GEOPHYSICS, VOL. 51, NO. 8 (AUGUST 1986); P. 1608-1627, 24 FIGS.

Transient electromagnetic response of a three-dimensional body

in a layered earth

Gregory A. Newman*, Gerald W. Hohmann*, and Walter L. Anderson{

ABSTRACT

The three-dimensional (3-D) electromagnetic scatter-
ing problem is first formulated in the frequency domain
in terms of an electric field volume integral equation.
Three-dimensional responses are then Fourter trans-
formed with sine and cosine digital filters or with the
decay spectrum. The digital filter technique is applied to
a sparsely sampled frequency sounding, which is re-
placed by a cubic spline interpolating function prior to
convolution with the digital filters. Typically, 20 to 40
frequencies at five to eight points per decade are re-
quired for an accurate solution. A calculated transient is
usually in error alter it has decayed more than six
orders in magnitude from early to late time. The decay
spectrum usually requires ten frequencies for a satisfac-
tory solution. However, the solution using the decay
spectrum appears to be less accurate than the solution
using the digital filters, particularly after early times.
Checks on the 3-D solution include reciprocity and con-
vergence checks in the frequency domain, and a com-
parison of Fourier-transformed responses with results
from a direct time-domain integral equation solution.

The galvanic response of a 3-D conductor energized

by a large rectangular loop is substantial when host
currents are strong near the conductor. The more con-
ductive the host, the longer the galvanic responses will
persist. Large galvanic responses occur if a 3-D conduc-
tor is in contact with a conductive overburden. For a
thin vertical dike embedded within a conductive host,
the 3-D response is similar in form but differs in mag-
nitude and duration from the 2-D response generated
by two infinite line sources positioned parallel 1o the
strike direction of the 2-D structure.

We have used the 3-D solution to study the appli-
cation of the central-loop method to structural interpre-
tation. The results suggest variations of thickness of
conductive overburden and depth to sedimentary struc-
ture beneath volcanics can be mapped with one-
dimensional inversion. Successful 1-D inversions of 3-D
transient soundings replace a 3-D conductor by a con-
ducting layer at a similar depth. However, other pos-
sibilities include reduced thickness and resistivity of the |
{-D host containing the body. Many different 1-D |
models can be fit to a transient sounding over a 3-D
structure. Near-surface, 3-D geologic noise will not per-
manently contaminate a central-loop apparent resistivi-
ty sounding. The noise is band-limited in time and even-
tually vanishes at late times. J

INTRODUCTION

The behavior of transient electromagnetic (TEM) fields over
a three-dimensional (3-D) earth is not yet fully understood.
The need for further theoretical insight is reflected by the
increasing demands placed on transient electromagnetic meth-
ods for petroleum, mineral, and geothermal exploration (Nabi-
ghian, 1984), Computer solutions exist for calculating the tran-
sient responses of 3-D thin plates in free space (Annan, 1974)
and for a 3-D prism in an otherwise homogeneous half-space
(SanFilipo and Hohmann, 1985). Other 3-D transient solu-

tions include an asymptotic solution for a sphere in a layered
host (Lee, 1981) and Fourier transformation of 3-D thin-plate
responses using the decay spectrum (Lamontagne, 1975).

We introduce a technique for computing the transient re-
sponses of arbitrarily shaped 3-D bodies within a layered
earth. The solution is formulated in the frequency domain,
and results are Fourier transformed to the time domain. The
Fourier transform is carried out using sine and/or cosine digi-
tal filters developed by Anderson (1975), or using the decay
spectrum technique of Lamontagne (1975) and Tripp (1982).
The frequency-domain solution is developed from an integral
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equation solution described by Wannamaker et al. (1984a),
adapted for loop and grounded-wire source fields.

The mode] study presented investigates the transient elec-
tromagnetic responses of a 3-D dike-like body within a lay-
ered earth energized by a large rectangular loop. Also investi-
gated are practical 3-D structural problems for the central-
loop configuration. The types of structural problems empha-
sized are detection of sediments beneath volcanics and esti-
mation of the thickness of conductive overburden.

INTEGRAL EQUATION FORMULATION

Frequency-domain integral equation

In Figure 1 is a 3-D body in an n-layered host. The body is
confined to layer j; g, and ¢; are the conductivities of the body
and layer j, respectively. The impedivity Z = iop is assumed to
be that of free space. Displacement currents are ignored in the
formulation.

The electric field integral equations for the unknown total
electric and magnetic fields are given by

Er) =E,(r) + (6, —0) j Gr, Y)E(r) dv, (B8]
and

H() = H, (1) + (5, — 5) J Gl MER) 4, @

v

where E, (r) and H,(r) are the primary clectric and magnetic
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FiG. 1. 3-D body in a layered host. J, and M, are impressed
electric and magnetic sources.

fields due to impressed-loop or grounded-wire sources and
one-dimensional earth layering. The tensor Green’s functions
GXr, r) and GH(r, r') relate the electric and magnetic fields,
respectively, in layer Z to a current element at r' in layer j,
including # = j. The derivations of the tensor Green's func-
tions are given by Wannamabker et al. (1984a).

Equations (1) and (2) replace the 3-D body by an equivalent
scattering current distribution (Harrington, 1961). This scat-
tering current is defined by

1.(1) = (0, — 0 )EN), 3)

where J.(r) is nonzero only over the volume of the body.
Numerical solution

At this point if the electric field in the body were known,
electric and magnetic fields could be computed anywhere
using equations (1) and (2). Van Bladel (1961) shows that
equalion (1) is also valid inside the body since a principal
value of the integral exists. A matrix solution can then be
constructed from equation (1) using the method of moments
(ef. Harrington, 1968), with pulse basis functions and delta
testing functions.

