiences greater displacement amplitude
than the subsequent pile. Both piles show relatively greater
displacement in cases with large wave numbers. When the
two piles are closely spaced or when the wave number is
small, their responses tend to have phase difference and move
towards different directions. This study is expected to shed
light on the transient behaviour of pile foundations, when
wave load is a dominant factor.
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1 Introduction

Investigations of engineering accidents in ocean environment
revealed that waves are of paramount importance for the safe
design and reliable utilisation of ocean installations (Benas-
sai 2006; Gōda 2010; Moan 2005; United States Coast Guard
1984). This has led to a significant amount of studies and for-
mulated the framework of wave–structure interaction (WSI).
Over the past few decades, the study of WSI problems has
developed from first-order linear waves (Feng et al. 2008;
Finnegan and Goggins 2012; Li et al. 2011; Spring and
Monkmeyer 1974) to high-order non-linear waves (Bai and
Taylor 2006; Malenica et al. 1999; Wang and Wu 2007, 2010;
Zhong and Wang 2009), and from simply configured struc-
tures (Chen et al. 2009; Tao et al. 2007; Zhu 1993) to groups
of complex structures (Bai and Taylor 2009; Chatjigeorgiou
and Mavrakos 2010; Li et al. 2013a, b; Liu et al. 2013; Song
et al. 2010). However, most of the WSI studies focused on
solving wave field data, for example free surface elevation
and velocity field in the presence of structures (Ducrozet et al.
2010; Huang and Taylor 1996; Jung et al. 2004; Liu et al.
2013; Wu et al. 2013). The subsequent structural responses
have received insufficient attention. In cases with complex
structures where explicit wave expressions are not available,
structural engineers face additional challenges to formulate
the linkage between wave forces and structural responses.

Concerning the complexity involved in WSI problems, it
is practically difficult to seek analytical or experimental solu-
tions to address structural responses under wave loads. A few
reported numerical studies set a precedent in this regard. Wu
et al. (1995) investigated the wave-induced response of an
elastic floating plate. Lee and Wang (2000) addressed the
dynamic behaviour of a tension leg platform with net-cage
system when exposed to ocean waves. Srisupattarawanit et al.
(2006) presented a time-accurate computation of the interac-
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tion between elastic structures and random waves of a finite
water depth. Ge et al. (2010) investigated the interaction
between waves and a submerged floating tunnel. However,
there are limitations associated with the abovementioned
studies, which are directly or indirectly related to the numer-
ical methods employed in the analyses. The popular and
widely used finite element method (FEM) is very flexible in
dealing with inhomogeneous and anisotropic structures, but
runs into difficulties when extensive computational domains
are involved. The boundary element method (BEM) is an
attractive alternative to FEM when modelling unbounded
domains, i.e. the wave field in this circumstance. Neverthe-
less, the complexity of the fundamental solution increases
dramatically with the complexity of the physical problem.

A semi-analytical numerical method developed by Wolf
and Song (1996), termed as the scaled boundary finite ele-
ment method (SBFEM), overcomes the abovementioned
disadvantages of FEM and BEM. It possesses favourable fea-
tures by combining the following advantages: significantly
releasing the computational burden of three-dimensional
calculations; precisely satisfying boundary conditions at
infinity; not requiring fundamental solutions and being free
from irregular frequencies and singular integrals. SBFEM
has been employed in various engineering fields with rapid
recognition (Li 2007; Tao and Song 2008; Tao et al. 2009a, b).
The authors employed SBFEM to investigate the structural
response of offshore monopiles subjected to wave loads
(Li et al. 2010, 2011) and subsequently developed a three-
dimensional SBFEM model to address wave field behaviour
in the presence of structures and the structural response due
to wave loads (Li et al. 2013a, b). These studies were con-
ducted in a static scope without considering the time factor.
The current analysis further advances the SBFEM model to
the time-dependent context to capture the transient dynamic
responses of structures when subjected to ocean wave loads.
This study is believed to offer more realistic information in
the foundation design processes for ocean constructions.

2 Problem formulation

A group of pile foundations engaged in an ocean environment
is used to illustrate the physical problem, as shown in Fig. 1.
In the study of WSI problems, important progress has been
made in incorporating seabed effects. Mostafa and El Naggar
(2004) considered soil–structure interaction when studying
offshore platforms, representing the p − y (net reaction on
pile per unit length—pile lateral deflection) curve of the pile
foundations in the real situation. Jeng et al. (2013); Ye et al.
(2013a, b) developed and validated two-dimensional and/or
three-dimensional coupled and/or semi-coupled numerical
models and addressed wave and porous seabed domains. Ye
et al. (2014, 2015) examined the dynamic responses of com-
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Fig. 1 A group of pile foundations in ocean environment (reproduced
from Li et al. 2013b)

posite breakwaters in the scope of fluid–structure–seabed
interaction. These studies offer a good guidance as to how
the present analysis could be further developed. As an ini-
tial attempt to formulate an SBFEM solution to the proposed
physical problem, pile foundations are assumed to be fixed at
the seabed level in this study. Relative motions between pile
foundations and the seabed are not considered. In addition,
as the main focus of this study lies in the behaviour of pile
foundations in response to ocean wave loads, external loads
from winds acting on wind farm monopiles or superstruc-
tures on pile group foundations are not considered. In Fig. 1,
the origin O of the Cartesian coordinate system is located at
the seabed surface. x and y denote two orthogonal horizontal
directions, and z positively points upwards. Here, Ω repre-
sents the three-dimensional ocean field; a and h stand for the
pile radius and pile height, respectively; A symbolises the
wave amplitude, and d the water depth.

