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Abstract

Transient response of a vertical dipole source with an impulse
excitation is obtained. Both the dipole and other observation. points
ére assumed to be located on the surface of a homogeneous dissipative
earth. It is shown that the response consists of two distinct waves;
one arriving from a path in air and the other in earth. The latter is
found usually to be several orders smaller in a typical situation. On
the other hand, with the use of an alternative integral representation,
ﬁumerical integration of double infinite integrals associated with the
Sommerfeld problem can be reduced to single integrals of finite extent.

The role of the Zenneck wave in the time domain is also explained.
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TRANSIENT ELECTROMAGNETIC FIELD GENERATED BY A VERTICAL ELECTRIC
DIPOLE ON THE SURFACE OF A DISSIPATIVE EARTH

Hussain Haddad and David C. Chang

1. Introduction

Recently, considerable interest has been given to the study of electro-
magnetic transients. Some of these studies are motivated by the desire to
provide adequate protection of electronic equipment in a strong electromag-
netic pulse (EMP) [1]. Other studies have been applied to the probing of
fields in geological media [2], determination of the current in a lightning
return stroke [3], the detection of nuclear bursts [4] and the discrimination
of a radar scatterer [5].

In this paper we are interested in the problem of an electromagnetic pulse
propagation on a lossy half-space generated by a vertical dipole. A classical
work in this area is that of Van der Pol [6], for the transient field over a
non—-conducting earth generated by a vertical dipole source situated in the
interface between the air and the earth. In later papers [7]-[8], the trans-
ient solution of an elevated dipole was also obtained. Wait [9,10] and
Novikov [11] studied the transient response of a vertical dipole with a step
or ramp function current source over a finitely conducting earth. Since the
Sommerfeld-Norton ground wave expansion is employed, which is valid for
distances large compared with the free space wavelength, his result is expected
to be accurate mainly in the very early time portion of the response.
Approximate expression for the transient field at later observation times

was found by Chang [12] and Wait [13], under the assumption that the



dissipative half-space can be replaced by an impedance surface. Fuller and
Wait [14], subsequently extended the problem into an actual earth environ-
ment where the conductivity and permittivity of earty vary as a function of
frequency, based upon asymptotic expansions of the field in the frequency
domain.

From the above discussion, it becomes apparent that only approximate
expressions of the transient field response have been obtained; each is
valid in a selected range of parameters and none is valid for a more general
case. Basically, the main difficulty which prevents an "exact" evaluation,
arises because the frequency-domain solution of such a problem involves
infinite integrals that can not be expressed in closed-form. Thus, the time-
domain solution can be obtained only in principle by carrying out another
infinite integration in the frequency domain. Hence a direct numerical
evaluation of these double—infinite integrals becomes rather impractical.

In this work, we shall develop an efficient numerical scheme for the
computation of these integrals. This involves initially the study of the
spectral properties of the Sommerfeld integral in the complex frequency
domain. Deformation of the integration contour in the lower half of the
complex plane not only reduces the double infinite integrals to finite
integrals, but also enables us to carry out one of the integrations analy-
tically in closed form. Consequently, we are able to compute the electric
and magnetic responses for cases typically encountered in a general earth
environment. OQur approach conceptually can be considered as an extension of
the Singularity Expansion Method (SEM) [30] technique to problems involving,

non-isolated singularities (branch cuts) in the complex frequency domain.



2. Formulation

We first consider the time-harmonic field due to a vertical electric
Hertzian dipole of dipole moment iﬂu)dﬁ , located on the surface of a
dissipative half-space (earth) having a conductivity o and permittivity
£ = eoer. The upper half-space is assumed to be air (Fig. 1). A cylindrical
coordinate (r,0,z) is employed and a time-factor of exp(-iwt) is used.
Expression for the time-harmonic Hertzian potential of electric type,
observed also on the earth surface, can be found in [15], or originally by

Sommerfeld [16] as consisting of only a z-component:
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Co,l = (ueo’]) z is the speed of light in air and in earth, respectivelf;
A= G/Zereo is associated with the inverse of the relaxation time in a
dissipative medium, and JO is the Bessel function of order zero. We note
that depending upon the particular absorption model chosen A is not
necessarily independent of the operating frequency w. However, we do have

to require the square root in k., be so chosen so that it approaches + 1 as

1
]ml + o, In (1), we have also dropped the dependence on z and ¢, since we
are only interested in those observations made on the earth surface.