Hohmann (1975) showed that if the 3-D body in equation
(1) is divided into N cells, the total electric field at the center of
cell m due to N cells can be approximated by

N
Eb(rm) = Ep (rm) + Z (nh,, - Gj)[f(rm; rn) * Eb(rn)v (4)
n=1

where E,(r,) is the total electric field at the center of cell m.
Unlike the solution from Wannamaker et al. (1984a), E, (r,,)} is
the primary electric field for a finite source, not a plane-wave
source. [n each cell the body conductivity o,, and total electric
field are assumed to be constant and the tensor Green’s func-
tion for a prism of current is defined by

Chr,: 1) =J GHr, 1) dv. 5)

Equation (4) can be rearranged to

N
Z I:(Gb. - oj)l:f(rm: rn) - §m, n—l N Eb (rn) = —'Ep(l'm), (6}

where

1 ifm=n and
0 if ms#an

[
8= 3 Y]
L
The tensors [ and Q are 3 x 3 identity and null tensors, respec-

tively. Finally, considering all N values of m, a concise matrix
equation is wriften as

M.E,=-E,, ®)

where M is the complex impedance matrix of order 3N.

Equation (8) is solved for the total electric fields within all
the cells. Once the electric field in the body is known, the
electric and magnetic fields outside the body are given by
discrete versions of equations (1) and (2). That is,

N
Er) = E,(n+ 3 (0, — o)L](rir,) - E,(r,) )
=1
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and
N
Hr)=H,(m+ Y (65, — 6)L5rir) - E,(r,).  (10)
n=1

The cells representing the body need not be cubic. In many
cases the numerical solution can be improved by subdividing
the body into rectangular prisms rather than cubes (Wanna-
maker et al., 1984a). Modifying the solution is simple, since
integration of the tensor Green’s function over a prism [equa-
tion (5)] can be treated as a summation of integrations over
cubic subcells. Rectangular cells are useful for approximating
an elongate body, provided the scattering current is polarized
parallel to the strike of the body. Use of elongated cells is
justified because the scattering current varies more rapidly
over the short direction of the body. We recommend, however,
that cells be cubic near corners of an elongate body because
variations in the scattering current are more abrupt there.

Designing the cell discretization of a body is based on the
skin depth and depth of burial of the body and on the spatial
variation of the excitation field. The variation of the excitation
field is determined by the frequency and the physical size of
the transmitting source. Specifically, cubic subcell sizes should
be less than one skin depth. When small transmitting sources
are used, cubic subcell sizes should be at most one-quarter of
the skin depth of the body. Prismatic cells can have elongated
dimensions of up to several body skin depths when large
transmitting sources are used.

The computation time required to build and factor the im-
pedance matrix can be excessive; the matrix is full, with di-
mensions 3N x 3N, where N is the number of cells. Fortu-
nately, Tripp and Hohmann (1984) show that the time re-
quired to build and factor the impedance matrix can be sub-
stantially reduced for a body with two vertical planes of sym-
metry. The impedance matrix for such a body is block diago-
nalized using group theory (eg., Hall, 1967). The
block-diagonalized matrix consists of four submatrices, each
with dimension (3N/4) x (3N/4). The block-diagonalized
matrix now requires one-quarter of the storage of the original
matrix, and the number of operations required for matrix in-
version is smaller by a factor of 12. Furthermore, the memory
requirement is reduced by a factor of 16, because it is only
necessary to store one of the four submatrices in memory at a
time. The time required to formulate the matrix for a sym-
metric body, including block diagonalization of the impedance
matrix, is about one-third of that for a body with arbitrary
shape. However, the option of calculating responses for gener-
al bodies is maintained by solving equation (8) directly for a
nonsymmetric body.

Since we use pulse subsectional basis functions to track the
electric field inside the body, our solution will fail as the con-
ductivity of the layer containing the body o, becomes very
small. As discussed by Lajoie and West (1976) and Hohmann
(1983), the problem lies in the disparity between the sizes of
the induction and galvanic operators, which relate to the
vector and scalar potentials, respectively, {or the scattered
field. The induction and galvanic operators are defined by
writing the tensor Green’s function in equation (5) as the sum
of two parts representing current and charge sources:

[7="07+°L7, (1

where “[% is the induction operator and ®[¥ is the galvanic

operator. The galvanic operator relates to sources of electric
charge. The induction operator appears to be dominated by
the galvanic operator, and it is lost when added to the galvan-
ic operator in equation (11). Lajoie and West (1976) avoid the
problem of the disparity of the sizes of the two operators by
solving for curl-free and divergence-frec scattering currents
inside a thin, 3-D plate. Their formulation is in the frequency
domain, and the plate is embedded in a layered half-space.
Recently, SanFilipo and Hohmann (1985) used a similar ap-
proach for solving for the scattering currents inside a prism
within a conductive half-space. Their solution is a direct time-
domain integral equation solution that is valid in the limit of
free space.

Based on checks with other numerical solutions, we believe
our solution will accurately calculate currents that simulate
galvanic current distributions as well as currents that are simi-
lar to 2-D induction current distributions. However, it will not
accurately simulate responses from a 3-D induction current
vortex because the galvanic operator dominates in the numeri-
cal solution. In general, the solution’s accuracy depends upon
the frequency, the spatial variation of the excitation field, the
resistivity of the host, and the geometry of the body. For
example, our solution would fail for a cube embedded in a
resistive host if it were excited by a source field that varies
rapidly with frequency and position. Two comparisons of the
3-D solution with other solutions for plane-wave and dipolar
sources show good agreement for the plane-wave case and
poor agreement for the dipolar case (Hohmann, 1983). In
these comparisons, the conductivity contrast between the
body and half-space host was | 000, where the plane-wave
comparison was made at 300 Hz and the dipole comparison
was made at | 000- Hz. Also, the dipolar source field falls off
quite rapidly with position, while the plane-wave source field
exhibits no geometric decay. Our solution works best for elon-
gate, low-contrast conductors in the fields of large loops and
long grounded wires that vary smoothly in space where elon-
gated cells can be utilized. The 3-D solution is more appropri-
ate for the low contrast structure problem than for the prob-
lem of mineral exploration in areas of high contrast. Experi-
ence - shows that the 3-D snlution works best for contrasts in
conductivity between body and host of less than 300 : 1.