2.1 Wave behaviour

Though quite a few studies have been directed to high-
order non-linear waves, the formulation presented in this
study is limited to the linear scope. The linear wave theory
offers a description of wave parameters with sufficient accu-
racy for many purposes (Dean and Dalrymple 1991; Gōda
2010), such as the structural design and reliability evaluation
from the engineering point of view. Moreover, linear theory
allows for a quick and preliminary evaluation of wave prop-
erties and their effects on structures. In addition, non-linear
kinematic and dynamic wave parameters can be estimated
from linear analysis results (Phillips 1977). Therefore, it is
conducive to linearly formulate SBFEM to solve complex
interaction problems as an initial trial. In these circumstances,
the seawater is assumed inviscid and incompressible, and the
wave motion is irrotational. The velocity potential Φ of the
three-dimensional wave field Ω is governed by the Laplace
equation (Mei 1989):

∇2Φ = 0 in Ω (1)

The concept of separation of variables is employed to decom-
pose Φ into univariate functions with respect to independent
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variables, i.e. the spatial variables x , y, and z, and the tem-
poral variable t :

Φ(x, y, z, t) = φ(x, y)Z(z)e−iωt (2)

In Eq. (2), i =
√

−1; ω is the angular frequency; φ (x , y) is
governed by the Helmholtz equation at the free surface level
(Mei 1989):

∇2φ + k2φ = 0 (k : the wave number) (3)

Normally, the geometric dimension of pile foundations is
incomparable with the wavelength. Hence, the total velocity
potential of the wave filed (denoted by a subscript ‘T ’) is
formulated by the summation of the velocity potentials of
the incident (denoted by a subscript ‘I ’) and the scatter wave
(denoted by a subscript ‘S’). Based on the superposition prin-
ciple, Φ and φ in Eqs. (1), (2) and (3) represent any of the
total, the incident and the scattered velocity potentials. For
ease of discussion, a radial direction r and the corresponding
tangential direction n are used when introducing the bound-
ary conditions associated with the Helmholtz equation (3).
At the wetted structural surface, the Neumann boundary con-
dition is enforced as (for concise presentation, the comma
notation for partial derivatives is used):

φT,n = 0 (4)

At infinity, the Sommerfeld radiation condition (Sommerfeld
1949) is specified in terms of the scattered waves as:

lim
kr→∞

(kr)1/2 (

φS,r − ikφS

)

= 0 (5)

Once φ in Eq. (3) is solved with the boundary conditions
specified in Eqs. (4) and (5), the free surface elevation ηθ can
be calculated using the gravitational acceleration g as:

ηθ =
iω

g
φe−iωt (6)

In Eq. (2), the function Z(z) is analytically formulated as:

Z(z) =
cosh kz′

cosh kd
(7)

with the stretched coordinate z′ calculated according to
Wheeler (1969) as:

z′ =
zd

d + ηθ

(8)

Subsequently, the dynamic wave pressure pd acting on pile
foundations can be computed as:

pd = −ρw Φ,t (9)

with ρw being the density of the sea water. The total wave
pressure acting on pile foundations results from the superpo-
sition of the dynamic pressure pd and the hydrostatic pressure
ph , which is formulated as:

ph = ρwg(d − z′) (10)

2.2 Structural response

The structural behaviour of pile foundations is governed by
the elasto-dynamic differential equations:

[L]T {σ } + ω2ρp {u} = 0
{σ } = [D] {ε}
{ε} = [L] {u}

(11)

where [L] is the partial differential operator; {u}, {σ} and
{ε} represent the pile displacement, stress and strain ampli-
tudes, respectively; [D] is the elastic matrix, and ρp denotes
the mass density of pile foundations. Equation (11) is solved
with the boundary condition specified at the seabed level
where the displacement of pile foundations is assumed as
zero, i.e.

{u} = 0, at z = 0. (12)

and the piles are subjected to the time-dependent wave force
summed from the dynamic and hydrostatic components:

pw = pd + ph (13)

3 SBFEM model

A three-dimensional SBFEM model addressing wave–struc-
ture interaction problems in the static scope has been devel-
oped and systematically documented by Li et al. (2013a, b).
In the present study, the SBFEM formulation of the wave
field remains the same. The formulation of pile foundations
and the corresponding solution procedure, on the other hand,
differ greatly from those specified in the static analysis and
require more advanced techniques.

The SBFEM equation expressed in nodal displacement
{u(ξ )} corresponding to Eq. (11) is written as:

[E0]ξ2{u(ξ)},ξξ + (2[E0] + [E1]T − [E1])ξ{u(ξ)},ξ

+ ([E1]T − [E2]){u(ξ)} + ω2
[

M0
]

ξ2 {u(ξ)} = 0 (14)

with [E0], [E1], [E2] and [M0] being coefficient matrices
calculated from the scaled boundary discretisation.