The time-dependent z-component of the electric field and the ¢-component

of the magnetic field in the interface can be found once the real-time

solution of the vector potential given above is obtained. These field



Source Observation Point
ﬁ Arrival Time tr°=r/c03 /

Figure 1, Source and observation point located on the ground
surface.
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Figure 2. Singularities in the complex w-plane



components can be described in cylindrical coordinate systems as follows.
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where ﬂz(r;t) is obtained from the use of the Fourier-Laplace transform

ﬂz(r;t) = JC ﬂz(r;w)e_hutdw (4)
W

Here Cw is specified along the real axis of the complex w—plane as shown
in Fig. 2. As evident from the substitution of (1) into (4), the real
time expression ﬂz(r,t) involves the double infinite integration over both
& and w, which obviously cannot be evaluated efficiently in a computer
without further modification.
Because of the identity [17], ZJo(z) = Hél)(z) + Hgl)(zeiﬂ), where
(L)

HO is the Hankel function of the first kind and order zero, we can

replace the integral in (2) by

V(r,w) = J [kiyl + kiyo]_l Hél)(ocr)adoc (5)

oo}

provided that a branch-cut is defined along the negative real axis and
the integration path is specified as slightly above the negative real axis
in the d-plane. The new representation will then allow us to deform the
path of integration into the upper half of the complex a-plane, which
obviously can be separated into contributions from branch-cuts associated

with the square root functions Yo and Yl plus the residue contribution from
1

z
pole singularity at ap; where up = kl kl/(ki + ki) (see Fig. 3). For a

time-harmonic field of operating frequency w , the residue contribution

from up is commonly known as the "'Zenneck wave," which constitutes a

legitimate solution of Maxwell equation that satisfies the boundary
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Figure 3. Deformation of the real axis path of integration'

into the contour C in the upper half of the
complex o-plane.



conditions at the interface and is confined to the finite spatial domain
(i.e. decays exponentially away from the interface). Furthermore, it can
be excited realistically by a dipole source, along with the radiation
fields into air and earth regions associated with the two branch-cut
integrations. If taken individually in the calculation of the transient
response, one immediately concludes that such a term will have an arrival
time of r/c_, where ¢ = lim (W/a ) = (c2 + CZ)%’ which clearly wviolates
) lwl+m P o) 1

the physical principle of time causality, and hence can not exist
independently. We have to realize however, arrival times are closely
associated with the behaviour of the field at |w| > » . From Fig. 3, it
is not difficult to see that the branch point o = kl = [m(w-+12A)]%/cl,
also approaches the real axis in the 0-plane in the limit of [w]‘+w S0
that the Zenneck-wave pole is now more and more "sandwiched" between the
two cuts. By cancelling the contribution from the pole with the integration
along the adjacent sides of the two branch cuts in the vicinity of the pole,
the effect of the pole actually becomes indistinguishable from those of the
cuts.

Thus, instead of getting separately the contribution of the branch cuts
and the residue contribution of the pole, we will evaluate the integral

somewhat differently. ©Noticing that the denominator of (7) can be

rearranged to give
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We can consider ﬂz(r;w) as constituted of four fundamental integrals, i.e.
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and no = 120r ohms is the free-space characteristic impedance. Among

the S-integrals, Sl and S3 are known analytically in closed form,

1
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while 52 and §4 need to be evaluated numerically. As seen from (9), the

integral associated with S, is a special case of b =0 and

2
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which can be shown without difficulty to satisfy the following differential

equation 1
) ik (r24b2)°
d 2 2., e ©
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and the boundary condition that lim f(r,b) = 0 and f(r,-b) = £(r,b).
b

Thus, we can obtain an alternative form of £(r,0), by solving this

inhomogeneous differential equation directly,
2 o ik R

f(r,0) = -2i —2 [ = e ° av (16)
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where n = Ver is the refractive index of earth. As in the case of kl,

the square root in k is chosen so that lim k = +w/c .
ik R |0 e °

Clearly, the factor e O/keR0 represents the potential function
of a dipole in a medium with a complex propagation constant ke. The
form of (16) is then equivalent to that of a vertical current source
propagating at the speed of light c, in a medium characterized by ke
(see Fig. 4).