Verification of results

Any valid numerical solution must satisfy reciprocity.
Figure 2 shows a three-layer model where the depth of
10 Q- m overburden varies from 20 to 40 m. Beneath this
variable overburden are two more layers of resistivity 100 and
1 000 Q- m. The depth to the 1 000 Q-m basal half-space is
60 m.

At position « (x = —150, y = 0), we placed a loop source
with surface area S = 400 m?2. At position £ (x = 100, y = 0),
we placed a grounded-wire source with length £ = 20 m. Reci-
procity states that the vertical magnetic field evaluated at «
due to the grounded wire at / is

H: = —ESf f(ious), (1

where Ej is the y component of electric field evaluated at 4
due to the loop source at « (Harrington, 1961). Equation (12)
is approximate since it is assumed that the magnetic and elec-
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F1G. 2. Model used for reciprocity check.

tric fields do not vary over the surface area of the loop or the
length of the grounded wire, respectively.

Equation (12) is used as a check by first computing directly
the primary and scattered clectric field Ef due to the loop
source. The primary field is defined as the field due to the loop
and 1-D earth; the scattered field is the field scattered by the
body. The sum of primary and scattered fields is the observed
total field. The vertical field HZ? is then given from equation
{12). Figure 3 compares the primary and scattered magnetic
fields computed directly from the 3-D solution and indirectly
from equation (12). The comparison shows excellent agree-
ment, in both real and imaginary parts, over a frequency range
from 10 to 3 000 Hz. The computation time required for this
160-cell body is about 10 minutes per frequency on a VAX-
11/780.

For another check, we can use the results for a 3-D integral

SCATTERED MAGNETIC FIELD
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equation solution developed by Das and Verma (1981, 1982).
Their approach differs from ours in one important way: the
secondary tensor Green's functions, which are Hankel trans-
forms, are evaluated directly with digital filters. The tensor
Green’s function is composed of primary and secondary parts.
The primary part is the whole-space component and the sec-
ondary part is the reflected component due to earth layering.
In contrast, we evaluate the secondary tensor Green’s func-
tions by tabulating them with digital filters on a grid, and then
interpolating the tabulated forms to any desired position
{(Wannamaker et al., 1984a). By tabulation and interpolation,
a substantial reduction in computation time is realized. Das
and Verma's solution is similar to ours in that pulse basis
functions are used to track the clectric ficld within the body.
However, they use cubic rather than prismatic cells.

The two solutions are compared in Figure 4. Das and
Verma published a solution for this overburden model in Das
and Verma (1982). The 1 Q-m body has dimensions
30 x 120 x 90 m and is embedded in a 100 Q-m basal half-
space beneath overburden that is 10 m thick and has resistivi-
ty of 10 Q-m. Depth of burial is 30 m. A central profile is
made across the body with a horizontal loop-loop system
where separation of the transmitting and receiving loops is
150 m. The scattered vertical magnetic field is plotted in
Figure 4 as a perccntage of the free-space vertical magnetic
field.

Even though the shapes of the 3-D anomalies in Figure 4
arc similar, agrcement between the two solutions is not good
because of the difterent numbers of cells representing the body.
Das and Verma use 12 cells while we used 12, 96, and 768
cells. Using 12 cells to track the electric field within the body
is inadequate for our solution. As the number of cells increases
to 96 and 768, our solution is converging. The smallest size
cell’ we use is 7.5 m, one-hall* the skir depth- of the body.
Because we have used small transmitting sources (1 m x 1 m
square loops), the cell size should be at most 3.75 m, one-
quarter of the skin depth of the body. We could not discretize
the body with this cell size because of prohibitive computation
time. Das and Verma use a cell size of 30 m, two skin depths
in the body, but this size is inadequate for tracking the electric
field within the body. Additional checks on our numerical

PRIMARY MAGNETIC FIELD
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FiG. 3. Reciprocity check. The solid dots are calculated using equation (12} and the curves directly from our 3-D
solution.
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solution for a plane-wave source are given in Wannamaker et
al. (1984a).

COMPUTATION OF TRANSIENT RESPONSES
The decay spectrum

The Fourier transformation of a 3-D frequency-domain re-
sponse could in principle be calculated using a fast Fourier
transform (FFT) algorithm. However, the number of fre-
quencies required for an FFT is very large, and simple inter-
polation over a sparsely sampled frequency response does not
give accurate results (cf,, Lamontagne, 1975; Hohmann, 1983).
We are Interested in calculating transient responses from a
sparse set of frequency-domain values defined over a suf-
ficiently wide band. A sparse set of frequency data is necessary
because eactr 3-D- computation requires a long time for. com-
putation. Several workable techniques exist for transforming a

Newman et al.

sparsely sampled frequency-domain response to the time
domain.. One such technique uses the decay spectrum of La-
montagne (1975) and Tripp (1982).