Using the dynamic stiffness matrix [S(ω)], Eq. (14) can
be rewritten as:
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([S(ω)] − [E1])[E0]−1([S(ω)] − [E1]T ) − [E2]
+ [S(ω)] + ω[S(ω)],ω + ω2[M0] = 0 (15)

[S(ω)] is to be solved from Eq. (15) and substituted into
the corresponding nodal force {R}-nodal displacement {u}
relationship formulated on the discretised boundary:

{R} = [S(ω)] {u} (16)

Equation (15) is a non-linear first-order matrix-form Riccati
differential equation. Solving the dynamic stiffness matrix
[S(ω)] from it is not a straightforward task. Song (2009)
employed the continued fraction technique to postulate the
formation of the dynamic stiffness matrix, using the stiffness
matrix [K ] and the mass matrix [M] as:

[S(x)]

= [K ] + x [M] − x2
[

S(1)(x)
]−1

= [K ] + x [M]

−
x2

S
(1)
0 (x) + x S

(1)
1 (x) − x2

S
(2)
0 (x)+x S

(2)
1 (x)−··· x2

S
(Mcf )

0 (x)+x S
(Mcf )

1 (x)

(17)

with x = −ω2 and Mc f represents the order of the contin-
ued fraction. The advantages of using continued fractions in
SBFEM lie in that, for low frequency excitations, structural
behaviour can be represented by the stiffness and mass matri-
ces ([K ] and [M]) in Eq. (17). A zero or low order of Mc f

can be assigned to retain the original computational expenses
in the analysis. For high frequency applications, the dynamic
properties of the structure can be described using high-order
continued fraction terms. No mesh refinement is required, as
would be the case in an FEM analysis. Key solution proce-
dures in Song and Tao (2009) are followed herein for integrity
of presentation. Substituting Eq. (17) into Eq. (16) yields the
following expression:

{R} = [K ] {u} + x [M] {u} − x
{

u(1)
}

(18)

with

x
{

u(1)
}

= x2
[

S(1)(x)
]−1

{u} (19)

Equation (19) can be reformulated as:

x {u} =
[

S(1)(x)
] {

u(1)
}

(20)

[S(1)(x)] and Eq. (20) are generalised for the i th order con-
tinued fraction as:

[

S(i)(x)
]

=
[

S
(i)
0

]

+ x
[

S
(i)
1

]

− x2
[

S(i+1)(x)
]−1

(21)

and

x
{

u(i−1)
}

=
[

S(i)(x)
] {

u(i)
}

(i ≥ 1) (22)

where {u(i)} (i ≥1) are the auxiliary displacements intro-
duced by the order of the continued fraction. Substituting
Eq. (21) into Eq. (22) and using Eq. (19) lead to:

x
{

u(i−1)
}

=
[

S
(i)
0

] {

u(i)
}

+ x
[

S
(i)
1

] {

u(i)
}

− x
{

u(i+1)
}

(i ≥ 1) (23)

Rearrange Eqs. (18) and (23) into similar form as:

[K ] {u} + x [M] {u} − x[I ]
{

u(1)
}

= {R}
[

S
(i)
0

] {

u(i)
}

− x[I ]
{

u(i−1)
}

+ x
[

S
(i)
1

] {

u(i)
}

− x[I ]
{

u(i+1)
}

= 0 (24)

Note that the first equation in Eq. (24) corresponds to i =
0 and {u} represents the structural DOFs. The second equa-
tion corresponds to i ≥ 1 and {u(i)} stands for the introduced
auxiliary DOFs from the continued fraction. These two equa-
tions can be combined and written in matrix-form algebraic
equations as:

([Kh] − ω2 [Mh]) {y} = { f } (25)

with

[Kh] = diag
(

[K ]
[

S
(1)
0

] [

S
(2)
0

]

· · ·
[

S
(Mc f )

0

])

(26)

[Mh] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[M] − [I ] 0 · · · 0

− [I ]
[

S
(1)
1

]

− [I ] · · · 0

0 − [I ]
[

S
(2)
1

]

· · · 0
...

...
...

. . .
...

0 0 0 · · ·
[

S
(Mc f )

1

]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(27)

{y} =
{

{u}
{

u(1)
} {

u(2)
}

· · ·
{

u(Mc f )
} }T

(28)

and

{ f } =
{

{R} 0 0 · · · 0
}T

(29)

By the inverse Fourier transformation, Eq. (25) is rewritten
in the time domain as:

[Kh] {y} + [Mh] {ÿ} = { f } (30)
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The coefficient matrices [Kh] and [Mh] listed in Eqs. (26)
and (27) are calculated for each subdomain. They are assem-
bled into global matrices [KG] and [MG] in such a way
that the entries corresponding to structural DOFs follow the
assemblage concept in FEM, and those corresponding to
the auxiliary DOFs are allocated into the global matrices
in sequence.

[KG] {y} + [MG ] {ÿ} = { f } (31)

It is worth mentioning that the number of DOFs involved in
the assembled global equation of motion (Eq. 31) is larger
than the number of structural DOFs due to the use of the con-
tinued fraction technique. The higher the order of continued
fraction, the greater the number of DOFs and accordingly
the more intensive the computational demand. An appropri-
ate continued fraction order should be considered to avoid
the computational memory issue. Equation (31) represents
an undamped forced vibration. It can be employed to exam-
ine natural frequencies of structures if the external excitation
{ f } equals 0. In this study, the material damping effect is
considered by adding the damping force into Eq. (31), which
leads to (the subscript ‘G’ is dropped for conciseness):

[M] {ÿ} + [C] {ẏ} + [K ] {y} = { f } (32)

with [C] being the damping matrix and formulated by the
linear combination of the stiffness matrix [K ] and the mass
matrix [M] as:

[C] = αd [M] + βd [K ] (33)

αd and βd are two frequency-independent coefficients. They
are calculated from:

αd = 2rmdω1ω2/(ω1 + ω2)

βd = 2rmd/(ω1 + ω2)
(34)

where rmd is the material damping ratio. ω1 and ω2 are natural
circular frequencies corresponding to two orthogonal modal
shapes of the structure.

