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Transient energy growth for the Lamb–Oseen vortex

Arnaud Antkowiaka) and Pierre Brancher
Institut de Mécanique des Fluides de Toulouse, Allée du Professeur Camille Soula, 31400 Toulouse, France

The transient evolution of infinitesimal flow disturbances which optimally induce algebraic growth 
in the Lamb–Oseen ~Gaussian! vortex is studied using a direct-adjoint technique. This optimal 
perturbation analysis reveals that the Lamb–Oseen vortex allows for intense amplification of kinetic 
energy for two-dimensional and three-dimensional perturbations of azimuthal wavenumber m51. In 
both cases, the disturbances experiencing the most growth initially take the form of concentrated 
spirals at the outer periphery of the vortex which rapidly excite bending waves within the vortex 
core. In the limit of large wavelengths, the optimal perturbation leads to arbitrarily large growths via 
an original scenario combining the Orr mechanism with vortex induction. 

The stability properties of vortices have received consid-

erable attention in recent years partly because of a renewed

interest in the dynamics of trailing vortices behind aircrafts.

More specifically, the strong and persistent counter-rotating

vortex pair generated at the trailing edge of airplane wings

represent a potential hazard to forthcoming planes thus lim-

iting take-off and landing cadences in airports. It has been

shown in the last decades that these vortices are unstable to

long-1 and short-wave instabilities2 due to the underlying

strain field induced by the companion vortex. Moreover, the

presence of an axial flow is at the origin of other instability

mechanisms.3

By contrast, an isolated vortex with no axial flow and

monotonically decreasing positive vorticity, hereafter called

an axisymmetric monopole, is linearly stable with respect to

two-dimensional ~2D! and three-dimensional ~3D! perturba-

tions ~see, for instance, the temporal stability analysis of

Fabre and Jacquin4!. In particular, it is stable with regard to

both the centrifugal and inflection-point Rayleigh criteria.

Stability analyses of this kind of vortex generally focus on

2D perturbations. In the inviscid case, a deformed vortex

relaxes toward an axisymmetric state after an exponential

~Landau! damping followed by algebraic decay at long times

of the initial asymmetric perturbations.5,6 At large but finite

Reynolds numbers, asymmetric perturbations asymptotically

decay on a Re1/3 time scale via a shear–diffusion

mechanism.7,8

Interesting algebraic evolution of 2D disturbances has

also been reported in the case of inviscid hollow hurricane-

like vortices:9,10 long time asymptotics has revealed the pos-

sibility for linear growth of the perturbation kinetic energy

even if the flow is exponentially stable. But this mechanism

is only active under the necessary condition that the basic

flow angular velocity has a local maximum other than at the

vortex axis, which is not the case for the axisymmetric

monopole. Yet a generalized stability analysis of monopolar

vortices maintained by radial inflow has also revealed tran-

sient growth for 2D spiral-shaped perturbations.11 Moreover,

the same authors have found that the linear response of these

flows to random forcing involved a similar spiral-shaped

dominant structure.12 Finally, recent theoretical studies13

have suggested that interactions between a vortex and 3D

external turbulence could excite bending waves, via a domi-

nant linear process that may eventually destroy the vortex

after about 10 rotation times in the nonlinear regime.

In that context our objective in this Letter is to present

preliminary results revealing the potential for intense tran-

sient amplification of kinetic energy for specific perturba-

tions ~optimal perturbation! in the linear regime. It is argued

that this transient growth could eventually trigger a nonlinear

transition in an otherwise linearly stable vortex.

The present work analyzes the temporal evolution of in-

finitesimal 3D perturbations with velocity components in cy-

lindrical coordinates u(r ,u ,z ,t)5(ur ,uu ,uz)
T in a steady in-

compressible axisymmetric vortex flow U(r)5(0,rV ,0)T.

The basic flow under consideration here is the Lamb–Oseen

model, with angular velocity V(r)5 @12exp(2r2)#/r2 and

associated axial vorticity Z(r)52exp(2r2). Here space and

time have been respectively nondimensionalized by the vor-

tex radius r0 and the ~maximum! angular velocity at the axis

V0 . The Reynolds number based on these characteristic

scales is Re5V0r0
2/n, where n denotes the kinematic viscos-

ity. Linearizing the Navier–Stokes equations around this ba-

sic flow, it is possible to eliminate the perturbation pressure
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and axial velocity to get a complete description of the per-

turbation in terms of ṽ5(ur ,uu)T. Then, injecting a classical

normal modes decomposition, ṽ(r ,u ,z ,t)5v(r ,t)

3exp@i(kz1mu)#, where k ~real! and m ~integer! are, respec-

tively, the axial and azimuthal wavenumbers, yields the fol-

lowing system for v, rewritten in compact form:

F~v!5L
]v

]t
1Cv2

1

Re
Dv50, ~1!

with the associated boundary conditions that the perturbation

is regular at r50 and tends to 0 at infinity. Derivation of ~1!

is straightforward.4 D is a viscous diffusion operator and the

operator L results from the elimination of pressure and axial

velocity from the original linearized Navier–Stokes equa-

tions. Disturbance and basic flow are coupled through the

advection operator C.