It should be noted that in the expression (16), because
ke > w/cO as W >, the earliest pulse signal comes from the elemental
dipole near the bottom of the source, i.e. for v = 0. This implies
that the first signal arrives at time t 2_R0/co. As the pulse travels
along the vertical line source the arrival of the response will be
delayed by the factor v/cO from the time t = Ro/co.

Substitution of (16) into (9) now yields the expression for S. as:

% ei Ro/co[w(w+12lo)]§

2

~

iwv/c
Sz(r,w) = —iN(w) ©

T e %X (20)
[w(w+12Ko)]2 o

At this point, one might ask the question of what is to be gained to go
through a tedious process to transform one infinite integral into another
one. It is clear, the new infinite integral can be interchanged with

the integral over the w-domain when we apply the inverse Fourier transform
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Figure 4. Physical interpretation of the function
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to TTZ (r;w) to obtain the time transient solution. As will be seen in
the next section such an interchange of the order of integratiom will
allow us to reduce double-infinite integrals into finite,single inte- -
grals which certainly would be more suited for numerical computation.
To obtain a proper expression for S4, we only need to replace the
air parameters in (20) by the earth parameters. Following essentially

the same steps, we have

s

o 1 R_l/cl[w(w + ‘iZKl)]E

o~

iv/c, [w@Han)]®

5, (r;u) = iN(w) € - e E! (21)
[w(wti2 Al)] 2 1
where Xl and Rl are now defined as
1 2 2
R = [A+5)v" +21 5 A = Ay dr ) (22)

n 2

(l-+—%)v2-+r
n

—

Again the square-root im (21) is so chosen that [w(w-kiZKl)]2+-m

as |w] > .

3. Evaluation in the complex w-plane:
Following from (7) and (4), the real-time solution of the vector

potential can be written as

4 ° '
T_(r;t) = 60 d& ) J M—)S.(r;t—t')dt' (23)
z . ot N
j=1
where
1 = —iwt
Sj(r,t) = EE-J Sj(r,w)e dw (24)
w

Thus for a unit step function I(t) = Iou(t) {(where u(t) = 0 for £t < 0
and u(t) = 1 for t > 0) or an impulse function I(t) = Ioé(t), the time

transients response can be described simply as
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ﬂz(r;t) =60 Id ) S.(r;t); for a unit step current
R b (25)
and 4
Wz(r;t) =60 I 42 z 5%— S.(r;t); for an impulse current
° 5= (26)

Once Sj(r;t) as defined in (24) is evaluated, the real time response of
the vector potential Wz can be found from the above expressions or there-
after find the electric and magnetic field through the use of (2) and (3)
respectively.

We now proceed to evaluate Sj(r;t) through the deformation of the
real axis w-integral into the upper and lower half of the complex w-plane.
To simplify the computation procedure, we shall assume in what follows
that both Er and ¢ is independent of w, although other absorption models
can be treated in a similar manner. As seen from (13), (20) and (21),
the time-harmonic function Sj(r;w), j =1,2,3 or 4 possesses poles,
branch cuts or both types of singularities. One type of singularity comes
from the function N(w) as defined in (12). For a more realistic earth
model the refractive index of earth, n = (Er)% for any given frequency is
large compared to 1, typically n2 > 10. This means N(w) as defined in the
expression (13) can be approximated by 1, which then simplifies the
evaluation of Sj(r;t). It should be noted that if a more exact solution
is needed, the pole contribution of N(w) can be easily added. The first
function Sl(r;t) as seen from (13) and (24) therefore can be found easily

from the residue contribution at w = 0

(&
5 (r3t) == (¢ - é) u(e- ;f;) 27)

where u(t) is Heaviside unit step function.