Equation (32) is solved in the time domain using the New-
mark integral technique. Once the time history of the nodal
displacement is obtained, the time-dependent behaviour of
the pile foundation is sought. A detailed solution procedure
incorporating both the wave and structural analyses is illus-
trated in Fig. 2.

4 Model validation

The validation of the SBFEM model is conducted in two
aspects, i.e., wave and structural analyses. A validation case

in terms of the wave analysis can be found in (Li et al.
2013b), in which the free surface elevation around pile foun-
dation circumference calculated from the SBFEM model was
compared against an analytical expression. To further justify
the applicability of the proposed model and demonstrate the
validity of the linear wave theory, the experiment conducted
by Chakrabarti and Tam (1975) is reproduced. In Chakrabarti
and Tam’s experiment, dynamic wave effects on a large ver-
tical cylinder were measured in a wave tank in the form of
pressure, force and moment. Detailed information about the
experimental model, apparatus and the test procedure can
be found in Chakrabarti and Tam (1975). Results from the
experiment generated a plot of the effective inertia coefficient
CM versus the ratio of the cylinder diameter to wavelength
ka/π , as shown in Fig. 3. Corresponding SBFEM results
using the proposed model are also plotted. The agreement
between the modelling and the experimental results demon-
strated the credibility of the SBFEM model in solving wave
domain.

In terms of the validation of the SBFEM formulation for
structural analysis, the L-shaped panel discussed in Sec-
tion 6.2 in Song (2009) is analysed herein. The L-shaped
panel is subjected to a triangular impulse as shown in Fig. 4.
Relevant information of the validation case is specified in
Table 1. Using the proposed SBFEM model, both the natural
frequencies of the L-shaped panel and the vertical displace-
ments of Points A and B are presented. The results are
compared against those from an equivalent and converged
finite element analysis. In the SBFEM model, three subdo-
mains (super element) are designed as shown in Fig. 5. In
each subdomain, the scaling centre is located at the geomet-
ric centre of the domain. Fifty 3-node quadratic elements,
resulting in a total of 98 nodes, are used to discretise the
boundaries and subdomain interfaces of the panel. As shown
in Fig. 6, a parametric analysis on the number of continued
fractions, with Mc f = 0, 1, 2, 3 and 4, is conducted based on
the above mesh configuration. It is observed that the result
converges rapidly as Mc f increases from 0 to 3. Both the
natural frequencies calculated from Mc f = 3 and 4 coincide
well with the converged FEM results, as seen in the plot of
relative errors in Fig. 6b. This indicates an order of Mc f = 3
or 4 is sufficient for the specified mesh resolution.

An estimate of the optimum Mc f prior to the calcula-
tion can be conducted according to Song (2009). The current
meshing scheme discretises each segment b with five 3-node
quadratic elements, leading to 11 nodes per length b. Con-
sidering the common rule of using six nodes per wavelength
(Marburg 2002), the current meshing scheme is capable of
modelling 11/6 = 1.83 wavelengths per length b. The dis-
tance between the scaling centre and a vertex in a subdomain
is 0.707b, which is equivalent to 0.707 × 1.83 = 1.29 wave-
lengths. Based on the guideline of three to four terms of
continued fractions per wavelength (Song 2009), an order of
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Fig. 2 Solution procedure of wave field and time-dependent structural analysis
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Fig. 3 Comparison between SBFEM model and experimental data for
wave analysis

Mc f = 3 or 4 is expected for accurate results. This corre-
sponds well to the result of the parametric analysis. Figures
6 and 7 demonstrate a satisfactory level of accuracy and reli-
ability of the SBFEM calculation. It worth mentioning that

the equivalent converged FEM analysis requires 300 two-
dimensional 8-node quadratic solid elements, i.e., 981 nodes
in the calculation.

5 Time-dependent response of monopile

foundations

Before investigating the dynamic behaviour of individual pile
foundations, it is necessary to conduct a modal analysis to
examine the natural frequencies of the pile foundation in
relation to the excitation frequencies from external waves.
Employing the parameters in Li et al. (2013b), a monopile
foundation with its geometric configuration and material
information listed in Table 2 is illustrated in Fig. 8. In the
modal analysis, an undamped free vibration is examined by
solving Eq. (31) with vector { f } replaced by 0. The first two
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Fig. 4 Model verification of
the time-dependent structural
analysis: a geometric
configuration of an L-shaped
panel (reproduced from Song
2009); b triangular impulse:
variation of pressure p versus
time t
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Table 1 Parametric information of SBFEM model validation for struc-
tural analysis