Classical linear stability theory focuses on the long time

behavior of the normal modes by assuming exponential time

dependence of the form v(r ,t)5v(r)e2ivt. The analysis

then reduces to an eigenvalue problem for the complex pul-

sations v, which are all stable for the Lamb–Oseen vortex.4

Nevertheless, it is noteworthy that the advection operator C

is highly non-normal, except in the trivial case k5m50 or

in the special case of solid-body rotation. This property, here

due to differential rotation, implies that short time transient

amplification can be anticipated.14

This conjecture can be addressed by computing the op-

timal perturbation, i.e., the initial condition which maximizes

the energy gain G(t)5Et /E0 during a finite time interval

@0,t#, where the perturbation energy at time t is given by

E t5

1

2
E

0

`

~ ūrur1 ūuuu1 ūzuz!rdrU
t

.

Here the overbars indicate transpose conjugate quantities.

Different techniques can be used to determine the opti-

mal initial conditions.15–18 The formalism employed in the

present work comes from optimal control theory. It has been

successfully used to compute the optimal perturbation in

swept boundary layers.19 Since we follow closely the proto-

col described in Corbett and Bottaro,19 we only give a syn-

thetic presentation of this approach in the following.

The optimization problem lies in maximizing the energy

growth G(t) ~the objective! at a given time t under the con-

straints of respecting ~1! and the associated boundary condi-

tions. The initial condition v0 is used as a control to be ad-

justed in order to meet the objective. This constrained

optimization problem can be solved by considering the

equivalent unconstrained problem for the Lagrangian func-

tional:

L~v,v0 ,a,c!5G~t !2^F~v!,a&2~H~v,v0!,c!,

introducing the adjoint variables a(r ,t)5(a ,b)T and c(r)

5(c ,d)T which play the rôle of Lagrange multipliers. Here

H(v,v0)5v(r ,0)2v0(r) corresponds to the constraint that

the initial condition v(r ,0) matches the control v0(r). The

inner products appearing in the functional are

~p,q!5E
0

`

p̄"q r dr1complex conjugate,

^p,q&5E
0

t

~p,q! dt .

The task is then to determine v, v0 , a and c which render L

stationary, i.e., corresponding to a local extremum. Setting to

zero variations of L with respect to these variables yields

boundary conditions and the following ~adjoint! system for

the variable a:

F1~a!52L
]a

]t
1C1a2

1

Re
Da50, ~2!

where C1 is the adjoint operator of C. It also yields transfer

relations between the direct and adjoint variables at times t

50 and t5t as well as the expression of the optimal pertur-

bation. The reader is referred to the paper by Corbett and

Bottaro19 for the details of the derivation. The computation

of the optimal perturbation is carried out via the following

iterative algorithm: from an initial guess ~random noise! v0

the direct system ~1! is integrated to t5t; transfer relations

are then applied to provide initial conditions for the

backward-in-time integration of the adjoint system ~2! until

t50 thus providing improved initial conditions for the next

iteration. In practice this procedure converges within 4 to 6

iterations ~i.e., G(t) varies less than 1022).

The spatial treatment of the direct and adjoint systems is

based on a pseudospectral Chebyshev method.20 The equa-

tions are discretized on the Gauss–Lobatto grid algebraically

mapped on the semi-infinite physical domain.20 All compu-

tations are done using MATLAB and the DMSuite package de-

veloped by Weideman and Reddy.21 A special trick of the

method has been to take advantage of the variables parity

thus allowing to reduce the number of collocation points for

a given accuracy.4 Convergence tests have been performed

FIG. 1. Optimal energy growth and corresponding optimal time ~in rotation

periods! versus axial wavenumber.



by varying the stretching of the mapping and the number of

collocation points from 40 to 120 without any dramatic

changes in the results.

We next discuss preliminary results obtained for the par-

ticular case m51. The evolution of the optimal growth with

respect to the axial wavenumber k is reported in Fig. 1, to-

gether with the corresponding time topt at which it occurs. It

can be seen that considerable growth can be reached, even at

moderate Reynolds numbers. A remarkable feature is the

presence of a relative maximum in energy near k.1.4 inde-

pendently of the Reynolds number, indicating some three

dimensional core sized mechanism efficient in redirecting

energy from the mean flow to the perturbation. The energy

value at this peak scales with the Reynolds number. Figure 2

shows the optimal disturbance structure corresponding to this

maximum. This perturbation is at t50 composed of a set of

spiraling vorticity sheets with a left-handed orientation that

evolve so as to produce a strong bending wave within the

vortex core. Due to three-dimensionality, the dynamics of

such a perturbation is quite intricate ~stretching and tilting!

and is not yet fully understood. Nevertheless, this dynamics

might involve an analog of the 3D mechanism analyzed by

Farrell and Ioannou.22 These authors present a generalization

of the so-called Orr and lift-up mechanisms in plane shear

flows which could constitute an interesting basis for the de-

tailed analysis of the present results.