Evaluation of 83 is somewhat more complicated because of the branch-cut

1
singularity associated with the square root [(w+iA)/u)]2 , which according
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to our earlier discussion, should be chosen in such a way so that it
approaches +1 as [uﬂ + o (see Fig. 2). For t> r/cl, deformation unto the
two sides of the branch-cut in the lower w-plane yields the following

expression after some manipulation
f 2A
1-e

‘1 —20t r Zy -vt dv
S3(r;t) = - T ——ZT—- + [ Sln('z:—l- [v(2v-A)] ) e V_(ZATV)
(o]

SN

where the first term in the curly bracket comes from the residue contribu-
tion at W = 0 and -2iA , while the second term comes from the branch-cut
integration, and the change of variable w = —-iv. For t < r/cl, deformation
onto the wupper half-plane encloses no singularity so that S3(r;t) = 0.
Using the integral representation of Io(x) where I0 is the modified Bessel
function of the first-kind and order zero [17], we can further reduce the

expression of 83 to

1
c -2A¢ _ 1 L
S4(r3t) = - —3 jl“_;:A - Lt Jf 1 02 -ED% ey p ule- 5

¥
n’r | 1 o 1 j 1
(28)

2
where n~ = € > A =(j/25%€6 and u(t) is again the Heaviside unit-step

function. To evaluate Sy, we first substitute ; (20) in (24) to yield
2
© o itro[w(w+12Ao)]

55 (T5t) :‘ii_JR_V . %
I % L e )]

—iwtV
e dw

(a9

where t =R /c; R 1is defined in (19), t =t - v/c and A is

Tro o o o vo 0 o
written in (18). The integrand of the second integral has two branch
points for w = 0 and w= —iZXo. The choice of the branch cut will be
along the negative imaginary axis as shown in Fig. 2 in order that

1

[w(w+12)\o)]2 > w as |w| + ©. Deformation of the above contour into the
upper half of the complex w-plane for (tvo —'tro) < 0 will give zero,
since the integrand is analytic in the upper half-plane. Only for

(tvo - tro) > 0, we can deform the real axis integration into the lower
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half-plane. This means that

T
c2t= [vo + Ro(vo)]/co (29)

where

v, = [- %—+ ¢{1 +-4%) T2 - rz]/n
n

and T = cot. Evaluation of the integral around the branch cut yields the

form of

1 -Odv o -—iwt 1
Sz(r;t) = —-~—‘J — e VO cos t [w(w~+izk )[
ro o

i dw
[m(w-%izko)l

It should be noted that the first integral was truncated up to v,
because of the causality criterion (i.e. for

t < (V'-+RO)/cO the second integral goes to zero). Now using w = —iko
(L —cos 0) and after some mathematical manipulation, the above integral
reduces simply to [18]

v —A t -
i _ © dv o vo 2 2 _
Sz(r,t) = —j Rz e Io(ko’évo tro) u(t r/co) (30)

¢!
0
where I 1is the Modified Bessel function of zero order.
0

The advantage of the above form for Sz(r;t) is that now we have a
single finite integral instead of @ double infinite integral and it can
be easily evaluated numerically. We note that with the exception of setting
N(w) = 1 the above integral expression is exact. Evaluation of 84(r;t)
follows basically the same procedure as applied to Sz(r;t). However,
because of the presence of additional branch cut with branch points at

w= 0 and W= -2iA care must be exercised in taking the value of the square
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roots along the deformed path, As derived in the Appendix, the result

is given as follows:

A
1 -ALt
1 dv 1 2 2,2 T
3E) = = — - : -
Sa(r ) nJ Rl e IO()\l t (V'+Rl) /cl) u(t ) ) (31)
o)
where
, v, =n [-1t+ ,(l-+l/n2) 2 -rz]; T= cQt (32)
Rl and Al are defined in (22) and ¢ is the speed of light in the earth

medium (i.e. cl =co/n). Again, it should be noted that we have succeeded

in transforming the double infinite.integrals of S4(r;t) into a single
finite limit one through the deformation of the path in the complex =—plane.

These reulsts can be easily calculated using straightforward numerical

techniques.