Parameters Notations Magnitudes Units

L-shaped panel

Characteristic length b 1 m

Young’s modulus E 2.8 × 1010 Pa

Mass density ρ 2400 kg/m3

Poisson’s ratio ν 1/3 –

Temporal variables ttotal 0.022 s

tpeak 1.46 × 10−4 s

tzero 2.93 × 10−4 s

�t 7.32 × 10−6 s

Natural circular frequencies ω1 1371.68 rad/s

ω2 2819.27 rad/s

External force ppeak 2.8 × 107 Pa

Fig. 5 SBFEM model of the L-shaped panel (reproduced from Li et al.
2015)

orders of the natural frequencies associated with the specified
monopile foundation are ω1 = ω2 = 29.97 rad/s. They are
far greater than the excitation frequency of external waves,
which is calculated to vary from 0.314 to 1.257 rad/s when the
wave period in the normal ocean environment ranges between
5 and 20 s. This will help to reduce the chance of resonance.
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Fig. 6 Parametric analysis on the order of continued fractions and the
comparison with the FEM results: a natural frequencies of the L-shaped
panel and b relative error

In addition, the calculated natural frequencies ω1 and ω2 are
to be used later to formulate the damping matrix [C] in Eq.
(33) when calculating the damped transient response of pile
foundations subject to cyclic wave loads.

The transient response of Point O ′ (see Fig. 8) to the
dynamic wave loads is illustrated in Fig. 9. The time vari-
able t is assumed to be zero at the instant the pile starts
to withstand wave loads. A total of 50 periods of the pile
motion are calculated and plotted. Employing the parame-
ters listed in Table 2, it takes approximately ten periods for
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Fig. 7 Comparison of vertical
displacement history of the
L-shaped panel between
SBFEM and FEM calculations
at: a point A and b point B
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Table 2 Parameters of time-dependent analysis of a monopile founda-
tion subjected to wave loads

Parameters Notations Magnitudes Units

Pile parameters

Pile radius a 0.5 m

Pile height h 10 m

Young’s modulus E 2.8 × 1010 Pa

Mass density ρp 2400 kg/m3

Damping ratio rmd 0.05 –

Poisson’s ratio ν 0.25 –

Wave parameters

Water depth d 7.5 m

Incident wave angle α 0 rad

Wave number k 0.10 m−1

Water density ρw 1000 kg/m3

Wave amplitude A 0.5 m

Temporal variables

Time steps N 800 –

Time interval �t 0.50 s

Gravitational acceleration g 9.81 m/s2

Part of the parametric values in Table 2 are sourced from Li et al. (2013b)

the mechanical energy associated with the pile’s free motion
to be dissipated. The pile thereafter arrives at a steady-state
vibration and moves at the same frequency as waves. The fol-
lowing discussions are focused on the steady-state vibration
considering the real ocean situation.

Figure 10a plots the displacement of two periods for five
observation points located at different height levels along
L − L ′, i.e. z = 2, 4, 6, 8 and 10 m (see Fig. 8a). It is

observed that the five points move at the same frequency with
different amplitudes, and the amplitude is greater at points
further away from the seabed level. This feature can be more
visually recognised in Fig. 10b, in which the motion of the
pile for one complete period, represented by the movement
of L − L ′, is depicted. The four curves labelled as 1, 2, 3
and 4 match the four time instants marked by corresponding
numbers in Fig. 10a. The pile starts off from its equilibrium
position, denoted by curve 1, moves towards positive x direc-
tion and reaches its maximum coverage marked by curve 2
at t = T /4 (Here and onwards, T denotes the period of the
pile motion), then moves back to curve 3 and continues to
swing to curve 4 to achieve the maximum on the other side,
and eventually returns to its initial status upon completion
of a cycle when t = T . The pile swings back and forth
between curve 2 and curve 4 under the action of wave loads.
Curve 1 or 3 denotes the equilibrium position of the pile in
its cyclic movement. It does not coincide exactly with the
pile’s neutral still status due to the effect of the hydrosta-
tic pressure, which accounts for the negative displacement
appearing at the bottom of the pile. The hydrostatic pressure
acts normally to the pile circumference and reaches its maxi-
mum at the seabed level as it linearly increases with the water
depth.

Figure 11 reflects the displacements of five specific loca-
tions at the pile head level. Four of them are located along
the pile circumference at θ = 0, π /2, π and −π /2, and the
fifth is selected at Point O ′, as shown in Fig. 8b. They present
exactly the same motion pattern with identical frequency and
amplitude. Based on the findings from Figs. 10b and 11, the
subsequent discussions on the time-dependent response of
pile foundations will be made by examining the dynamic
behaviour of Point O ′ only.
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Fig. 8 A monopile foundation
subjected to wave action a xz

plane view and b xy plane view
of the pile head

(b)(a)
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Fig. 9 Transient response of
Point O ′ to the dynamic wave
loads a in the x direction and b

in the y direction

6 Time-dependent response of pile group

foundations

The time-dependent response of a group of two piles is con-
sidered, with the intention to obtain enlightening information
when more piles or complex structures are involved. The geo-
metric sketch illustrating the physical problem is shown by
an xz plane view and an xy plane view in Fig. 12. The two
piles, denoted by P1 and P2, are of identical radius a = 0.5
m. They are seated on the x axis and are placed symmetri-
cally with respect to the y axis. The net distance between the

two piles ‘dNet ’ equals three times the pile radius a. Other
parameters hold the same magnitudes as listed in Table 2.