The frequency-domain system function H(w) and the time-
domain impulse response #(¢) for an EM field component are
related by the Fourier transform pair

H(w) = JW)Mt)e_'” d, (13)
0

and

Ai) = — J Hiwle™ do. (14)
2n ).

where it is assumed that the impulse response is causal [i.e,
hty=10,t < 0],
The impulse response can also be written in terms of the

frequency = 1 000 Hz2
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F1G. 4. Comparison with results of Das and Verma (1981, 1982).
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decay spectrum A(k) where
h(t) = j A(k)e™* dk. (15)
(1]

The impulse response is estimated from sparse frequency-
domain data by treating equation (13) as an inverse problem
for hit). We solve equation (13), a Fredholm integral equation
of the first kind, by the method of moments (Harrington,
1968), using exponential basis functions and the delta testing
functions. We approximate h(t) from equation (15) by

N
hty= Y A,e™™, (16)
n=1
where k, is the nth decay constant. Substituting equation (16)
into equation (13) and incorporating delta testing functions
gives
N

A
—" — = Hj . 17
..El k. + i, (@) (1n
Writing equation (17) for each of the M values of m gives a
matrix equation:

K-A=H, (18)

from which to determine the N values of A4,. The impulse

response is then given by equation (16), and the response of

any transmitter waveform can be calculated by convolution.
The solution of equation (18) is described in detail in Tripp

|
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EiG. 10. 3-D and 2-D decay curves of total vertical field at
x = —30. At late times the 3-D and 2-D total fields decay as
the half-space fields at ¢~ *? and ¢~ 2, respectively.
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(1982). Since equation (18) is ill-posed, a generalized inverse
solution is required with N greater than M. Usually ten fre-
quencies are suflicient. However, a fair amount of subjectivity
is involved in choosing the best of ali possible solutions pro-
vided by a generalized inverse solution. Furthermore, the 3-D
transient calculated in this way is also unstable at late times.

Sine and cosine transformation via convolution

Popular digital filtering techniques offer an alternative ap-
proach for calculating 3-D transient responses. The Fourier
transformation of a 3-D frequency response for a causal step
turnoff can be calculated using a sine or cosine transform,
where

ohy _ 2 r’lm [H(®)] sin (o) do, (19)
ot T Jo
and
T Jo @

The quantity Im [H(®)] is the imaginary part of an EM field
component. The transient and its time derivative are given by
n(t) and Ch(1)/0r. The quantity Jh(t)/0r is equivalent to the
impulse response h(f) in equation (14). For completeness, the
integral transforms in equations (19) and (20) can also be ex-
pressed by

ah(t 2 (=
——i—) = —— | Re [H(w)] cos (o) do, 21
ot T Jo
o verticol fleld
\‘\\ decay of x =-30m
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FiG. 13. 3-D and 2-D decay curves of total vertical field at
x = —30.

and

2
hit) = h0) —

x©
J w sin (o) do. (22)
o @
The quantity Re [H(w)] is the real part of an EM field compo-
nent and h{0) is the initial value of the field component at zero
time. We have obtained better results evaluating the above
integral transforms by using the 3-D imaginary field compo-
nent Im [H(w)]. Thus, from a computational standpoint, we
prefer using equations (19) and (20) instead of equations (21)
and (22). Numerical evaluation of these sine-cosine transforms
is carried out with Anderson’s (1975) digital filters.

Johansen and Sorensen (1979) note that the Fourier sine-
cosine transforms can be expressed as special cases of half-
order Hankel transforms, specifically,

2 J 167 s dx = 12 f MARM 42 O) 2, (23)
o cos o

where ¢ = (2m)'/2, r = se. A = xc, and f,() = f(Mc)A'2. This
implies that the filter design method using Hankel transforms
for integer or real orders in Anderson (1975, 1979, 1982a) can
be followed to design Fourier sine-cosine filters by way of
lincar convolution theory.

The digital filters are designed by casting equations (19),
(20), (21), and (22) into the general form
fib) =f Fg) ™ (bg) dg. (24)

o cos

If we let x =1n (b}, ¥ = In (1/4) and multiply by ¢, equation
(24) becomes

e f(e) = j ) nw‘)[e*'-“ sin (e”)] dy. (9
. cos

Equation (25) is now in the form of a linear convolution inte-
gral with F(e ¥} and e*f(e*) as the input-output function pairs.
From the convolution theorem, the filter response may be
determined from known input-output function pairs. Accord-
ing to Anderson (1975), the choice of these function pairs is
critical for the design of good general purpose filters. Filter
accuracy is improved significantly, and the length and mag-
nitude of the filter tails arc reduced by selecting known convo-
lution integrals having rapidly decreasing input and output
function pairs. Furthermore, using such input-output finction
pairs results in filler weights that accurately evaluate a wide
class of sine-cosine transforms. The best input-output function
pairs found by Anderson (1975) are

J -_q exp (—a%g?) sin (gb) dg = \/;b exp (—hb/4a?)/4a>, (26)
0

and
J. exp (—a’g?) cos (gh} dg = V; exp (—b%/4a%)/2a, 27
0

where @ > 0 and b > 0. The integral transforms in equations
(26) and (27) are from Gradshteyn and Ryzhik (1980).

By Fourier transform theory, convolution in equation (25) is
equivalent to multiplication in the transform domain, where
we write

%) = F(R) (). (28)
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solid and dashed curves coincide, the body is not dcetectable. after 400 ms because of numerical noise.
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F1G. 19. Central-loop apparent resistivity soundings.

The transformed functions in equation (28} form the following
transformed pairs:

f&@) o e*f(x), F® o F(x).
The transformed filter response is then given by
8% = f(RYE(3), (29)

provided both input and output function pairs have band-
limited Fourier transforms. This restriction is required since
S(X)— Ofor x— +x.

The final steps in designing the digital filters follow from
Koefoed et al. (1972), Anderson (1973, 1975, 1979, 1982a), and
Verma (1977). The input-output functions in equations (26)
and (27) are cast in the form ol equation (25), and each input-
output function pair is digitized from small to large abscissa
values. A constant sampling interval of Ax = .20 is selected to
yield single-precision accuracy (i.e., relative errors < 1079).
The discrete Fourier transform is applied to the sampled
input-output functions, and the spectrum of the filter response
is obtained from equation (29). Division by zero in equation
(29) is avoided by selecting a suitable initial sampling point.