Though stretching and tilting vanish as large wave-

lengths are approached, the potential for substantial transient

growth still exists. More specifically, the 2D limit exhibits a

striking feature: the growth increases linearly24 with terminal

time t ~Fig. 3!. Figure 4 depicts the evolution of a typical 2D

optimal perturbation. The associated vorticity field initially

takes the form of spirals that tend to thicken and to lie further

from the vortex core as t is increased ~data not shown!. This

field satisfied the linearized vorticity equation:

~3!

where three parts have been underbraced: an advection part

which materially advects the vorticity perturbation, an induc-

tion part corresponding to redirection of vorticity from the

mean flow to the disturbance ~both parts coming from the

linearization of the advection term in the complete equation!

and a diffusion term. Let us examine how these terms inter-

act as time evolves. The initial structure of the optimal per-

turbation is a set of vorticity sheets in the form of leading

spirals ~by opposition to trailing spirals, as for the advection

of a passive scalar spot!. This initial condition is located at

the limb of the vortex, where the induction term is negli-

gible. As time flows ~middle of Fig. 4!, the initial leading

spirals are advected and unfolded via an analog of the Orr

mechanism. This process results in a local reorganization of

the external perturbation vorticity that promotes vortex in-

duction on the vortex axis as the spirals unroll. This original

global sequel of the Orr mechanism initiated at the outer

periphery of the vortex thus eventually leads to a contamina-

tion of the vortex core by exciting translational ~bending!

modes: quickly, an inner bipolar vortical structure grows, and

at larger times most of the kinetic energy is associated with

this ‘‘translation.’’ Maximum growth is reached at terminal

time, before the resulting unblended spirals are stirred back

into trailing spirals. Though the whole process is clearly in-

viscid, viscosity plays a rôle in the selection of the initial

characteristic radial scale of the optimal disturbance ~the

greater the Reynolds number, the thinner the vorticity

sheets!.

We now present a simple model intended to mimic the

combined effects of advection and induction, and to illustrate

the initial destructive interference between vorticity spirals.

In this model, the evolution of points vortices advected by a

1/r flow initially organized along spirals is examined, and

the resulting induced velocity at the center is evaluated.

Starting with two filaments rolled up in spiral form, the ac-

tion of the mean external shear flow (.1/r) is to materially

advect the vorticity and to concentrate the spiral. Figure 5

represents the evolution of resulting radial velocity at the

center, which is a measure of the induction term. Its action is

negligible at initial time, due to destructive interference of

intertwined spirals. But, as time evolves, the spirals become

FIG. 2. Isosurfaces of axial vorticity for the optimal 3D case. The levels

correspond to 680% of maximum vorticity, at initial time ~left! and optimal

time ~right!.

FIG. 3. Evolution of growth with terminal time ~in rotation periods! in the

2D case at Re51000.

FIG. 4. Cross section of axial vorticity in the 2D case. The contour plot

levels are 660% of maximum absolute vorticity.



unwound. As a consequence, their action focuses on the cen-

ter and redirects vorticity from the mean flow to the distur-

bance.

The important point of the present Letter is that m51

disturbances injected in a vortex are subject to transient am-

plification. The physical mechanism feeding the transient

growth is not restricted to a local Orr mechanism, but in-

cludes also a global effect of vortex induction. It is notewor-

thy that these two mechanisms are not specific to the Lamb–

Oseen vortex, or even to vortices, but are generic to free

flows with the two hydrodynamic ingredients: shear and ro-

tation. Nevertheless, several questions remain unanswered.

First, in the linear regime, what are the respective roles of

stretching and tilting in the 3D case? Is the peak in Fig. 1 the

result of a resonance phenomenon? Moreover, the nonlinear

regime of the optimal perturbation will be investigated via

direct numerical simulations in order to address the rel-

evance of a ‘‘bypass’’ 14 transition scenario in such a flow.

Back to aircraft vortices, the similarity between the result of

optimal evolution ~a core contamination by external distur-

bance leading to a translation! and the long-wave erratic dis-

placements of experimental vortices, a phenomenon known

as vortex meandering,23 also encountered in tornado- and

hurricane-like flows,11 appears puzzling and worthy of fur-

ther investigation. Finally, an exhaustive parametric study is

currently under way in order to investigate other azimuthal

wavenumbers and the influence of base flow diffusion.25
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FIG. 5. Illustration of the initial destructive interference of vorticity spirals.