It is anticipated that the relative orientation between inci-
dent wave directions and the spatial arrangement of pile
foundations significantly affects the behaviour of pile foun-
dations. Thus, three representative cases are investigated in
this study, corresponding to situations in which the incident
wave direction is in alignment with (α = 0), oblique with
(α = π/4), and orthogonal to (α = π/2) the connecting line
of the two piles, as shown in Fig. 13. Parametric analyses in
terms of the incident wave number k and the ratio of the pile
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Fig. 10 Time-dependent
behaviour of the monopile
foundation a displacement
versus time for representative
locations along L − L ′ and b

monopile motion description for
one period

Fig. 11 Displacement versus time for representative locations on the
monopile head

distance dNet to the pile radius a, abbreviated as the dimen-
sion ratio in the following text for brevity and denoted as e,
are concurrently carried out to present the time-dependent
responses of pile foundations with respect to changing wave

conditions. From relevant wave information and the disper-
sion equation, the wave number k is calculated to change from
0.05 to 0.15 m−1 by an increment of 0.025 m−1. The dimen-
sion ratio e is arranged to vary from 1 to 5 with an increment
of 1. Table 3 lists the variation of the three parameters, which
will be employed in the subsequent discussions. Moreover,
the influence of the variation of one parameter on the influ-
ence of other parameters on the transient response of pile
foundations is also worth exploring.

6.1 Incident wave angle α = 0

The incident wave angle α = 0 leads to symmetrical behav-
iour of pile foundations with respect to the x axis, and
accordingly zero displacement components in the y direc-
tion. Therefore, only the displacements in the x direction are
plotted in Fig. 14 for both piles. The displacement-versus-
time relationships are presented for varying e (from 1 to 5)
when the wave number k = 0.10 m−1, as a representative
case. It is noticed that P1 and P2 have different responses to
wave loads when the distance between the two piles varies.

Fig. 12 Geometric model of a
group of two piles in ocean
environment: a xz plane view
and b xy plane view

(b)(a)
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Mean water 
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Fig. 13 Variation of the incident wave direction

Generally, for identical e, the displacement of P1 is compar-
atively greater than that of P2 by an order of magnitude 1.
For P1, the maximum displacement amplitude in the positive
x direction is 0.97 × 10−2 mm, 0.87 × 10−2 mm, 0.80 ×
10−2 mm, 0.75 × 10−2 mm and 0.70 × 10−2 mm when e

increases from 1 to 5. At the same time instant, the displace-
ment for P2 is read as −0.18×10−2 mm, −0.313×10−3 mm,
0.477 × 10−3 mm, 0.965 × 10−3 mm and 0.13 × 10−2 mm,
with the negative sign indicating the negative x direction.

It can be further read from Fig. 14 that, with e no more
than 3, P1 and P2 move in the opposite directions, i.e. the
motion of P2 has a phase difference of T /2 to that of P1. This
can be elaborated using Fig. 10b, when P1 follows the tra-
jectory of 1→2→3→4→1, P2 moves in accordance with
1→4→3→2→1. This is related to the spatial proximity
between the two piles. When the pile distance is relatively
small, the resultant force acting on P2 is in the opposite direc-
tion to that on P1, and the two piles are moving one moment
towards each other and the next moment away from each
other. As the net distance becomes larger, the effect of P1’s
presence on the behaviour of the waves around P2 is not as

significant, and the resultant force acting on P2 is in the same
direction as that on P1. Consequently, both piles move in the
same direction.

Figure 15 is used to explore the variation of the time-
dependent response of the two piles with respect to k when
e = 3 as a representative case. Apparently, both piles main-
tain the same movement period as the external waves, which
changes from 14.99, 10.26, 7.96, 6.63 to 5.76 s as the
wave number varies from 0.05 to 0.15 m−1. Once again,
the displacement amplitude of P1 is greater than that of
P2 at the same time instant. The displacement amplitude is
read as 0.15 × 10−2 mm, 0.39 × 10−2 mm, 0.80 × 10−2

mm, 0.137 × 10−1 mm, and 0.210 × 10−1 mm for P1 and
−0.296×10−3 mm, −0.173×10−3 mm, 0.477×10−3 mm,
0.18 × 10−2 mm and 0.41 × 10−2 mm for P2 as k increases
from 0.05 m−1 to 0.15 m−1.

It should be noted that the time-dependent behaviour of
the piles is not solely related to either e or k. On the contrary,
the piles have different performance for different combina-
tions of e and k. More specifically, for any k not equal to 0.10
m−1, the displacement-versus-time relationships for varying
e would be dissimilar from Fig. 14. Analogously, when e is
not equal to 3, the patterns of the transient responses of the
piles with varying wave numbers would be different from
Fig. 15. To provide a clear overview of this phenomenon,
the variation of the maximum displacement of both piles
with respect to the two parameters e and k is plotted in Fig.
16. It is found that: (1) the displacement amplitude of P1 is
greater by an order of 1 in comparison with that of P2 for
same cases of parametric combinations; (2) the displacement
amplitude decreases with e for any fixed k for P1. As for P2,
by reading the lower part of Fig. 16b, it is seen that in sit-
uations with small wave numbers or when the two piles are
closely located to each other, P2 has an opposite movement
direction to that of P1. In addition, the displacement mag-

Table 3 Parameter variation for
parametric analysis

Parameters Magnitudes

Wave number k (m−1) 0.05 0.075 0.10 0.125 0.15

Dimension ratio e = dNet /a 1 2 3 4 5

Incident wave direction α (rad) 0 π/4 π/2 – –

Fig. 14 Displacement versus
time when k = 0.10 m1 and
α = 0 for varying e: a P1 and b

P2
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Fig. 15 Displacement versus
time when e = 3 and α = 0 for
varying k: a P1 and b P2