Next, the spectrum of the filter response is multiplied by the
Fourier transform of the sinc function

sinc (x) = sin (Tx/Ax)/(nx/Ax), (30}

and the result is inverse Fourier transformed to obtain the
filter sinc response or filter weights. The convolution integral
in equation (25) is then approximated by a discrete convolu-
tion sum, and the integral transform in equation (24) is evalu-
ated as

N2 /
fib) ={ Y. WF[oxp (4, — xu}/ b, 61)
i=Ny i
where W, arc the filter weights for the sine or cosine transform
and A; — x are the shifted abscissa values. Note that x =
In (b). The limits N, and N, on the summation can vary
between 1 and 266 for the sine filter weights and between 1
and 281 for the cosine filter weights. The actual values N, and
N, are determined by adaptive convolution {Anderson, 1982a,
1984), which depends upon how quickly the product W, F[exp
(A, — x)] damps out for filter weights corresponding to large
and small abscissa values. If the product does not damp out
sufficiently to a specified truncation tolerance, then equation
(31) will yield nonconvergent answers. However, if F(g) is a
continuous bounded function, then convergence will occur due
to the rapid decrease in the amplitudes of the filter tails. Accel-
erated convergence will also occur if | F(g)|— 0 as g— + o0,
As Anderson (1975, 1982a, 1984) pointed out, equation (31)
works best for kernels that are not highly oscillatory. In cases
with highly oscillatory kernels, other numerical integration
methods are suggested (cf, Boris and Oran, 1974). Fortu-
nately, the digital filtering technique works well for the 3-D
EM kernel since we are solving a diffusion equation (displace-
ment currents are neglected). The EM kernels are absolutely
decreasing functions and are not highly oscillatory.
Calculating 3-D transients with digital filters is a straight-
forward extension of a procedure commonly employed for
calculating 1-D and 2-D transients (cf., Anderson 1973, 1981,
1982b; Kauahikaua and Anderson, 1977; Tsubota and Wait,
1980). We first compute a suitable frequency sounding using
our 3-D solution. The sine or cosine transform is evaluated
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FiG. 20. MT apparent resistivity soundings p,, for a primary electric field polarized in the y direction.

using a fast digital filtering technique described as lagged
convolution by Anderson (1982a, 1984). We apply the digital
filtering technique to the discretized frequency function, which
is replaced by a cubic spline interpolating function. If the
bandwidth of the frequency response is sufficiently wide, then
points outside the bandwidth can be truncated or replaced by
known asymptotic values during the convolution. The sine
and cosine lagged convolution is rapidly computed for any
time range and interval by using another spline interpolation,
whose sampling interval is identical in time to the digital filter
spacing. The power of the lagged convolution method over
conventional convolution is realized by computing and saving
all function values for the first time point, thus saving many
recomputations for all remaining times.

The integral transforms in equations (19) and (20) usually
require 20 to 40 direct 3-D frequency evaluations at five to
eight points per decade. At very high frequencies, the response
at the earth’s surface of a deeply buried body is usually small
compared to the response of a layered earth. Thus evaluating
equations (19) and (20) may not require calculation of the 3-D
response in the high-frequency band. The layered-earth re-
sponse can be substituted for the 3-D response when the scat-
tered field is four or five orders of magnitude smaller than the
layered-earth field. The highest frequency we use to evaluate
cquations (19) and (20) corresponds to a source-receiver
and/or body-receiver separation of approximately five skin
depths; the body is also considered to be an EM source. Any
{-D or 3-D response requiring a frequency greater than this
cutoff frequency is set to zero for integra) transform evalu-
ation. The truncation may destroy the accuracy of the very
early-stage transient, but since these early times are never cal-
culated, the truncation error is considered negligible.

When low-frequency 3-D responses are required for cvalu-
ating the sine and cosine transforms, we truncate the kernel in
the sine transform and use the asymptotic form

Im [H(®)] = Ko (32)

for the kernel of the cosine transform. This low-frequency

asymptotic expression is for the imaginary part of a 3-D EM
field component and is valid in the near field when the 3-D
response is dominantly galvanic. The constant K is real and
depends upon the impressed source, the earth layering, and
the body geometry and electrical properties; K is determined
from the low-frequency behavior of the 3-D results. We could
also use the asymptotic form in equation (32} for the sine
transform. However, in that case whether the kernel is trunca-
ted or is represented by equation (32), the calculated transient
Ah(t)/01 is the same.

The accuracy of evaluating sine and cosine transforms with
digital filters is dependent upon the digital filter coefficients,
the lagged convolution truncation tolerance, and the accuracy
and sampling of the 3-D frequency response. The accuracy of
the final transient is primarily dependent upon the accuracy of
the original 3-D frequency response. Typically, we seek about
three-figure accuracy for intermediate times in the transient
and five-tigure accuracy in the corresponding frequency re-
sponsc.

Empirically, we found errors in the calculated transient after
it decays about six orders in magnitude from early to late
time. Double-precision filter weights cxist (Anderson, 1983),
but we consider them impractical because the frequency re-
sponse must also be computed in double precision. The 3-D
solution in its present form cannot be improved using double-
precision arithmetic. Thus the accuracy of the late-stage tran-
sient will always be questionable because the 3-D frequency
response has limited accuracy. Furthermore, we found that the
low-lrequency asymptotic form in equation (32) makes no
contribution to the late-stage transient (Kaufman and Keller,
1983).