4. Analytical Expression for a Lossless Half-Space

For a lossless earth, the conductivity o= 0 and therefore the inverse
of the relaxation time A= 0 also. Eence, the expression Sj(r;t),
j=1,2,3,4 as given in (2.39), (2.43), (2.44) and (2.45) respectively,

reduces to the following form

Sl(r;t) = % (t—to) u(t—to)
VO d
8, (r;t) = -J -Rl u(e-t )
o °
S3(r;t) =-— £, (t—tl) u(t—tl)
V.
1
84(r;t) = %J %11 u(t—tl)
0]

Using the above relations for Sj(r;t) and the relation in (25) for the

vector potention with an impulse current source, we can write ﬂz(r;t)
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as follows:

n 1
T . = 8 = _ ——— —
Z(_r,t) 60 ncoIOdQ - u(t to) o u(t tl)

u (‘t—to) u (tl-t)

2 2
/Ql +1/n2) -
The above time response for ﬂz(r;t) is exactly that of the well known
solution obtained by Van der Pol [6] for a vertical dipole on the surface

of a non-conducting half-space.

5. Numerical Results

A computer program was set up to find the real time solution of the
electric vector potential as derived in (26) for an impulse function
current source. The program utilizes the solutions obtained for
Sj(r;t), j=1,2,3, and 4 as given by the expressions in (27), (28), (30),
and (31) respectively. The z-component of the electric field and the ¢—
component of the magnetic field are obtained from the expressions given
in (2) and (3). Due to the complex form of the vector potential ﬂz(r;t)
numerical differentiations are used. By choosing suitable increments of
r and t results accurate to the order of the increments square can be
attained.

In Figures 5 and 6, we have plotted the individual terms that
contribute to the pulse shape of the electric and magnetic field
respectively as a function of observation times (t -to) for an observation
distance r =100 m and conductivity ¢ = lO_Bmho/m. The dielectric constant
of earth €. is assumed to be 10 and to = r/c0 is the arrival time of the
first pulse. ej and h,; j =1,2,3,4 correspond to the four terms that

contribute to the electric and magnetic field as Sj(r;t), j=1,2,3,4
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correspond to the four terms of the vector potential Wz(r;t). It is-

clear that the dominant term for the intermediate and later times is --el

(shown as dashled lines). However, at the early time portion of the pulse,

say t —to < 0.2 usec, e2 is the dominant field. The major cause of dis-

tortion and dispersion is associated with this term. The other contri-

butions e3 and e have an arrival time t>t

17 nr/cO corresponding to
transmission through the earth medium. These terms usually are of the
same order of magnitude and their difference in general is smaller than e,.

Even for cases where their difference is larger than e the total sum

2’

For larger distances, e, and e

(e2 + e 3 4

3~ e4) is a lot less than e -
can be shown to be even smaller.

The ¢—component of the magnetic field as shown in Fig. 6 however
shows that the second term h2 is the dominant contributor to the field
since hl = 0 as in the case for the electric field. The later time arrival
solutions h3 and h4 usually have a difference smaller than h2' Their
contributions can be shown to be even smaller for larger distances.

From these results, we came to the conclusion that fér a typical
earth parameter and for observation distances greater than 100 m, the
arrival of the pulse from the earth are negligible for all practical

purposes. A two term approximation in the electric (-e, + ez) and a one

1
term solution in the magnetic field (—hz) should suffice a reasonable
answer to the field above a lossy half-space.

Figures 7 through 8 show the total electric field Ez(r;t) as a
function of time (t—to) for two conductivities (o = 10-2, lO_3 mho/m)
and for three observation distances r =0.1 and 1 km respectively. 1In

the first graph (i.e. Fig. 7), a linear scale for the electric field is

plotted as a function of a logarithmic scale in time. As expected, the
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d“-'IO'3 mho/m

IE /1,00

10°
O.i tl o 10
t-to(p sec)
Figure 5. Comparison of the individual arrival terms for the

electric field at a distance r = 100 m. The (+) and
(-) signs refer to positive and negative polarity,
respectively. ty = nr/co, is the time of arrival of
the pulse from the earth medium.
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hl =0

r=0.1 Km

=10 "3mho/m

-H. /Io d!

t-10 (s sec)

Comparison of the individual arrival terms for

the ¢-component of the magnetic field at a dis-
tance r = 100 m; t3 = nr/cy is the time of arrival
of the pulse from the earth medium.
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two curves, representing two different conducting media, reach the

constant level of the static field shortly after the time t A similar

1
though a logarithmic scale in the electric field is shown in Figure 11 for
observation distance of 1 km. The influence of the earth on the dispersion
of the propagating pulse is more clearly observed at this distance. TFor

c = 10—'3 mho/m, the peak has shifted from t —to = 0.2 yusec. Also, the
early segment of the pulse is broader and attenuated due to the loss in

the medium. Again, the pulse levels off to a negative constant for later
observation times.