Fig. 16 Displacement versus e

for varying k when α = 0 for: a

P1 and b P2

nitude of P2 decreases as the value of e increases. On the
other hand, the upper part of Fig. 16b shows an increasing
displacement amplitude with respect to an increasing e; (3)
viewing any particular symbol to examine how the displace-
ment amplitude changes with respect to k for a certain e, it can
be concluded that the displacement of P1 shows a consistent
increase with k. As far as P2 is concerned, the displacement
amplitude first rises and later falls with increasing k for rather
small e. For relatively large e, it increases steadily when the
value of k becomes larger. Whether the displacement ampli-
tude is increasing or decreasing when e varies, both subplots
demonstrate a rather moderate slope of variation for small
wave numbers, and relatively prominent variation for large
wave numbers.

It would be practically meaningful to identify how the
parameter combinations affect motion directions of the two
piles. By examining Fig. 16b, and employing spline interpo-
lation, it is found that the zone under the solid line in Fig.
17 signifies, for α = 0, opposite motion directions between
the two piles, and vice versa, the zone above the solid line
implies the same motion directions. Bearing this knowledge
in mind, particular attention should be paid not only to the
pile foundations, but also their supported superstructures in
practical design and construction.

6.2 Incident wave angle α = π/4

When the incident wave direction is oblique, at an angle of
π /4, to the connecting line between the two piles, the pile’s
behaviour is no longer symmetric. Displacements in both
x and y directions are examined. Figure 18 offers general

Fig. 17 Parameter combinations for pile motion directions for α = 0

knowledge as to how piles’ transient behaviour vary with e

for k = 0.10 m−1. Calculating the resultant displacement
amplitudes from the x and y displacement components, it is
found that for α = π/4 and k = 0.10 m−1, the maximum
displacement of P1 decreases from 0.15 ×10−1 mm, 0.13
×10−1 mm, 0.12×10−1 mm, 0.11×10−1 mm to 0.98×10−2

mm when e increases. The corresponding readings of P2 are
0.54×10−2 mm, 0.38×10−3 mm, 0.27×10−2 mm, 0.19×
10−2 mm and 0.14 × 10−2 mm, respectively. Regardless of
the direction of motion, the displacement amplitude of both
piles decreases as e increases.

By reading the negative displacement associated with the
motion of P2 in Fig. 18b, d, it is derived that when e is small,
the resultant motion of P2 has a phase difference of T /2 to
that of P1; hence, the two piles show opposite directions of
motion. When the net distance between the two piles is large
enough (e ≥ 4), they move harmoniously with the same
phase.
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Fig. 18 Displacement versus
time when k = 0.10 m−1 and
α = π/4 for varying e: a ux of
P1; b ux of P2; c u y of P1 and d

u y of P2

Fig. 19 Displacement versus
time when e = 3 and α = π/4
for varying k: a ux of P1; b ux

of P2; c u y of P1 and d u y of P2

Figure 19 suggests the fluctuation of the displacement
amplitude with respect to time for various k when e = 3. For
P1, the resultant displacement consistently increases from
0.24 × 10−2 mm, 0.60 × 10−2 mm, 0.116 × 10−1 mm, 0.20
×10−1 mm to 0.30 ×10−1 mm as the value of k increases.
The resultant response of P2, calculated from Fig. 19b, d,
presents a value of 0.12 × 10−2 mm, 0.20 × 10−2 mm,
0.27 × 10−2 mm, 0.31 × 10−2 mm and 0.33 × 10−2 mm
for k = 0.05 m−1, 0.075 m−1, 0.10 m−1, 0.125 m−1 and

0.15 m−1, respectively. It is further observed that, whatever
k is when e = 3 and α = π/4, the direction of motion of P2
is neither the same as nor opposite to that of P1, but with a
certain angle between them.

Figure 20 is drawn to assist the understanding of the vari-
ation of the maximum displacement with respect to the two
parameters, e and k, when α = π/4. P1 presents a rather
simple reduction in the amplitude as e increases for each indi-
vidual k, as seen in Fig. 20a, c. The reduction is more obvious
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Fig. 20 Displacement versus e

for varying k when α = π/4 for:
a maximum ux for P1; b

maximum ux for P2; c

maximum u y for P1 and d

maximum u y for P2

when the wave number is greater. The amplitude increases
with k for any specific e, which is evident by viewing the
same legend markers in Fig. 20a, c, and the increase becomes
more remarkable as k becomes greater. The displacement
amplitude of P2, first of all, is comparatively smaller than its
counterpart P1 by roughly an order of 1. It is calculated from
the x and y displacement components, shown respectively in
Fig. 20b, d, that the resultant displacement decreases with e

for any specific k, and the decrease becomes more significant
when k is large. By fixing e and examining the variation of the
displacement amplitude with respect to k, it is shown that the
resultant displacement monotonically increases with k and
the increase becomes less significant as the value of k rises.