Checks on Fourier transformation

Obtaining independent checks on our 3-D Fourier transfor-
mation techniques is difficult. Fortunately, the 3-D direct
time-domain integral equation solution of SanFilipo and
Hohmann (1985) provides such a check.
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Figure 5 shows a check on our digital filtering technique in
which the transient response of a .5 Q- m body embedded in a
10 Q-m half-space is calculated. The body dimensions in
cross-section are 40 m in width and 30 m in depth extent. The
body strike extent and depth of burial are 100 and 30 m,
respectively. A 100 x 100 m square loop is centered 50 m from
a position directly over the center of the body. The frequency
responses in the vertical and horizontal magnetic fields (H,
and H ) are sampled at 19 frequencies at the loop center. The
imaginary component of H, is plotted in Figure 5 from 10 000
to 1 Hz. Since we are calculating the horizontal field, the field
we calculate is the scattered field. The discretized frequency
function is replaced by a cubic spline and Fourier-transformed
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Fi1G. 21. I-D least-squares fits for central-loop apparent resis-
tivity sounding curves. The [-D fits are for three layers at
stations 500, 1 000, and 2 500.

using a sine transform [equation (19)]. Figure 6 shows the
Fourier-transformed horizontal voltage decay from .1 to 10
ms for a step-current turnoff where the calculated voltage is
for a receiving coil of 1 m? area.

Our Fouricr-transformed response is compared with San-
Filipo and Hohmann’s (1985) solution. Their solution is for a
linear ramp turnofl in current; measurement times are referred
to both the top and bottom of a .05 ms ramp between .5 and
2.5 ms and a .25 ms ramp after 2.5 ms (Figure 6). For compu-
tational cfficiency, the length of the ramp is changed from
SanFilipo and Hohmanns (1985) solution at later times.
Notice that the Fourier-transformed response typically [alls
between the measurements made at the top and bottom of the
ramp. [t can be shown that, to a first-order approximation, the
average of the two ramp responses is that ol a step-current
turnoff. After 10 ms, there is numerical noise in the Fourier-
transformed response and the check with SanFilipo and Hoh-
mann’s solution is not very good. We also show a check on
the vertical voltage transient in Figure 7; again the agreement
is excellent. It is encouraging to obtain such good agreement
between the two 3-D solutions, because they are formulated in
different domains and use different matrix formulations. The
direct time-domain solution uses the Galerkin method for
forming the matrix, while the frequency-domain solution uses
the point-matching method with delta testing functions. The
two matrix formulations are also dependent upon the cell
design- of the 3-D-bedy; the frequency-domain. solution.allows
for variable cell dimensions while the direct time-domain solu-
tion does not.

A check on the decay-spectrum technique and our 3-D solu-
tion was shown in SanFilipo and Hohmann (1985). This check
once again showed excellent agreement. We now present 3-D
transicnt responses calculated with the decay spectrum and
with digital filters. However, we currently favor calculating
3-D transients with the digital filtering technique rather than
with the decay spectrum, which is harder to use. The compu-
tation time required for both Fourier-transformation tech-
niques is insignificant—a few seconds for digital filtering and a
minute or two for the decay spectrum on a VAX-11/780.
These computation times do not include the time required to
calculate the 3-D frequency sounding, which is the most time-
consuming step in the calculation of a 3-D transient response.

GALVANIC RESPONSES

Consider the 3-D conductive body in Figure 8. When this
body is in freespace and is in a time-varying magnetic field,
vortex currents are generated within the body. From Fara-
day’s law, these currents flow in a direction such that the
change in magnetic flux linking the body is minimized. The
EM response of the body is called an inductive, or vortex
current, response. The vortex current response vanishes when
the inducing magnetic field is no longer time-varying.

Now consider the body in Figure 8§ embedded in ground of
linite conductivity. If an inducing electric field is present, cur-
rent will flow within the ground that will be concentrated near
and at the conducting body since the body is more conductive
than the ground. The name commonly given to this EM field
behavior is “current channeling” or “current gathering.”
However, we prefer the term “galvanic response,” since cur-
rent is deflected away from a resistive body. The galvanic
response is caused by boundary polarization charge at resis-
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F1G. 22. Three-layer interpretation shows a volcanic unit whose resistivity changes laterally. A small rise in basement is
detected. The dashed lines show the correct depth to basement. The layered-earth host far from the basement high is

shown for comparison.

tivity discontinuities. The polarization charge is required to
satisfy the boundary condition that the normal component of
current density be continuous. The galvanic response will exist
whether the inducing electric field is time-varying or not. In
general, the EM response of a 3-D body within a layered
half-space is a complex interaction of both vortex and galvan-
ic responses. In some cases, however, the EM response of a
3-D body can be dominated by cither the vortex or the gal-
vanic response.

COMPARISON WITH 2-D RESPONSES

There are important differences between transient responses
of elongate 3-D conductors energized by a large rectangular
loop, and 2-D structures of identical cross-section energized
by two infinite line sources. These differences are important
because until recently only 2-D modeling programs were
available for general models.

Figure 9 compares, for a step-current shutoff, the 3-D and
2-D vertical magnetic field responses for a dike. The dike is a
{ Q-m body embedded in a 100 Q-m half-space. Its depth
extent is 60 m, its width is 20 m, and, in the 3-D case, its strike
length is 600 m. The dike is buried at a depth of 40 m. We
energized the dike with a large loop, S00 x 600 m in the x and
y directions. The 2-D responses were computed using the
finite-difference time stepping program of Adhidjaja et al
(1985). Instead of a loop, the 2-D responses were generated by
two finite line sources parallel to the strike direction of the
2-D structure. Therefore boundary charges are absent in the
2-D formulatoin. If the 2-D dike were energized with a rec-
tangular loop, therc would be galvanic effects in the 2-D re-
sponse. Therefore we suspect that the 3-D and 2-D responses
would compare more closely if a 2-D response had been gen-
erated with a rectangular loop rather than with two infinite
line sources. The value in comparing 3-D responses generated
by a rectangular loop to 2-D responses generated by two
infinite line sources is to show some of the limitations of 2-D
modeling.