In Figs: 9 to 10 we have here, similar to the electric field plots,
the ¢-component of the magnetic fields. The behavior of the pulse is
almost the same as that of the electric field except it decays continuously
to zero for a later observation time. Figure 11 compares the electric field
with an approximate formula derived from [10] as a function of observation
time (t —to) for a distance r =10 km and for two different conductivities
g = 10-2 and lO_3 mho/m. These results agree very well for times
t —to < 0.1 usec. Also, they agree fairly well in their overall pattern
behavior for all times. However, there are disagreements in the magnitude
of the peaks and the observation times of the peaks and nulls. This is not
surprising, since the approximation in [10] is basically that of an early-
time one. Note that the response approaches to that of a perfectly-
conducting ground at the later times. To examine more closely the effect
of the grouﬂd conductivity, we have plotted in Figs. 12 and 13 the electric
field EZ versus the inverse of conductivity (i.e. O_l) for 4 different
observation times t -to (1,2,4 and 8 p sec) and for r =0.1, 10 km

respectively. The first graph shows that for short observation distance,

earth, which typically has a conductivity between lO-—3 t- lO_2 v/m, acts
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1
=4
po3 r=0.1 Km
2+
© o =10~3mho/m
N /
w

o]

/¢=10'2
-2
1 1 l 1 1 1
[¢X] 'l 10 10
t-to (usec)

Figure 7. Vertical electric field versus observation time

(t—to) at r = 100 m for two different conductivities;
t; = nr/c_, is the time of arrival of the pulse from
the earth medium.
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r=l Km

3 mho/m

\ \/a' ={0”
/\/4=:o‘2 mho/m
\

t-t, (usec)

Vertical electric field versus observation time
(t-ty) at r = 1 km for two different conductivities.
The (+) and (-) signs refer to positive and negative
polarity, rexpectively. tj = nr/c0 is the time of
arrival of the pulse from the earth medium.
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from the earth medium.
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Comparison between the early time solution based on ref-

erence [15] and the solution obtained by substituting
(2.39) and (2.43)-(2.45) into (2.37b) and then
using the Maxwell relation in (2.15). The (+)

and (-) signs refer to positive and negative polarity,
respectively,
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APPENDIX A

THE SOLUTION TO THE DOUBLE INTEGRAL

EXPRESSTON OF S, (r;t)

Upon the substitution of V(il) . into (24) and the subse-
quent use of the approximation N(w) = 1, we can write the integral

expressions for 54(r;t) as

: L
- itrz[w(w+12kl)]

5,(550) = ¢ Gy f = fe >
o1 4 [w(w+ile)]2
it [w(w+12A)]l/2
vl e~iwt s Al
where £, = r/cl, tq = Rl/cl, tyy = v/cl and Rl and Al are
defined in (22). " Here, ey = co/n is the speed of light in

the earth medium.

The integrand o&er w contains two branch cut singularities;
one is associated with the square root function; [m(m+12kl)]%,'and
the other with the function [w(m+iZA)]%. The two branch cuts are
shown in Fig. 2. A similar procedure to the evaluation of Sz(r;t)
as presented in section (3) -is followed here. The integrand is
holomorphic in the upper half of the complex w-plane and thus for
t < (Rl+v)/cl, the integral contribution is zero. For t 3 (Rl+v)/cl,
we may deform the integration countour into the lower half-plane
thereby obtaining two branch cut integrals. We note that

L L
arg[w(w+i2kl)]2 and arg [w(u+12A)]2 are both o on one side of the

cut and w on the other side for w between o and -2i).. However,

1