Overall, both piles show relatively greater displacement
with large wave numbers. When the two piles are closely
spaced or when the wave number is small, they tend to have
phase difference and move towards different directions. It is
found that the direction of motion of P1 is roughly in align-
ment with the incident wave direction, with an angle varying
between π /4 and π /3. This is slightly greater than the inci-
dent wave angle due to the presence of P2. As far as P2 is
concerned, the parameter combination has a significant influ-
ence on the direction of motion of P2. As illustrated in Fig.
21a, for the e and k combinations defined above the solid
line, the range of the direction of motion of P2 is [−π /2 0],
as shown in Fig. 21b. It shifts to [−2π /3 −π /2] when e and
k are confined in the region below the solid line. The com-
plex variation feature of the displacement of P2 once again
proves that both wave properties and the spatial layout of pile
members affect the pile group’s response, which should be

(b)(a)

=
 -

/2

= 0

Fig. 21 Illustration of pile motion directions for α = π/4: a parameter
combinations and b polar coordinate representation

taken into consideration in the foundation design and safety
evaluation processes.

6.3 Incident wave angle α = π/2

When the incident wave direction is orthogonal to the con-
necting line between the two piles, the physical configuration
is symmetrical with respect to the y axis. Therefore, both
piles exhibit the same displacement amplitude but oppo-
site motion directions along the x axis. In the y direction,
they hold identical motion pattern both in magnitudes and
directions. The resultant displacement amplitudes thus are
identical for both piles, with magnitudes of 0.68×10−2 mm,
0.62 × 10−2 mm, 0.58 × 10−2 mm, 0.56 × 10−2 mm and
0.54 × 10−2 mm for increasing e when k = 0.10 m−1 and
α = π/2. This is demonstrated in Fig. 22, which shows the
displacement components of both piles for varying e.
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Fig. 22 Displacement versus
time when k = 0.10 m1 and
α = π/2 for varying e: a ux of
P1; b ux of P2; c u y of P1 and d

u y of P2

Fig. 23 Displacement versus
time when e = 3 and α = π/2
for P1 for varying k: a in the x

direction and b in the y direction

Figure 23 depicts the displacement history in both x and
y directions of P1 for varying k when e = 3. The resultant
displacement amplitudes are calculated as 0.10 × 10−2 mm,
0.27 × 10−2 mm, 0.58 × 10−2 mm, 0.11 × 10−1 mm and
0.17 × 10−1 mm for every increasing k. The corresponding
plots for P2 should present identical features of the displace-
ment variation in the y direction, but opposite directions of
motion in the x direction.

Figure 24 shows the variation of displacement amplitude
with respect to e for varying k for P1 only. Both the x and y

displacement components, and therefore the resultant place-
ment amplitude, decrease when e increases from 1 to 5, and
the decrease is more distinct when the wave number is greater.
In addition, it is evident that the displacement amplitude
increases with k, and the smaller the net distance between the
two piles, the quicker the displacement amplitude increases.
In terms of the motion directions, due to the symmetry with
respect to the y axis associated with the problem configu-
ration when α = π/2, it is found that the resultant motion

directions of the two piles are always symmetric with respect
to the incident wave direction. Under the specified parametric
variations considered in this study, the direction of motion of
P1 lies in π /6 < θ < 5π /12, with the corresponding direction
of P2 being 5π /6 > θ > 7π /12, and no phase difference is
identified.

7 Conclusions

This study investigates the time-dependent behaviour of
pile foundations using SBFEM when subjected to ocean
wave loads. A modal analysis reveals that pile foundations
examined in this study have significantly greater natural fre-
quencies than those of external waves. Therefore, resonance
will rarely happen for the specified situation. Considering
the material damping effect, it is found that individual pile
foundations arrive at a steady-state vibration shortly after the
action of external wave pressures. Piles move with the same
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Fig. 24 Displacement versus e

of P1 for varying k when
α = π/2: a in the x direction
and b in the y direction

period as waves, and the bigger the wave number, the shorter
the period. For pile group foundations, especially the group
of two piles considered in this study, the responses of piles are
significantly affected by the problem configuration in terms
of the spatial layout of pile members and the relative wave
properties. Emphasis is placed on two predominant parame-
ters: the wave number k and the ratio e of the pile distance
to the pile radius. The displacement amplitude of the lead-
ing pile presents a rather moderate decrease with e when k is
small, but the decrease is quite significant when the value of k

is large. The displacement increases with k for any constant e,
and the increase is slightly more obvious in cases with a lower
e than that with a higher one. The succeeding pile always
presents a smaller displacement amplitude than that of the
leading pile. It displaces mildly as the value of e changes for
small wave numbers and shows substantial response when
the wave number is large. The discussions on the relative
motion directions of the two piles show that when the wave
number is small, or when the two piles are closely spaced,
they tend to have phase differences and move in different
directions. This should be thoroughly considered when sug-
gesting relative locations between the pile foundations, also
when designing or evaluating the safety of their supported
superstructures.

This study provides a clear picture as to how individ-
ual pile foundations behave under the time-dependent wave
pressure. At the same time, it provides instructive informa-
tion on the transient response of pile group foundations to
varying wave conditions. It is worth mentioning the SBFEM
model proposed in this study is applicable for investigations
of transient responses of pile foundations having any arbi-
trary number of piles of various cross-sections and spatial
layouts. To guide engineering design when a specific project
is involved, external loads from wind actions acting on wind
farm monopiles or superstructures acting on pile groups need
to be applied in the SBFEM model, following the same way
as in other numerical techniques (FEM for example). Further-
more, the effects of the unbounded seabed can be addressed
by formulating an SBFEM solution for the Biot’s equation
(Jeng and Zhang 2005; Zhang and Jeng 2005). This can be
incorporated in the presented model as a continuation of the

current study. The derivation and validation of the formula-
tion are in progress.
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