In Figure 9, the 3-D and 2-D responses are similar in form
but they differ in magnitude and duration. The difference in
the source field falloff with time for the 3-D and 2-D models is
reflected in the total field falloffs. For a loop, the late-time
falloff of 3h,/dt is t~>'2, while for two infinite line sources, the
falloff is r 2. Thus 3-D responses can differ from 2-D re-
sponses by an order of magnitude. The 3-D anomaly in this
example is virtually all due to galvanic sources, since the scat-
tered field falls off as an inverse power at late times rather
than as an exponential (SanFilipo and Hohmann, 1985). The
2-D anomaly, on the other hand, is due purely to induction.
Figure 10 shows the decay in 3-D and 2-D total fields at
station x = — 30,

Figures 11 and 12 illustrate vertical and horizontal mag-
netic field responses, respectively, for a model where the dike
of the previous case touches conductive overburden. We
expect galvanic effects are present in the 3-D responses: cur-
rent is pulled down from the overburden into the body. How-
ever, there can be no vertical current distortion in the 2-D
responses. This is confirmed in Figures 11 and 12 where,
unlike the case in Figure 9, the 3-D anomaly is larger than the
2-D anomaly. In Figure 13, decay curves for 3-D and 2-D
total vertical field responses are plotted at x = —30.

Figure 14 illustrates the response of the 3-D body when it is
detached from the conductive overburden. Its response is
weakened because current in the overburden is not channeled
into the body (compare Figures 12 and 14).

Differences in the falloff with time of layered half-space
fields for infinite line and finite loop sources show up in the
falloff of the 2-D and 3-D scattered fields. At the window in
time when the half-space field is weak compared to the scat-
tered field, the 3-D and 2-D anomalies have similar forms, but
they can differ by an order of magnitude. Galvanic effects are
not present in 2-D responses; hence the 2-D responses are due
purely to induction currents. On the other hand, galvanic ef-
fects in 3-D responses can be very large. SanFilipo et al. (1985)
shows that galvanic effects are important when half-space cur-
rents are strong in the vicinity of a 3-D structure. We find
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that, if the layered host is sufficiently conductive and in con-
tact with the 3-D conductor, strong current in the background
medium will persist to later times and galvanic effects will last
longer.

APPLICATIONS TO STRUCTURE PROBLEMS

Overburden thickness

Our solution can be applied to modeling geologic structure.
Consider the problem of mapping the thickness of conductive
overburden. Figure 15 illustrates a 3-D, variable-thickness
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F16. 23. 1-D least-squares fits for central-loop apparent resis-
tivity sounding curves. The 1-D fits are for four layers at
stations 500, 1 000, and 2 500.

overburden model with layer resistivities of 10 and 100 Q- m.
Directly over the basement depression the overburden layer
thickens to 1 100 m, while far away from the depression, the
layer thins to 500 m. In plan view the basement depression
extends 2 800 m in the x any y directions. Six central-loop
stations, with loops { km on & side, profile over the basement
depression at x = 500, 1 000, 1 500, 2 000, 2 500, and 3 500 m.

Figures 16 and 17 are plots of the transient decay of the
vertical magnetic field and the apparent resistivity sounding
detined by the decay of the magnetic field time derivative
@h,/01. Again these responses are for a step-current shutoff.
The apparent resistivity sounding is obtained by inverting the
cenlral-loop hall-space formula,

~ 3nr

09—;:: z= p_Izs_ [3 erfl (z2) — 3z + 2z%) exf” (z)]u(t), (33)
for resistivity p. In equation (33), L = \/an where a, is the
equivalent radius of the square loop and erf (z) is the error
function. The value z is defined as L/2[u/(pr)]** and u(z) is
the unit step function. The inversion of equation (33) is evalu-
ated using an algorithm described by Raab and Frischknecht
(1983).

When a central-loop station approaches the basement de-
pression, the split in the 3-D and 1-D responses (magnetic and
apparent resistivity) occurs earlier, as shown in Figures 16 and
17. We define the 1-D response as the response of the layered
earth without the depression. The effect of the basement de-
pression is to increase the magnetic field and lower the appar-
ent resistivity relative to the 1-D response. The 3-D magnetic
field and apparent resistivity responses are reflected by the
slow decay of currents in the earth. The 3-D magnetic field
anomaly and apparent resistivity anomaly are band-limited in
time. Eventually, with increasing time, the transient response
of the 3-D structure must vanish and approach the 1-D re-
sponse. At station 500, the apparent resistivity sounding in
Figure 17 reflects a sampling of 10 Q - m material later in time
(and hence depth) than the !-D response. Indeed, by using
Anderson’s (1982¢c) 1-D TEM inversion program for the
central-loop configuration, we obtained 700 m depth to re-
sistive basement at station 500 compared to the actual depth
of 1100 m. This depth estimate is by no means accurate.
However, it points out that the conductive overburden is
thickest over station 500, as would be expected since station
500 is over the basement depression.

Sedimentary structure beneath volcanics

An important structural problem for the petroleum industry
is to estimate the depth to conductive sediments beneath vol-
canic cover. Figure 18 shows a simulated section for such a
case. The top layer consists of 100 Q' m material, 50 m thick,
representing thin alluvial fill. Below this layer a 1 000 Q' m
basalt layer of variable thickness covers a 50 Q-m sedi-
mentary basement. The depth to the conductive basement
varies, and the problem is to determine whether central-loop
transient electromagnetic methods can map these variations.
The basalt cover has a maximum thickness of 1 950 m and
thins to 1 350 m directly over the basement high. The base-
ment high extends 3 000 m in the strike direction.

We calculated central-loop apparent resistivity soundings
for loops 2 km on a side on a profile across the center of the
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model at positions 500, 1 000, 2 500, and 3 000, as shown in
Figure 19. Compare the transient soundings with the mag-
netotelluric (MT) soundings shown in Figure 20. The MT
soundings are calculated for an electric field polarized parallel
to strike using the algorithm described by Wannamaker et al.
(1984a). Once again, the 1-D responses are defined as layered-
earth responses without the body. The 1-D response corre-
sponding to the structural high is for a conductive basement
raised to ! 400 m depth.

The 3-D transient soundings in Figure 20 show a rise in
apparent resistivity from 100 Q- m before | ms to about 700
to 850 Q- m by 5 ms. At late times the soundings approach 50
Q-m, the resistivity of the basal half-space. The largest 3-D
responses occur at stations 500 and 1 000, directly over the
structure. As expected, the response of the body is band-
limited in time and falls betwcen the two layered-earth re-
sponses.

The MT response of the body in Figure 20 is obvious in
stations 500 and 1 000. However, the MT response of the
body is not band-limited in frequency, but is present to arbi-
trarily low frequencies. This permanent distortion of the ap-
parent resistivity sounding curve with falling frequency is an
electric field anomaly caused by a boundary polarization
charge at resistivity boundaries (Wannamaker et al., 1984b).

Comparison of the central-loop method and MT method
points out a fundamental diffcrence between them. In the MT
mcthod, the plane-wave source field is always on; hence the
3-D distortion in the apparent resistivity sounding will be
present to arbitrarily low {requencies. With transient methods,
the transmitting source is turned off, and currents perturbed
by a 3-D body must decay and dilTuse away with increasing
time. Unlike the MT case, near-surface 3-D geologic noise
does not permanently distort a central-loop apparent resistivi-
ty sounding; geologic noise is band-limited in time. The ad-
vantage of the MT method, however, is that great depth of
exploration can be achieved, provided the data are interpreted
properly.

1-D inversion is the standard technique used for estimating

Layered Earth

the depth to conductive sediments. We used Anderson’s
(1982c) 1-D transient electromagnetic inversion program for
the central-loop configuration and set about inverting the 3-D
soundings in Figurc 19 to [-D geoelectric sections. The ob-
served data from 1 to 500 ms were inverted to three- and
four-layer models.

The three-layer interpretation in Figures 21 and 22 shows a
thinning and reduction in the thickness and resistivity of the
volcanic unit over the basement high. The volcanic unit has a
resistivity of §15 Q-m at station 500, but at station 2 500 the
resistivity increases to | 182 Q-m. The interpretation also
shows that the minimum depth to conductive basement is
1 760 m at station S00, whereas the correct depth to basement
is 1 400 m.

A constrained four-layer interpretation in Figures 23 and 24
appears to estimate the depth to a conductive zone beneath
the volcanic cover more accurately than with three layers
(compare Figures 22 and 24). Moreover, the constrained three-
layer interpretation and the unconstrained four-layer interpre-
tation will not give layered-carth models that match the true
basement depth as well as that given in Figure 24. A con-
strained four-laver interpretation in which the volcanic unit is
held fixed can replace the basement high in Figure 18 by an
equivalent conducting layer which has variable resistivity and
thickness at a similar depth. The interpretation in Figure 24
shows this layer to have resistivities of 144, 199, and 41 Q-m
and depths of 1 497, 1 540, and 1 948 m at stations 500, 1 000,
and 2 500, respectively. However, the above estimates of this
equivalent layer can vary significantly. Moreover in practice
many field surveys will not have control of the resistivity of
the overburden: hence, use of a constrained four-layer inter-
pretation is often impractical with real data.

CONCLUDING REMARKS

Accurate 3-D transient responses can be generated ef-
ficiently and effectively with digital filters or with the decay

Host 2500 1000 500

100 82-m 50m 1008 -m 50m 1000 'm 50m 10082 m 50m
1000£)-m
1 0008y 'm
10008 -m
10008)-m
[V 400m)
154Qm 2 — 1497m
0550m)

1948m i PP ade

2000m  — — = 2027m
2000wy o
M222im
5080m 538 m 568 m 558 m

FIG. 24. Four-layer interpretation shows a thinning in the volcanic unit as sounding stations approach the basement
high. Note that the volcanic unit is constrained at 1 000 Q- m in the interpretation,
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spectrum. With digital filters, we found 20 to 40 frequencies at
five to eight points per decade were typically required for an
accurate solution. Usually we found the calculated transient
was in error after it had decayed six orders in magnitude from
early to late time. The error was present because 3-D fre-
quency responses were computed with limited accuracy. Cal-
culating 3-D transient responses with the decay spectrum re-
quired fewer frequencies than with digital filtering (usually ten
frequencies). However, transients calculated with the decay
spectrum appeared to be less accurate than those calculated
with digital filtering, particularly at later times. We now favor
use of digital filters for both accuracy and simplicity.

The 3-D frequency-domain solution described uses pulse
basis functions to track the electric field within the body.
While these basis functions produce good results when 3-D
responses are dominantly galvanic, they do not work well for
high-contrast models where both induction and galvanic
sources determine the EM response. We believe divergence-
free basis functions must be added before high-contrast
models can be correctly calculated. The solution is reliable up
to a conductivity contrast between body and host of 200 : 1.

Future work should include an exhaustive investigation of
3-D bias on 1-D transient inversions. The need for such a
study is imperative since I-D interpretations are now being
applied routinely (and perhaps incorrectly) to 3-D geologic
environments. Other important practical problems that need
investigation are the transient response of a grounded wire
over a 3-D earth and the transient response of a polarizable
3-D body for both loop and grounded-wire sources. The tech-
niques we used to calculate transient responses for loop
sources are valid for grounded-wire sources as well. Finally,
more work is rcquired on cvaluating the advantages and dis-
advantages of various EM methods in both the frequency
domain and time domain. Calculating 3-D transient responses
can provide some additional insight into design of optimal
field surveys.

The 3-D transient responses presented here were calculated
on a VAX-11/780 (with a floating point accelerator but with-
out an array processor) and UNIVAC 1161 computers. The
computation timces for both computers are approximatcly the
same. The maximum computation time of any model present-
ed was about 12 hours, most of which was consumed in calcu-
lating the 3-D frequency response.
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